JPH05272823A - Method of controlling variable capability type air conditioner - Google Patents

Method of controlling variable capability type air conditioner

Info

Publication number
JPH05272823A
JPH05272823A JP4098630A JP9863092A JPH05272823A JP H05272823 A JPH05272823 A JP H05272823A JP 4098630 A JP4098630 A JP 4098630A JP 9863092 A JP9863092 A JP 9863092A JP H05272823 A JPH05272823 A JP H05272823A
Authority
JP
Japan
Prior art keywords
motor
compressor
increased
brushless
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4098630A
Other languages
Japanese (ja)
Other versions
JP3021947B2 (en
Inventor
Kazunobu Oyama
和伸 大山
Yasuto Yanagida
靖人 柳田
Ichiro Onishi
一郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14224838&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05272823(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4098630A priority Critical patent/JP3021947B2/en
Publication of JPH05272823A publication Critical patent/JPH05272823A/en
Application granted granted Critical
Publication of JP3021947B2 publication Critical patent/JP3021947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the maximum heating capability and to realize quick rising of heating preventing the number of revolution of a compressor from being restricted by a DC voltage of an invertor which limits counter electromotive force of a brushless DC motor thus limiting the number of revolution of the compressor. CONSTITUTION:Phase of a motor current is shifted to cause the motor current to be increased, generated heat of a motor coil with the increased motor current is accommodated by refrigerant and the maximum heating capability is increased. In addition, phase of the motor current is shifted in an advancing direction, thereby a rotor magnetic flux of the motor is weakened with a magnetic flux generated at the motor coil, resulting in that the maximum number of revolution can be increased and the maximum heating capability is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インバータ回路を用い
たブラシレスDCモータを圧縮機の駆動源とした能力可
変型空気調和装置の制御方法に係り、特に、該装置の最
大暖房能力の増大を図るための制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for a variable capacity air conditioner using a brushless DC motor using an inverter circuit as a drive source for a compressor, and more particularly to increasing the maximum heating capacity of the apparatus. The present invention relates to a control method for achieving this.

【0002】[0002]

【従来の技術】能力可変型空気調和装置において、暖房
立ち上げ時には圧縮機の負荷が大きく、潤滑油および冷
媒温度が低くなっている。この状態で、圧縮機の高能力
運転を行うと、圧縮機内に貯溜された潤滑油が吐出冷媒
と共に外部に吐出されて油上りを生じ、潤滑不良を招く
など不都合である。このような不都合を回避するため
に、例えば、特開昭61−38365号公報、実開昭6
2−171743号公報に示されるように、圧縮機の発
熱により潤滑油が温度上昇するまで、圧縮機を低能力運
転するなどの方法が知られている。
2. Description of the Related Art In a variable capacity air conditioner, the load on the compressor is large and the temperatures of lubricating oil and refrigerant are low when heating is started. If the compressor is operated at high capacity in this state, the lubricating oil stored in the compressor is discharged to the outside together with the discharged refrigerant, causing oil to rise, resulting in poor lubrication. In order to avoid such an inconvenience, for example, Japanese Unexamined Patent Publication No. 61-38365 and Japanese Utility Model Publication No.
As disclosed in Japanese Unexamined Patent Publication No. 2-171743, a method is known in which the compressor is operated at a low capacity until the temperature of the lubricating oil rises due to heat generation of the compressor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記に
示されるような運転制御方法は、潤滑油の温度が十分に
上昇した後は、通常の周波数制御となり、暖房能力を向
上させる手段とはなっていない。従って、室内温度の暖
房立ち上げ時間の短縮にはそれ程寄与していない。とこ
ろで、空気調和装置においてブラシレスDCモータを用
いて圧縮機を駆動する場合、圧縮機の回転数が高くなっ
てブラシレスDCモータの逆起電力がインバータの直流
電圧を越えるとそれ以上は高速駆動できなくなるため、
圧縮機の最高回転数はインバータの直流電圧で制限され
ることになる。このため、インバータ入力に余裕があっ
ても空調機の暖房能力を向上させることはできず、高速
での暖房立ち上がりは困難であった。
However, the operation control method as described above becomes a means for improving the heating capacity by performing the normal frequency control after the temperature of the lubricating oil sufficiently rises. Absent. Therefore, it does not contribute much to the shortening of the room temperature heating start-up time. By the way, when a compressor is driven by using a brushless DC motor in an air conditioner, if the rotational speed of the compressor becomes high and the back electromotive force of the brushless DC motor exceeds the DC voltage of the inverter, it cannot be driven at a higher speed. For,
The maximum rotation speed of the compressor will be limited by the DC voltage of the inverter. Therefore, even if the inverter input has a margin, the heating capacity of the air conditioner cannot be improved, and it is difficult to start heating at high speed.

【0004】本発明は、上述した問題点を解決するもの
で、その目的とするところは、圧縮機回転数がブラシレ
スDCモータの逆起電力によってインバータの直流電圧
で制限されることをなくし、モータ電流を増加させ、そ
の発熱を冷媒に吸収させることにより、暖房最大能力を
増加させ、高速での暖房立ち上げを可能とすることにあ
る。また、最高回転数を上昇させて、最大暖房能力を増
加させ、高速での暖房立ち上げを可能とすることにあ
る。
The present invention solves the above-mentioned problems, and an object of the present invention is to prevent the compressor rotation speed from being limited by the DC voltage of the inverter by the back electromotive force of the brushless DC motor. By increasing the electric current and absorbing the generated heat by the refrigerant, the maximum heating capacity is increased and the heating can be started up at high speed. In addition, the maximum rotation speed is increased to increase the maximum heating capacity, and it is possible to start the heating at high speed.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、圧縮機を駆動するブラシレスDC
モータと、このブラシレスDCモータを任意の回転数で
駆動するインバータ回路およびその制御回路を備え、圧
縮機の回転数を制御することにより空調能力を制御する
能力可変型空気調和装置の制御方法において、該モータ
電流の位相をずらせてモータ電流を増加させ、該モータ
コイルによる発熱を冷媒に吸収させることにより、暖房
最大能力を増加させるものである。また、請求項2の発
明は、圧縮機を駆動するブラシレスDCモータと、この
ブラシレスDCモータを任意の回転数で駆動するインバ
ータ回路およびその制御回路を備え、圧縮機の回転数を
制御することにより空調能力を制御する能力可変型空気
調和装置の制御方法において、該モータ電流の位相を電
圧に対して進み方向にずらせ、モータのロータ磁束をモ
ータコイルで発生する磁束で弱め、最高回転数を上昇さ
せることにより、暖房最大能力を増加させるものであ
る。
In order to achieve the above object, the invention of claim 1 is a brushless DC for driving a compressor.
A method for controlling a variable capacity air conditioner, comprising a motor, an inverter circuit for driving the brushless DC motor at an arbitrary rotation speed and a control circuit therefor, and controlling the air conditioning capacity by controlling the rotation speed of a compressor, The maximum heating capacity is increased by shifting the phase of the motor current to increase the motor current and causing the refrigerant to absorb the heat generated by the motor coil. The invention according to claim 2 is provided with a brushless DC motor for driving the compressor, an inverter circuit for driving the brushless DC motor at an arbitrary rotation speed, and a control circuit for controlling the rotation speed of the compressor. In a control method of a variable capacity air conditioner for controlling an air conditioning capacity, a phase of the motor current is shifted in a forward direction with respect to a voltage, a rotor magnetic flux of a motor is weakened by a magnetic flux generated by a motor coil, and a maximum rotation speed is increased. By doing so, the maximum heating capacity is increased.

【0006】[0006]

【作用】請求項1記載の方法によれば、モータ電流の位
相をずらすと、モータ回転数が低下しないように制御し
た場合、モータ電流が増加する。それによるモータコイ
ルの発熱を冷媒に吸収させることにより、暖房能力を増
加させることができる。請求項2記載の方法によれば、
モータ電流の位相を電圧に対して進み方向にずらせる
と、モータのロータ磁束をモータコイルで発生する磁束
で弱めることになり、最高回転数を上昇させることがで
きる。これにより、暖房最大能力を増加させることがで
きる。
According to the method of the present invention, when the phase of the motor current is shifted, the motor current increases when the motor rotation speed is controlled so as not to decrease. By absorbing the heat generated by the motor coil by the refrigerant, the heating capacity can be increased. According to the method of claim 2,
When the phase of the motor current is shifted in the forward direction with respect to the voltage, the rotor magnetic flux of the motor is weakened by the magnetic flux generated by the motor coil, and the maximum rotation speed can be increased. As a result, the maximum heating capacity can be increased.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面とともに説明
する。図1は能力可変型空気調和装置におけるブラシレ
スDCモータの駆動装置の要部構成を示す。交流電源1
にダイオードブリッジでなる整流回路2が接続され、こ
の整流回路2の出力端には平滑用コンデンサ3が接続さ
れ、直流電圧VDCを得ている。さらに、この直流出力
端には、直流電圧から交流電圧に変換するインバータ回
路4が接続され、このインバータ回路4の交流出力端に
ブラシレスDCモータ5の電機子巻線が接続されてい
る。インバータ回路4は、不図示の6個のトランジスタ
でなるスイッチング素子を3相ブリッジ接続し、各トラ
ンジスタに並列にダイオードを接続してなる。ブラシレ
スDCモータ5は、固定子にスター結線されたU,V,
W相からなる3相の電機子巻線と、永久磁石形の回転子
とからなる。制御部6は、マイクロコンピュータなどで
なり、運転指令に応じてインバータ回路4を駆動するこ
とにより、ブラシレスDCモータ5の回転制御を行う。
なお、制御部6は、磁石回転子の磁極位置を検出するた
めに、ブラシレスDCモータ5の電機子巻線に誘起され
る逆起電圧を検出する回路を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a main configuration of a drive device for a brushless DC motor in a variable capacity air conditioner. AC power supply 1
Is connected to a rectifier circuit 2 formed of a diode bridge, and a smoothing capacitor 3 is connected to an output terminal of the rectifier circuit 2 to obtain a DC voltage VDC. Further, an inverter circuit 4 for converting a DC voltage into an AC voltage is connected to the DC output terminal, and an armature winding of a brushless DC motor 5 is connected to the AC output terminal of the inverter circuit 4. The inverter circuit 4 is formed by connecting a switching element (not shown) composed of six transistors in a three-phase bridge connection, and connecting a diode in parallel to each transistor. The brushless DC motor 5 includes U, V, and star wires connected to the stator.
It consists of a W-phase three-phase armature winding and a permanent magnet rotor. The control unit 6 is composed of a microcomputer or the like, and controls the rotation of the brushless DC motor 5 by driving the inverter circuit 4 according to the operation command.
The control unit 6 has a circuit that detects a counter electromotive voltage induced in the armature winding of the brushless DC motor 5 in order to detect the magnetic pole position of the magnet rotor.

【0008】図2はインバータ直流電圧VDCとモータ
逆起電圧(線間)の関係を示す。モータ回転数が上昇す
ると、それに応じて逆起電圧が上り、インバータ直流電
圧VDCにより制限を受け、回転数はそれ以上高くでき
ない。そこで、本発明では、制御部6でもって、モータ
電流の位相をずらせ、例えば電圧に対して進み方向にず
らせて力率を低下させる。このとき、電流値を大きくし
ないと、トルクが落ち、回転数が低下する。ここで、モ
ータ回転数が低下しないように制御すると、モータ電流
は増加することになる。図3はモータ逆起電圧(相電
圧)Vuと、相電流iu、実効値電流iu(rms)お
よび、電流位相を進めた時の相電流iu´、実効値電流
iu´(rms)の関係を示す。
FIG. 2 shows the relationship between the inverter DC voltage VDC and the motor back electromotive force (line). When the motor rotation speed increases, the counter electromotive voltage rises accordingly and is limited by the inverter DC voltage VDC, and the rotation speed cannot be further increased. Therefore, in the present invention, the control unit 6 shifts the phase of the motor current, for example, shifts it in the forward direction with respect to the voltage to reduce the power factor. At this time, unless the current value is increased, the torque drops and the rotation speed drops. Here, if the motor speed is controlled so as not to decrease, the motor current will increase. FIG. 3 shows the relationship between the motor back electromotive force (phase voltage) Vu, the phase current iu, the effective current iu (rms), and the phase current iu ′ and the effective current iu ′ (rms) when the current phase is advanced. Show.

【0009】このように、モータ電流の位相をずらせる
ことにより、モータ電流が増加するので、この電流増加
によるコイルでの発熱を冷媒に吸収させることにより、
モータ最大回転数を変化させることなく、最高回転時で
の最大暖房能力を増加させることができ、室内温度の暖
房立ち上げ時間の短縮が可能となる。さらにまた、モー
タ電流の位相を進み方向にずらせることにより、永久磁
石ロータの磁束をモータコイルで発生する磁束で弱める
ことになるので、インバータ直流電圧が同じでも、逆起
電圧の影響が小さくなり、モータ最高回転数を上昇させ
ることができる。これにより、暖房最大能力を増加させ
ることができ、室内温度の暖房立ち上げ時間の短縮が可
能となるものである。
As described above, the motor current is increased by shifting the phase of the motor current. Therefore, the heat generated in the coil due to the increase in the current is absorbed by the refrigerant.
The maximum heating capacity at the maximum rotation can be increased without changing the maximum rotation speed of the motor, and the heating start-up time of the room temperature can be shortened. Furthermore, by shifting the phase of the motor current in the forward direction, the magnetic flux of the permanent magnet rotor will be weakened by the magnetic flux generated by the motor coil, so even if the inverter DC voltage is the same, the effect of the back electromotive force will be small. , The maximum motor speed can be increased. As a result, the maximum heating capacity can be increased, and the heating start-up time for the room temperature can be shortened.

【0010】図4は圧縮機の断面構成を示す。同図に
は、冷媒の流れと、冷媒へのモータ発熱の移動を矢印に
て示している。圧縮機は、モータコイル雰囲気が冷媒で
充填されたような構造になっており、冷媒は、ロータに
より回転駆動されるシリンダー部で圧縮され、モータ部
を通り、圧縮機の外部に流出する。従って、モータコイ
ルに流れる電流による発熱はそのまま冷媒に吸収される
ことになる。
FIG. 4 shows a sectional structure of the compressor. In the figure, the flow of the refrigerant and the movement of the heat generated by the motor to the refrigerant are indicated by arrows. The compressor has a structure in which a motor coil atmosphere is filled with a refrigerant, and the refrigerant is compressed in a cylinder portion that is rotationally driven by a rotor, passes through the motor portion, and flows out of the compressor. Therefore, the heat generated by the current flowing through the motor coil is directly absorbed by the refrigerant.

【0011】本発明方法の作用効果を以下に説明する。
モータ電流の位相をずらせてモータ電流を増加させるこ
とにより生じる効果は、モータコイルの発熱を冷媒に吸
収させることにより暖房最大能力が増加することであ
り、さらに、電流位相のずらせる方向を進み方向とする
ことにより、次の相乗効果が得られる。すなわち、永久
磁石ロータの磁束をモータコイルに発生する磁束で弱め
ることができ、インバータ直流電圧が同じでも、逆起電
圧の影響が小さくなり、最高回転数が若干上り、これに
より、暖房最大能力が増加する。図5は回転数とモータ
発生トルクの関係を示す。同図に示されるように、モー
タトルクはインバータの電流容量により制限を受けてい
る。
The effects of the method of the present invention will be described below.
The effect of increasing the motor current by shifting the phase of the motor current is to increase the maximum heating capacity by absorbing the heat generated by the motor coil into the refrigerant. The following synergistic effects can be obtained. That is, the magnetic flux of the permanent magnet rotor can be weakened by the magnetic flux generated in the motor coil, and even if the inverter DC voltage is the same, the influence of the back electromotive force is reduced and the maximum rotation speed is slightly increased, which results in the maximum heating capacity. To increase. FIG. 5 shows the relationship between the rotational speed and the torque generated by the motor. As shown in the figure, the motor torque is limited by the current capacity of the inverter.

【0012】上記の進み電流位相とした場合の作用効果
を説明する。ブラシレスDCモータの端子電圧は、一般
に次式で表される。 │v│=ω・√{(ψ+Ld・id)2 +(Lq・iq)2 } …(1) ここで、ω:モータの回転角周波数 ψ:永久磁石の磁束 Ld,Lq:モータのインダクタンス(d−q2軸表
示) id,iq:モータに流れる電流(d−q2軸表示)
The operation and effect when the lead current phase is set as above will be described. The terminal voltage of a brushless DC motor is generally expressed by the following equation. │v│ = ω ・ √ {(ψ + Ld ・ id) 2 + (Lq ・ iq) 2 } (1) where ω: rotational angular frequency of the motor ψ: magnetic flux of the permanent magnet Ld, Lq: inductance of the motor ( d-q 2-axis display) id, iq: current flowing in the motor (d-q 2-axis display)

【0013】従来の駆動方法では、電流位相をほとんど
ずらさないので、上記(1)式において、idは0に近
い値となり、回転数が増加し(ωが大きくなり)、モー
タ端子電圧│vd│がインバータの出し得る最大電圧に
近くなると、急速にモータに流れる電流が小さくなるた
め、発生トルクは、図5に示すように、低下する。それ
に対して、本発明方法によれば、進み電流を流すので、
id<0、つまりLd・id<0となり、ψ+Ld・i
dが従来方式に比べ小さくなる。このため、従来と同じ
インバータの最大電圧、回転数であっても、モータ端子
電圧│v│が、小さくなるため、より高速回転領域まで
発生トルクが低下しなくなる。
In the conventional driving method, since the current phase is hardly shifted, in the above formula (1), id becomes a value close to 0, the rotation speed increases (ω increases), and the motor terminal voltage | vd | Is close to the maximum voltage that can be output from the inverter, the current flowing through the motor rapidly decreases, and the generated torque decreases as shown in FIG. On the other hand, according to the method of the present invention, since a leading current is passed,
id <0, that is, Ld · id <0, and ψ + Ld · i
d is smaller than that of the conventional method. Therefore, even if the maximum voltage and rotation speed of the inverter are the same as in the conventional case, the motor terminal voltage | v | becomes small, and thus the generated torque does not decrease to a higher speed rotation region.

【0014】[0014]

【発明の効果】以上のように請求項1の発明によれば、
インバータを用いて圧縮機を駆動するブラシレスDCモ
ータの駆動を制御する際に、モータ電流の位相をずらせ
ることにより、モータ電流を増加させ、該モータコイル
による発熱を冷媒に吸収させ、暖房最大能力を増加させ
ることができ、暖房立ち上げ時間の短縮を図ることがで
きる。また、請求項2の発明によれば、モータ電流の位
相を電圧に対して進み方向にずらせることにより、モー
タのロータ磁束をモータコイルで発生する磁束で弱め、
最高回転数を上昇させることができ、もって暖房最大能
力を増加させることができ、相乗の効果が得られる。
As described above, according to the invention of claim 1,
When controlling the drive of a brushless DC motor that drives a compressor by using an inverter, the motor current is increased by shifting the phase of the motor current, and the heat generated by the motor coil is absorbed by the refrigerant to achieve the maximum heating capacity. Can be increased, and the heating start-up time can be shortened. According to the invention of claim 2, the rotor magnetic flux of the motor is weakened by the magnetic flux generated in the motor coil by shifting the phase of the motor current in the forward direction with respect to the voltage.
The maximum rotation speed can be increased, and the maximum heating capacity can be increased, and a synergistic effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるブラシレスDCモータ
の駆動装置の構成図である。
FIG. 1 is a configuration diagram of a drive device of a brushless DC motor according to an embodiment of the present invention.

【図2】インバータ直流電圧とモータ逆起電圧の関係図
である。
FIG. 2 is a relationship diagram between an inverter DC voltage and a motor back electromotive voltage.

【図3】モータ逆起電圧と、相電流、実効値電流の関係
図である。
FIG. 3 is a relationship diagram of a motor back electromotive voltage, a phase current, and an effective value current.

【図4】圧縮機の断面構成図である。FIG. 4 is a cross-sectional configuration diagram of a compressor.

【図5】本発明方法と従来の方法とを比較するための回
転数とモータ発生トルクの関係図である。
FIG. 5 is a relationship diagram of a rotation speed and a motor-generated torque for comparing the method of the present invention with a conventional method.

【符号の説明】[Explanation of symbols]

4 インバータ回路 5 ブラシレスDCモータ 6 制御部 4 Inverter circuit 5 Brushless DC motor 6 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機を駆動するブラシレスDCモータ
と、このブラシレスDCモータを任意の回転数で駆動す
るインバータ回路およびその制御回路を備え、圧縮機の
回転数を制御することにより空調能力を制御する能力可
変型空気調和装置の制御方法において、該モータ電流の
位相をずらせてモータ電流を増加させ、該モータコイル
による発熱を冷媒に吸収させることにより、暖房最大能
力を増加させることを特徴とした能力可変型空気調和装
置の制御方法。
1. A brushless DC motor for driving a compressor, an inverter circuit for driving the brushless DC motor at an arbitrary number of revolutions, and a control circuit therefor, and the air conditioning capacity is controlled by controlling the number of revolutions of the compressor. In the control method for a variable capacity air conditioner, the maximum heating capacity is increased by shifting the phase of the motor current to increase the motor current and absorbing heat generated by the motor coil in the refrigerant. Control method for variable capacity air conditioner.
【請求項2】 圧縮機を駆動するブラシレスDCモータ
と、このブラシレスDCモータを任意の回転数で駆動す
るインバータ回路およびその制御回路を備え、圧縮機の
回転数を制御することにより空調能力を制御する能力可
変型空気調和装置の制御方法において、該モータ電流の
位相を電圧に対して進み方向にずらせ、モータのロータ
磁束をモータコイルで発生する磁束で弱め、最高回転数
を上昇させることにより、暖房最大能力を増加させるこ
とを特徴とした能力可変型空気調和装置の制御方法。
2. A brushless DC motor for driving a compressor, an inverter circuit for driving the brushless DC motor at an arbitrary number of revolutions, and a control circuit therefor, and the air conditioning capacity is controlled by controlling the number of revolutions of the compressor. In the control method of the variable capacity air conditioner, by shifting the phase of the motor current in the forward direction with respect to the voltage, weakening the rotor magnetic flux of the motor with the magnetic flux generated in the motor coil, and increasing the maximum rotation speed, A control method for a variable capacity air conditioner characterized by increasing the maximum heating capacity.
JP4098630A 1992-03-24 1992-03-24 Control method of variable capacity air conditioner Expired - Lifetime JP3021947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098630A JP3021947B2 (en) 1992-03-24 1992-03-24 Control method of variable capacity air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098630A JP3021947B2 (en) 1992-03-24 1992-03-24 Control method of variable capacity air conditioner

Publications (2)

Publication Number Publication Date
JPH05272823A true JPH05272823A (en) 1993-10-22
JP3021947B2 JP3021947B2 (en) 2000-03-15

Family

ID=14224838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098630A Expired - Lifetime JP3021947B2 (en) 1992-03-24 1992-03-24 Control method of variable capacity air conditioner

Country Status (1)

Country Link
JP (1) JP3021947B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128170A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Rotary electric machine
WO2019207661A1 (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Refrigeration cycle device
JP2021059152A (en) * 2019-10-03 2021-04-15 トヨタ自動車株式会社 On-vehicle temperature control device
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468215B2 (en) * 2008-06-09 2014-04-09 ダイキン工業株式会社 Air conditioner and method of manufacturing air conditioner
US8785582B2 (en) * 2008-09-29 2014-07-22 Nippon Carbide Industries Co., Ltd. Vinylozy group-containing vinyl polymer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128170A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Rotary electric machine
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
WO2019207661A1 (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Refrigeration cycle device
JPWO2019207661A1 (en) * 2018-04-25 2020-12-03 三菱電機株式会社 Refrigeration cycle equipment
JP2021059152A (en) * 2019-10-03 2021-04-15 トヨタ自動車株式会社 On-vehicle temperature control device

Also Published As

Publication number Publication date
JP3021947B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP6360442B2 (en) Permanent magnet synchronous motor, winding switching motor drive device, refrigeration and air conditioning equipment using them, and electric vehicle
JP3971520B2 (en) Brushless motor drive device for outdoor fan of air conditioner
JP3971979B2 (en) Air conditioner
JP3832257B2 (en) Synchronous motor start control method and control device
JP3021947B2 (en) Control method of variable capacity air conditioner
JP3341826B2 (en) PWM / PAM control type motor control device and air conditioner and motor control method using the same
JP6165470B2 (en) Motor control device, heat pump system and air conditioner
EP1906116A2 (en) Control device of motor for refrigerant compressor
JP6241453B2 (en) Motor drive device
JP5624873B2 (en) Air conditioner
CN111264026B (en) Motor driving device, refrigeration cycle device, air conditioner, water heater, and refrigerator
JP2012029416A (en) Air conditioner
KR20080103846A (en) Driving control apparatus and method for motor
JP6217667B2 (en) Electric compressor
JPS6191445A (en) Compressor drive device of air conditioner
JP2006200404A (en) Inverter circuit and motor control device
WO2019171856A1 (en) Power conversion device
JP2008253128A (en) Inverter apparatus
JP2010226842A (en) Control method and control apparatus for brushless dc motor
JP2004320861A (en) Controller for three-phase motor-generator for vehicle
JP2013541317A (en) Method for reducing voltage ripple due to rotation non-uniformity of a generator driven by an internal combustion engine
JP4208228B2 (en) Brushless motor drive unit for air conditioner fan
JP7387056B2 (en) Electric motor drive equipment and refrigeration cycle application equipment
JP7325526B2 (en) Electric motor drive devices, refrigeration cycle devices, air conditioners, water heaters, and refrigerators
JPS6116278A (en) Drive device for compressor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13