JPH0527286A - Optical wavelength conversion element - Google Patents

Optical wavelength conversion element

Info

Publication number
JPH0527286A
JPH0527286A JP3182298A JP18229891A JPH0527286A JP H0527286 A JPH0527286 A JP H0527286A JP 3182298 A JP3182298 A JP 3182298A JP 18229891 A JP18229891 A JP 18229891A JP H0527286 A JPH0527286 A JP H0527286A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
wavelength conversion
conversion element
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3182298A
Other languages
Japanese (ja)
Inventor
Akinori Harada
明憲 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3182298A priority Critical patent/JPH0527286A/en
Publication of JPH0527286A publication Critical patent/JPH0527286A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To use a substrate with which a good-quality single crystal is obtainable and to suppress the absorption of secondary harmonic waves to the substrate by specifying the compsn. ratio X of a thin-film optical waveguide consisting of ZnSxSe1-x to <=0.2 value. CONSTITUTION:The compsn. ratio X of the ZnSxSe1-x constituting the thin-film optical waveguide is set at 0.2 value. Namely, this optical wavelength conversion element is constituted by forming a clad layer 12 consisting of ZnS and the thin-film optical waveguide 13 consisting of the Zn0.2Se0. 8 which is a nonlinear optical material in this order on a GaAs substrate 11. The compsn. ratio X is 0.2 in such a case. The point at which a phase matching angle thetaattains does not exist any more even if the optical waveguide <=1 deg. is formed thick when the X exceeds 0.2 and, therefore, the X is required to be set at <=0.2. The formation of the optical waveguide into a superlattice structure is possible as well. The optical waveguide can be obtd. simply by confining the film thickness ratio of the superlattice structure of ZnS/ZnSe to 2:8, i.e. under 1:4 in such a case. This case is also included in 'specifying the compsn. ratio X to.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学材料により
基本波を第2高調波に変換する光波長変換素子に関し、
特に詳細には、非線形光学材料として半導体材料を用い
た薄膜光導波路型の光波長変換素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion element for converting a fundamental wave into a second harmonic by a non-linear optical material,
More particularly, it relates to a thin film optical waveguide type optical wavelength conversion element using a semiconductor material as a nonlinear optical material.

【0002】[0002]

【従来の技術】従来より、非線形光学材料による第2高
調波発生を利用して、レーザー光を波長変換(短波長
化)する試みが種々なされている。この種の光波長変換
素子の一つとして、例えば特開昭63-15233号、同63-152
34号公報に示される光導波路型のものが公知となってい
る。また最近では、例えば特開平2-135428号公報に示さ
れるように、非線形光学材料として半導体材料を用い、
この半導体材料により薄膜光導波路を形成した光導波路
型の光波長変換素子も知られている。なおこの薄膜光導
波路型の光波長変換素子として、具体的には、基板上に
ZnSからなるクラッド層およびZnSxSe1-x から
なる薄膜光導波路がこの順に形成されてなるものが広く
知られている。
2. Description of the Related Art Conventionally, various attempts have been made to convert the wavelength of laser light (shorten the wavelength) by utilizing the second harmonic generation by a nonlinear optical material. As one of the optical wavelength conversion elements of this type, for example, JP-A-63-15233 and 63-152.
The optical waveguide type shown in Japanese Patent No. 34 is known. In addition, recently, for example, as shown in JP-A-2-135428, a semiconductor material is used as a nonlinear optical material,
An optical waveguide type optical wavelength conversion element in which a thin film optical waveguide is formed of this semiconductor material is also known. As the thin-film optical waveguide type optical wavelength conversion element, specifically, there is widely known one in which a clad layer made of ZnS and a thin-film optical waveguide made of ZnS x Se 1-x are formed in this order on a substrate. ing.

【0003】一方、光導波路型の光波長変換素子の1つ
のタイプとして、いわゆるチェレンコフ放射タイプのも
のが知られている。この光波長変換素子は、光導波路を
伝搬する導波モードの基本波と、クラッド部に放射した
放射モードの第2高調波との間で位相整合が取られるも
のである。
On the other hand, a so-called Cherenkov radiation type is known as one type of optical wavelength conversion element of the optical waveguide type. In this optical wavelength conversion element, phase matching is achieved between the fundamental wave of the guided mode propagating through the optical waveguide and the second harmonic of the radiated mode radiated to the cladding.

【0004】[0004]

【発明が解決しようとする課題】前述したように半導体
材料を用いる薄膜光導波路型の光波長変換素子も、この
チェレンコフ放射タイプのものとして形成可能である
が、その場合、第2高調波が基板に吸収されるという問
題が起こり得る。すなわち、この薄膜光導波路型の光波
長変換素子は、基板上にクラッド層および薄膜光導波路
がこの順に形成されてなるので、所定の位相整合角でク
ラッド層に放射した第2高調波は、素子端面から出射す
る前に基板に到達することが有り得る。そして基板材料
としては、通常、良質の単結晶が得られるGaAs基板
が用いられ、このGaAs基板は波長800 nm以下の光
を全吸収するので、緑、青領域(多くの場合光波長変換
素子は、この波長領域の光を得るために利用される)の
第2高調波が該基板に吸収されてしまうのである。
As described above, a thin film optical waveguide type optical wavelength conversion element using a semiconductor material can also be formed as this Cherenkov radiation type, in which case the second harmonic wave is generated on the substrate. The problem of being absorbed by can occur. That is, in this thin-film optical waveguide type optical wavelength conversion element, since the cladding layer and the thin-film optical waveguide are formed in this order on the substrate, the second harmonic wave radiated to the cladding layer at a predetermined phase matching angle is emitted from the element. It is possible that the substrate is reached before exiting from the end face. As the substrate material, a GaAs substrate that can obtain a good-quality single crystal is usually used. Since this GaAs substrate totally absorbs light with a wavelength of 800 nm or less, the green and blue regions (in many cases, the optical wavelength conversion element is , Which is used to obtain light in this wavelength range), is absorbed by the substrate.

【0005】このように第2高調波が基板に吸収されて
しまう現象は、当然、上記位相整合角が大きいほどより
顕著となる。また理論上この現象は、クラッド層を非常
に厚くすれば抑えることができる。しかしクラッド層は
通常、基板上にエピタキシャル成長によって形成するの
で、せいぜい100 μm程度までしか厚くすることができ
ない。したがって、クラッド層を非常に厚くして上記現
象を抑えるのは、実用上は不可能である。
The phenomenon in which the second harmonic is absorbed by the substrate as described above is naturally more remarkable as the phase matching angle is larger. In theory, this phenomenon can be suppressed by making the cladding layer very thick. However, since the cladding layer is usually formed on the substrate by epitaxial growth, the thickness can be increased to about 100 μm at most. Therefore, it is practically impossible to make the cladding layer very thick to suppress the above phenomenon.

【0006】そこで前述の特開平2-135428号公報にも示
されるように、基板を第2高調波に対して透明な材料で
形成することも提案されている。より具体的に、第2高
調波が緑、青領域の光である場合には、この透明な基板
材料としてCaF2 やZnSを使用することが考えられ
ている。
Therefore, as disclosed in the above-mentioned Japanese Patent Laid-Open No. 2-135428, it has also been proposed to form the substrate with a material transparent to the second harmonic. More specifically, when the second harmonic is light in the green and blue regions, it is considered to use CaF 2 or ZnS as the transparent substrate material.

【0007】ところがこのCaF2 やZnSは、良質の
単結晶を得ることが難しいものである。そのため、この
CaF2 やZnSで基板を構成した従来の薄膜光導波路
型の光波長変換素子にあっては、光導波路における基本
波の損失が大きいという問題が認められていた。
However, it is difficult to obtain good quality single crystals of CaF 2 and ZnS. Therefore, in the conventional thin film optical waveguide type optical wavelength conversion element in which the substrate is made of CaF 2 or ZnS, a problem that the loss of the fundamental wave in the optical waveguide is large has been recognized.

【0008】本発明は上記のような事情に鑑みてなされ
たものであり、良質の単結晶が得られるGaAs基板等
の基板を用いた上で、第2高調波の基板への吸収も起こ
り難い薄膜光導波路型の光波長変換素子を提供すること
を目的とするものである。
The present invention has been made in view of the above circumstances, and the use of a substrate such as a GaAs substrate from which a single crystal of good quality can be obtained, and absorption of the second harmonic into the substrate is unlikely to occur. An object of the present invention is to provide a thin film optical waveguide type optical wavelength conversion element.

【0009】[0009]

【課題を解決するための手段】本発明による光波長変換
素子は、先に述べたようにGaAs基板等の基板上にZ
nSからなるクラッド層、およびZnSx Se1-x から
なる薄膜光導波路がこの順に形成されてなり、この光導
波路を伝搬する基本波を第2高調波に変換する光波長変
換素子において、上記の組成比xが0.2 以下の値とされ
ていることを特徴とするものである。
As described above, the optical wavelength conversion device according to the present invention has a Z-shaped structure on a substrate such as a GaAs substrate.
In the optical wavelength conversion element for converting the fundamental wave propagating through the optical waveguide into the second harmonic wave, the cladding layer made of nS and the thin film optical waveguide made of ZnS x Se 1-x are formed in this order. It is characterized in that the composition ratio x is 0.2 or less.

【0010】[0010]

【作用および発明の効果】半導体材料のエピタキシャル
成長における成長最大膜厚は、前述した通り、一般に10
0 μm=0.1 mm程度である。一方、青、緑のレーザー
光源の応用用途としては、カラープリンタ、光ディス
ク、光計測等多くの分野が存在するが、mWレベル以上
の出力のものが実用上望まれている。この出力を半導体
レーザーと薄膜光導波路型の光波長変換素子との組合わ
せによって得る場合、単一横モードの半導体レーザーの
出力は、現状最大100 mW程度であり、ZnS、ZnS
Se系の材料の非線形光学定数からすると、5mm以上
の相互作用長すなわち素子長さLが必要である。
[Operation and Effect of the Invention] As described above, the maximum growth film thickness in the epitaxial growth of semiconductor materials is generally 10
It is about 0 μm = 0.1 mm. On the other hand, as applications of blue and green laser light sources, there are many fields such as color printers, optical disks, and optical measurement, but those having an output of mW level or higher are practically desired. When this output is obtained by combining a semiconductor laser and a thin film optical waveguide type optical wavelength conversion element, the output of a single transverse mode semiconductor laser is currently about 100 mW at the maximum, and ZnS, ZnS
Considering the nonlinear optical constants of Se-based materials, an interaction length of 5 mm or more, that is, an element length L is required.

【0011】ここで、クラッド層厚さをD、チェレンコ
フ放射の場合の位相整合角をθとすると、放射した第2
高調波がクラッド層の外側の基板に到達しないための極
限の条件は、tan θ=D/Lである。L=5mm、D=
0.1mmの値をこの式に代入すると、θ=1.14°とな
る。つまり、位相整合角θを1.14°以下にしなければ、
第2高調波が基板に到達して吸収される現象が起こり得
る。
Assuming that the cladding layer thickness is D and the phase matching angle in the case of Cherenkov radiation is θ, the emitted second
The ultimate condition for the harmonics not to reach the substrate outside the cladding layer is tan θ = D / L. L = 5 mm, D =
Substituting the value of 0.1 mm into this equation gives θ = 1.14 °. That is, unless the phase matching angle θ is 1.14 ° or less,
A phenomenon may occur in which the second harmonic reaches the substrate and is absorbed.

【0012】ここで約10%の余裕を見て、位相整合角θ
を1°以下にするためには、図2より、組成比xを0.2
以下に設定すればよいことが導かれる。すなわち、本発
明者等の研究によると、光導波路の厚さと位相整合角θ
との関係は、組成比xに応じて図2に示すように変化す
ることが分かった。この図2中、曲線aで示すのがx=
0.2 のときの関係、曲線bで示すのがx=0.1 のときの
関係である。この関係は、xが次第に減少するにつれて
曲線が傾斜を強めつつ全体的に左側に移行するように変
化し、xが次第に増大すると上記と反対の傾向で変化す
る。そしてxが0.2 を超えると、図中曲線cで示すよう
に、光導波路を厚くしてもθが1°以下になる点が存在
しなくなるので、x≦0.2 とする必要がある。
Here, with a margin of about 10%, the phase matching angle θ
In order to make the value 1 ° or less, the composition ratio x should be 0.2
It is possible to set the following. That is, according to the study by the present inventors, the thickness of the optical waveguide and the phase matching angle θ
It was found that the relationship with and changes as shown in FIG. 2 depending on the composition ratio x. In FIG. 2, a curve a indicates x =
The relationship when 0.2, and the curve b shows the relationship when x = 0.1. This relationship changes so that the curve gradually shifts to the left while increasing the slope as x gradually decreases, and changes in the opposite manner as x gradually increases. When x exceeds 0.2, there is no point where θ becomes 1 ° or less even if the optical waveguide is thickened, as indicated by the curve c in the figure, so x ≦ 0.2 is required.

【0013】なお、本発明の光波長変換素子において光
導波路は、超格子構造とすることも可能である。その場
合は、ZnS/ZnSeの超格子層の膜厚比を2:8、
つまり1:4以下にすればよい。本発明では、このよう
にすることも、「組成比xを0.2 以下にする」というこ
とに含むものとする。
In the light wavelength conversion element of the present invention, the optical waveguide may have a superlattice structure. In that case, the film thickness ratio of the ZnS / ZnSe superlattice layer is 2: 8,
That is, it may be 1: 4 or less. In the present invention, doing this is also included in "making the composition ratio x 0.2 or less".

【0014】[0014]

【実施例】以下、図面に示す実施例に基づいて本発明を
詳細に説明する。図1は、本発明の一実施例による光波
長変換素子10を示すものである。この光波長変換素子10
は、GaAs基板11上に、ZnSからなるクラッド層1
2、および非線形光学材料であるZnS0.2 Se0.8から
なる薄膜光導波路13がこの順に形成されてなる。つまり
本実施例において、組成比xは0.2 である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the embodiments shown in the drawings. FIG. 1 shows an optical wavelength conversion device 10 according to an embodiment of the present invention. This optical wavelength conversion element 10
Is a cladding layer 1 made of ZnS on a GaAs substrate 11.
2, and a thin film optical waveguide 13 made of ZnS 0.2 Se 0.8 which is a non-linear optical material is formed in this order. That is, in this embodiment, the composition ratio x is 0.2.

【0015】半導体レーザー14から発せられた基本波と
してのレーザービーム15(波長980nm)は、集光レン
ズ16によって集光され、光導波路13の一端面から該光導
波路13内に入射し、そこを導波モードで他端面側に進行
する。このレーザービーム15は、光導波路13を構成する
ZnS0.2 Se0.8 により、波長が1/2つまり490n
mの第2高調波15’に変換される。この第2高調波15’
は位相整合角θでクラッド層12中に放射し(いわゆるチ
ェレンコフ放射)、この第2高調波15’とレーザービー
ム15との間で位相整合が取られる。光波長変換素子10の
端面10aからは、この第2高調波15’と基本波15とが出
射し、図示しないフィルターに通されて第2高調波15’
のみが取り出される。
A laser beam 15 (wavelength: 980 nm) as a fundamental wave emitted from the semiconductor laser 14 is condensed by a condenser lens 16, enters the optical waveguide 13 from one end face thereof, and enters there. It travels to the other end surface side in the guided mode. This laser beam 15 has a wavelength of 1/2, that is, 490 n, due to ZnS 0.2 Se 0.8 constituting the optical waveguide 13.
It is converted to the second harmonic wave 15 ′ of m. This second harmonic 15 '
Radiates into the cladding layer 12 at a phase matching angle θ (so-called Cherenkov radiation), and phase matching is achieved between the second harmonic wave 15 ′ and the laser beam 15. The second harmonic wave 15 'and the fundamental wave 15 are emitted from the end face 10a of the light wavelength conversion element 10, and are passed through a filter (not shown) to produce the second harmonic wave 15'.
Only is taken out.

【0016】本実施例において、光導波路13の厚さは2.
8 μmとされており、したがって図2の曲線aから導か
れる通り、位相整合角θ=0.7 °となる。前述したよう
に十分高強度の第2高調波15’を得るために、光波長変
換素子10の長さLを5mmとすると、tan θ=D/Lよ
り、クラッド層12の厚さDを61μm以上に設定すれば、
第2高調波15’は一度も基板11に到達しないことにな
る。このD=61μm程度のクラッド層12は、エピタキシ
ャル成長により十分形成可能である。波長490 nmの第
2高調波15’は、GaAs基板11の吸収波長域(800 n
m以下)に含まれるが、基板11に到達する前に素子端面
10aから出射してしまうので、当然、該基板11に吸収さ
れることはなくなる。
In this embodiment, the thickness of the optical waveguide 13 is 2.
It is set to 8 μm, and therefore, the phase matching angle θ = 0.7 ° is obtained as derived from the curve a in FIG. As described above, in order to obtain the sufficiently high intensity second harmonic wave 15 ′, if the length L of the optical wavelength conversion element 10 is 5 mm, then the thickness D of the cladding layer 12 is 61 μm from tan θ = D / L. With the above settings,
The second harmonic wave 15 'will never reach the substrate 11. The clad layer 12 having D = 61 μm can be sufficiently formed by epitaxial growth. The second harmonic wave 15 ′ having a wavelength of 490 nm is absorbed by the GaAs substrate 11 (800 n
m or less), but the element end surface before reaching the substrate 11.
Since the light is emitted from 10a, it is naturally not absorbed by the substrate 11.

【0017】以上、GaAs基板11を用いた実施例につ
いて説明したが、本発明は、GaAs以外の材料からな
る基板を用いる場合においても、同様に適用可能であ
る。
Although the embodiment using the GaAs substrate 11 has been described above, the present invention can be similarly applied to the case where a substrate made of a material other than GaAs is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による光波長変換素子を示す
概略側面図
FIG. 1 is a schematic side view showing an optical wavelength conversion device according to an embodiment of the present invention.

【図2】本発明に関連するZnSx Se1-x からなる光
導波路の厚さと、位相整合角と、組成比xとの関係を示
すグラフ
FIG. 2 is a graph showing the relationship between the thickness, the phase matching angle, and the composition ratio x of the optical waveguide made of ZnS x Se 1-x related to the present invention.

【符号の説明】[Explanation of symbols]

10 光波長変換素子 11 GaAs基板 12 クラッド層 13 薄膜光導波路 14 半導体レーザー 15 レーザービーム(基本波) 15’ 第2高調波 10 Optical wavelength conversion element 11 GaAs substrate 12 Clad layer 13 Thin film optical waveguide 14 Semiconductor laser 15 Laser beam (fundamental wave) 15 'Second harmonic

Claims (1)

【特許請求の範囲】 【請求項1】 基板上に、ZnSからなるクラッド層
と、ZnSx Se1-x からなる薄膜光導波路とがこの順
に形成されてなり、この光導波路を伝搬する基本波を、
前記基板の吸収波長域にある第2高調波に変換する光波
長変換素子において、前記組成比xが0.2 以下の値とさ
れていることを特徴とする光波長変換素子。
1. A fundamental wave propagating through the optical waveguide, which comprises a cladding layer made of ZnS and a thin film optical waveguide made of ZnS x Se 1 -x formed in this order on a substrate. To
An optical wavelength conversion element for converting into a second harmonic in the absorption wavelength range of the substrate, wherein the composition ratio x is a value of 0.2 or less.
JP3182298A 1991-07-23 1991-07-23 Optical wavelength conversion element Withdrawn JPH0527286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182298A JPH0527286A (en) 1991-07-23 1991-07-23 Optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182298A JPH0527286A (en) 1991-07-23 1991-07-23 Optical wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH0527286A true JPH0527286A (en) 1993-02-05

Family

ID=16115844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182298A Withdrawn JPH0527286A (en) 1991-07-23 1991-07-23 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH0527286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094364B2 (en) 2015-03-24 2018-10-09 Ocean Pacific Technologies Banded ceramic valve and/or port plate
US10309380B2 (en) 2011-11-16 2019-06-04 Ocean Pacific Technologies Rotary axial piston pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10309380B2 (en) 2011-11-16 2019-06-04 Ocean Pacific Technologies Rotary axial piston pump
US10094364B2 (en) 2015-03-24 2018-10-09 Ocean Pacific Technologies Banded ceramic valve and/or port plate

Similar Documents

Publication Publication Date Title
US5022729A (en) Optical waveguide and second harmonic generator
US5359617A (en) Nonlinear optical device
US5373575A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
US5158823A (en) Second harmonic wave generating device
DE102009001450B4 (en) System comprising a laser source and a harmonic generating device
US5224195A (en) Light wavelength converter for a wavelength of laser beams into a short wavelength
JPH11326966A (en) Second harmonic generator
JPH0527286A (en) Optical wavelength conversion element
US4953943A (en) Second harmonic wave generating device
US5227011A (en) Method for producing a second harmonic wave generating device
US6900927B2 (en) Non-linear optical thin film, non-linear optical device using the same, and optical switch using the same
US5168388A (en) Optical waveguide device and optical second harmonic generator using the same
JP3358770B2 (en) Light control substance and light control method
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
JP2727262B2 (en) Optical wavelength conversion element
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH07244307A (en) Short-wavelength light generator
JPH03213832A (en) Second higher harmonics generating element and production thereof
JP2973463B2 (en) Optical waveguide device
RU2045089C1 (en) Element of non-linear optical unit for transforming laser radiation frequency
JPH1138459A (en) Wavelength conversion element and laser device using this element
JP2003344886A (en) Second harmonic generator
JPH11295771A (en) Wavelength converter
JPH0540287A (en) Wavelength transforming device
JPH0545690A (en) Wavelength converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008