JPH05272817A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH05272817A
JPH05272817A JP4111688A JP11168892A JPH05272817A JP H05272817 A JPH05272817 A JP H05272817A JP 4111688 A JP4111688 A JP 4111688A JP 11168892 A JP11168892 A JP 11168892A JP H05272817 A JPH05272817 A JP H05272817A
Authority
JP
Japan
Prior art keywords
refrigerant
solenoid valve
pressure
condenser
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4111688A
Other languages
Japanese (ja)
Other versions
JP3189255B2 (en
Inventor
Seiji Ito
誠司 伊藤
Masayoshi Enomoto
雅好 榎本
Kenji Yamada
兼二 山田
Hiroshi Kinoshita
宏 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11168892A priority Critical patent/JP3189255B2/en
Publication of JPH05272817A publication Critical patent/JPH05272817A/en
Application granted granted Critical
Publication of JP3189255B2 publication Critical patent/JP3189255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform a proper control over an enclosing amount of gaseous refrigerant (hot gas) of high temperature and high pressure within an auxiliary heating device, improve the heating capability and improve the durability thereof. CONSTITUTION:During an operation of an auxiliary heating device, refrigerant from a compressor 10 bypasses a condensor 11, flows at a bypassing pipe 20, passes through the second pressure reducing valve 22 and an evaporator 14, returns again to the compressor 10 and repeats this cycle. In this case, the pressure at high pressure of the refrigerant is detected by a pressure sensor 27 and an excessive state or lacked state of an amount of refrigerant is judged by an ECU 32. In the case that the amount of refrigerant is lack, the second solenoid valve 24 is closed, the first solenoid valve 23 and the third solenoid valve 25 are opened and then the refrigerant stored in the condensor 11 is supplemented to the hot gas refrigerant circuit. In the case that an excessive amount of refrigerant is found, the first solenoid valve 23 and the second solenoid valve 24 are opened, the third solenoid valve 25 is closed and the refrigerant within the hot gas refrigerant circuit is reduced. In addition, there may be provided a super heat sensing sensor for use in detecting an abnormal high pressure of the refrigerant and the like in a pipe 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調装置に関するもの
で、特に車両に搭載される空調装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner mounted on a vehicle.

【0002】[0002]

【従来の技術】従来より、特公昭57−47829号公
報に示されるように、冷凍サイクルにおける冷媒回路中
の高温高圧のガス冷媒(ホットガス)を用いて蒸発器を
除霜する装置が知られている。この装置は、冷却運転時
に蒸発器が着霜により閉塞した場合に除霜運転に切り換
え、蒸発器の霜を溶かし、冷媒をガス状態のままアキュ
ムレータを経て圧縮機に戻すサイクルを形成する。
2. Description of the Related Art Conventionally, as disclosed in Japanese Patent Publication No. 57-47829, there is known a device for defrosting an evaporator using a high-temperature and high-pressure gas refrigerant (hot gas) in a refrigerant circuit in a refrigeration cycle. ing. This device forms a cycle of switching to the defrosting operation when the evaporator is blocked by frost during the cooling operation, melting the frost of the evaporator, and returning the refrigerant in the gas state to the compressor via the accumulator.

【0003】また従来の車両に搭載される空調装置とし
ては、一般に、車両に搭載される内燃機関の冷却温水を
利用した温水ヒータが用いられ、この温水ヒータを主暖
房装置にし、主暖房装置を補足する補助暖房装置には、
電気ヒータ、燃焼ヒータ、ヒートポンプ等が用いられて
いる。
As a conventional air conditioner mounted on a vehicle, a hot water heater using hot water for cooling an internal combustion engine mounted on the vehicle is generally used. This hot water heater is used as a main heating device, and a main heating device is used. The supplementary auxiliary heating system includes
Electric heaters, combustion heaters, heat pumps, etc. are used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の空調装置によると、前記特公昭57−478
29号公報に示されるものは、冷却運転時の着霜を高温
のガスにより除霜する装置であって、暖房時の暖房能力
をアップするものではない。また、主暖房装置の温水ヒ
ータに加えて補助暖房装置として前記電気ヒータ、燃焼
ヒータ、ヒートポンプを併用した暖房装置では、内燃機
関の始動時に温水ヒータの立ち上がりが悪いうえ、それ
ぞれ電気ヒータを併用するものは電力不足が生じやすい
問題があり、燃焼ヒータを併用するものは安全性が低下
しやすい問題があり、ヒートポンプを併用するものは寒
冷地での使用が不能になる等の問題がある。
However, according to such a conventional air conditioner, the above Japanese Patent Publication No. 57-478.
The device disclosed in Japanese Patent No. 29 is a device that defrosts frost formed during a cooling operation with high-temperature gas, and does not increase the heating capacity during heating. In addition, in the heating device that uses the electric heater, the combustion heater, and the heat pump as the auxiliary heating device in addition to the hot water heater of the main heating device, the hot water heater does not rise well when the internal combustion engine is started, and the electric heater is also used in combination. There is a problem that electric power shortage is likely to occur, there is a problem that the one that uses a combustion heater together tends to deteriorate safety, and one that also uses a heat pump has a problem such that it cannot be used in cold regions.

【0005】そこで、このような問題点を解決するため
に、温水ヒータ等の主暖房装置に加え、冷凍サイクル中
の高温高圧ガス冷媒(ホットガス)を利用して暖房能力
を向上する車両用補助暖房装置が考えられる。ところ
が、冷凍サイクル中の高温高圧ガス冷媒を利用した上記
車両用補助暖房装置は、冷媒封入量の過不足が暖房能力
に大きな影響を与える。例えば冷媒封入量が不足すると
暖房能力が低下し、冷媒封入量が過剰であると圧縮機の
オンオフ切替動作が頻繁になるため、圧縮機のマグネッ
トスイッチの耐久性が低下するという問題がある。
Therefore, in order to solve such a problem, in addition to a main heating device such as a hot water heater, a vehicle auxiliary for improving the heating capacity by utilizing a high-temperature high-pressure gas refrigerant (hot gas) in the refrigeration cycle. A heating system is possible. However, in the above-described vehicle auxiliary heating device that uses the high-temperature and high-pressure gas refrigerant in the refrigeration cycle, the excess or deficiency of the refrigerant charge amount greatly affects the heating capacity. For example, if the amount of the filled refrigerant is insufficient, the heating capacity is reduced, and if the amount of the filled refrigerant is excessive, the ON / OFF switching operation of the compressor is frequently performed, so that the durability of the magnet switch of the compressor is deteriorated.

【0006】本発明が解決しようとする課題は、上記補
助暖房装置中の高温高圧ガス冷媒の封入量を適正に制御
し、暖房能力の向上と耐久性の向上を図るようにした空
調装置を提供することにある。
The problem to be solved by the present invention is to provide an air conditioner capable of appropriately controlling the amount of high-temperature high-pressure gas refrigerant enclosed in the auxiliary heating device to improve the heating capacity and the durability. To do.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明による空調装置は、主暖房装置を備えた空調装
置であって、冷媒圧縮機と、この冷媒圧縮機の吐出側に
接続されるコンデンサと、前記冷媒圧縮機の吸入側に接
続される熱交換器であって、この熱交換器を流通する空
気流路と前記主暖房装置で加熱される空気流路とが少な
くとも一部一致するように前記主暖房装置に対し直列に
設けられる熱交換器と、前記冷媒圧縮機と前記コンデン
サとを結ぶ経路に設けられる第1の制御弁と、前記コン
デンサを迂回して前記第1の制御弁の入口側から前記コ
ンデンサと前記熱交換器とを結ぶ経路に接続されるバイ
パス管と、前記バイパス管の途中に設けられる減圧装置
と、前記バイパス管の途中に設けられる第2の制御弁
と、前記コンデンサの出口側と前記バイパス管の接続部
との間に設けられる第3の制御弁と、前記冷媒圧縮機、
前記バイパス管、前記減圧装置および前記熱交換器を循
環する冷媒を前記コンデンサ側に逃す制御手段と前記コ
ンデンサ側より回収する制御手段とを備えたことを特徴
とする。
An air conditioner according to the present invention for achieving the above object is an air conditioner having a main heating device, and is connected to a refrigerant compressor and a discharge side of the refrigerant compressor. A condenser, and a heat exchanger connected to the suction side of the refrigerant compressor, wherein an air flow path flowing through the heat exchanger and an air flow path heated by the main heating device at least partially coincide with each other. As described above, a heat exchanger provided in series with the main heating device, a first control valve provided in a path connecting the refrigerant compressor and the condenser, and the first control bypassing the condenser. A bypass pipe connected to a path connecting the condenser and the heat exchanger from the inlet side of the valve; a pressure reducing device provided in the middle of the bypass pipe; and a second control valve provided in the middle of the bypass pipe. , The capacitor A third control valve provided between the connecting portion of the outlet side of the bypass pipe, the refrigerant compressor,
It is characterized by further comprising: control means for releasing the refrigerant circulating through the bypass pipe, the pressure reducing device, and the heat exchanger to the condenser side, and control means for recovering the refrigerant from the condenser side.

【0008】[0008]

【作用】暖房時、例えば図2に示すように、空調装置の
圧縮機のなす圧縮仕事が熱仕事となって減圧装置を経て
エバポレータで放熱される。この圧縮仕事を与える内燃
機関は、その排熱が内燃機関の冷却温水に伝達されるか
ら、その冷却温水の流れるヒータコアからの放熱量が増
加するため、空調装置のエバポレータの放熱量に加え温
水ヒータの放熱量に加えられるので、発熱量が増大し、
暖房能力がアップする。
During heating, for example, as shown in FIG. 2, the compression work performed by the compressor of the air conditioner becomes heat work and is radiated by the evaporator through the pressure reducing device. Since the exhaust heat of the internal combustion engine that provides this compression work is transferred to the cooling hot water of the internal combustion engine, the amount of heat radiation from the heater core through which the cooling hot water flows increases. Because it is added to the heat radiation amount of
The heating capacity is improved.

【0009】冷媒封入量が不足する場合、第2の制御弁
を閉にし、第1の制御弁および第3の制御弁を開にし、
コンデンサ11に寝込んでいる冷媒をホットガス冷媒回
路に補給し、冷媒が過剰な場合、第1の制御弁および第
2の制御弁を開、第3の制御弁を閉にし、ホットガス冷
媒回路中の冷媒を減少させる。これによりホットガス冷
媒回路中の冷媒量を適正量に保持する。
When the amount of the charged refrigerant is insufficient, the second control valve is closed and the first control valve and the third control valve are opened,
In the hot gas refrigerant circuit, the hot gas refrigerant circuit is replenished with the refrigerant sunk in the condenser 11, and when the refrigerant is excessive, the first control valve and the second control valve are opened and the third control valve is closed. Reduce the refrigerant. As a result, the amount of refrigerant in the hot gas refrigerant circuit is maintained at an appropriate amount.

【0010】[0010]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。車両用空調装置に本発明を適用した第1実施例
の冷媒回路を図1に示す。車両に搭載した内燃機関1の
ウォータジャケット内に連通する冷却水配管2は、温水
ヒータ3のヒータコア3aのチューブ内に連通し、この
ヒータコア3aのチューブは冷却水戻し配管4によって
内燃機関1のウォータジャケットに連通する。冷却水戻
し配管4には開閉弁5が設けられている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a refrigerant circuit of a first embodiment in which the present invention is applied to a vehicle air conditioner. A cooling water pipe 2 communicating with a water jacket of an internal combustion engine 1 mounted on a vehicle communicates with a tube of a heater core 3a of a hot water heater 3, and the tube of the heater core 3a is connected to a water jacket of the internal combustion engine 1 by a cooling water return pipe 4. Communicate with the jacket. An on-off valve 5 is provided in the cooling water return pipe 4.

【0011】一方、空調装置6の冷媒回路は、内燃機関
1により駆動される圧縮機10、コンデンサ11、レシ
ーバ12、第1の減圧装置29、エバポレータ14、が
配管16により順に接続されている。そしてコンデンサ
11を迂回するバイパス管20の一端20aがコンデン
サ11の上流側に接続され、バイパス管20の他端20
bは第1の減圧装置29とエバポレータ14の間の配管
16に接続される。バイパス管20には、第2の減圧装
置22が設けられている。
On the other hand, in the refrigerant circuit of the air conditioner 6, a compressor 10 driven by the internal combustion engine 1, a condenser 11, a receiver 12, a first pressure reducing device 29, and an evaporator 14 are sequentially connected by a pipe 16. One end 20a of the bypass pipe 20 that bypasses the condenser 11 is connected to the upstream side of the condenser 11 and the other end 20a of the bypass pipe 20 is connected.
b is connected to the pipe 16 between the first pressure reducing device 29 and the evaporator 14. The bypass pipe 20 is provided with a second pressure reducing device 22.

【0012】この第2の減圧装置22により制御される
ガス冷媒の適正な圧力は、第2の減圧装置22の高圧側
で例えば15〜20kg/cm2 、低圧側で例えば2〜
4kg/cm2 である。これは、外気温が低い場合、低
圧側の温度も低いため十分な暖房能力を得るために高圧
側の圧力を高く保持し、図2に示すように、圧縮機10
の負荷増大による圧縮仕事を大きくする必要があるから
であり、そのためには第2の減圧装置22の高圧側の圧
力は15〜20kg/cm2 の範囲が望ましい。
The proper pressure of the gas refrigerant controlled by the second pressure reducing device 22 is, for example, 15 to 20 kg / cm 2 on the high pressure side of the second pressure reducing device 22, and 2 to 2 on the low pressure side.
It is 4 kg / cm 2 . This is because when the outside air temperature is low, the temperature on the low pressure side is also low, so the pressure on the high pressure side is kept high in order to obtain sufficient heating capacity, and as shown in FIG.
This is because it is necessary to increase the compression work due to the increase in the load. Therefore, the pressure on the high pressure side of the second pressure reducing device 22 is preferably in the range of 15 to 20 kg / cm 2 .

【0013】そして、バイパス管20の一端20aとコ
ンデンサ11の間に第1の電磁弁23を設け、バイパス
管20の一端20aと第2の減圧装置22の間に第2の
電磁弁24を設け、さらに第1の減圧装置29とバイパ
ス管20の他端20bの間に第3の電磁弁25を設け
る。そして配管16の圧縮機10とバイパス管20の一
端20aの間に圧力センサ27を設け、圧力センサ27
の検知信号は電子制御装置としてのECU32に入力さ
れる。
A first solenoid valve 23 is provided between the one end 20a of the bypass pipe 20 and the condenser 11, and a second solenoid valve 24 is provided between the one end 20a of the bypass pipe 20 and the second pressure reducing device 22. Further, a third solenoid valve 25 is provided between the first pressure reducing device 29 and the other end 20b of the bypass pipe 20. The pressure sensor 27 is provided between the compressor 10 of the pipe 16 and the one end 20a of the bypass pipe 20.
Is input to the ECU 32 as an electronic control device.

【0014】ECU32は、圧力センサ27の出力信号
に基づいて演算処理し、その結果第1の電磁弁23、第
2の電磁弁24および第3の電磁弁25の開閉状態を制
御する。そしてECU32は、その制御処理結果に基づ
いて弁開閉のための駆動信号を適宜第1の電磁弁23、
第2の電磁弁24および第3の電磁弁25に入力する。
The ECU 32 performs arithmetic processing based on the output signal of the pressure sensor 27, and as a result controls the open / closed states of the first solenoid valve 23, the second solenoid valve 24 and the third solenoid valve 25. Then, the ECU 32 appropriately outputs a drive signal for opening and closing the valve based on the control processing result to the first electromagnetic valve 23,
Input to the second solenoid valve 24 and the third solenoid valve 25.

【0015】主暖房装置を構成するヒータコア3aと暖
房時に補助暖房装置として機能するエバポレータ14と
は通風ダクト26内に直列に配置され、送風ファン28
により通風ダクト26内に取り入れた空気をエバポレー
タ14およびヒータコア3aを経由して図示しない吹出
口から車室内に送風する。冷房時、第2の電磁弁24を
閉、第1の電磁弁23と第3の電磁弁25を開にし、圧
縮機10からの冷媒をコンデンサ11側にのみ流し、圧
縮機10からの冷媒を、コンデンサ11、レシーバ1
2、第1の減圧装置29、エバポレータ14、圧縮機1
0の順に循環する。エバポレータ14では、送風ファン
28からエバポレータ14内に送られた空気が冷媒に熱
を奪われて冷風となり通風ダクト26から図示矢印方向
に流れ、ヒータコア3aを通過し車室内に吹き出され
る。このとき開閉弁5は閉じており、ヒータコア3aに
は温水は流れない。
The heater core 3a, which constitutes the main heating device, and the evaporator 14, which functions as an auxiliary heating device during heating, are arranged in series in a ventilation duct 26, and a blower fan 28 is provided.
Thus, the air taken into the ventilation duct 26 is blown into the vehicle compartment from an outlet (not shown) via the evaporator 14 and the heater core 3a. During cooling, the second solenoid valve 24 is closed, the first solenoid valve 23 and the third solenoid valve 25 are opened, and the refrigerant from the compressor 10 is caused to flow only to the condenser 11 side so that the refrigerant from the compressor 10 is discharged. , Capacitor 11, receiver 1
2, first decompression device 29, evaporator 14, compressor 1
It circulates in the order of 0. In the evaporator 14, the air sent from the blower fan 28 into the evaporator 14 is deprived of heat by the refrigerant to become cold air, which flows from the ventilation duct 26 in the direction of the arrow in the drawing, passes through the heater core 3a, and is blown out into the vehicle interior. At this time, the on-off valve 5 is closed and hot water does not flow to the heater core 3a.

【0016】暖房時、第1の電磁弁23と第3の電磁弁
25を閉、第2の電磁弁24を開にし、圧縮機10から
の冷媒バイパス管20側にのみ流し、圧縮機10からの
冷媒を第2の電磁弁24、第2の減圧装置22、エバポ
レータ14、圧縮機10の順に循環する。圧縮機10に
より吹出される高温高圧の冷媒ガスは、第2の減圧装置
22により減圧され、高温低圧のガス冷媒に状態変化す
る。このとき、開閉弁5は開いており、ヒータコア3a
に温水が流れる。
During heating, the first solenoid valve 23 and the third solenoid valve 25 are closed, the second solenoid valve 24 is opened, and only the refrigerant bypass pipe 20 from the compressor 10 side is made to flow. The refrigerant is circulated through the second electromagnetic valve 24, the second pressure reducing device 22, the evaporator 14, and the compressor 10 in this order. The high-temperature and high-pressure refrigerant gas blown out by the compressor 10 is decompressed by the second decompression device 22 and changes into a high-temperature and low-pressure gas refrigerant. At this time, the on-off valve 5 is open and the heater core 3a
Warm water flows.

【0017】第2の減圧装置22を通る高温低圧の熱ガ
ス冷媒がエバポレータ14に導入されると、この高温ガ
スから熱を奪った空気が加熱され、さらに図示矢印方向
の下流側の温水ヒータ3のヒータコア3a中の温水から
熱を奪ってさらに空気が加熱され、この加熱された温風
が図示しない吹出口から車室内に吹き出される。冷媒の
変化をモリエル線図上に示すと例えば図2に示すように
なる。すなわち、第1の電磁弁23と第3の電磁弁25
が閉、第2の電磁弁24が開の時、圧縮機10で圧縮さ
れた高温高圧のガス冷媒は、低圧PL から高圧PH にな
り、第2の減圧装置22を通ると、そのガス圧が高圧P
H から低圧PL に降下し、エバポレータ14に入り次い
で圧縮機10の入口側に導入される。
When the high-temperature low-pressure hot gas refrigerant passing through the second pressure reducing device 22 is introduced into the evaporator 14, the air that has taken heat from the high temperature gas is heated, and the hot water heater 3 on the downstream side in the direction of the arrow in the drawing is further heated. The heat is taken from the warm water in the heater core 3a to further heat the air, and the heated warm air is blown into the vehicle compartment from a blowout port (not shown). The change of the refrigerant is shown on the Mollier diagram, for example, as shown in FIG. That is, the first solenoid valve 23 and the third solenoid valve 25
Is closed and the second solenoid valve 24 is opened, the high-temperature high-pressure gas refrigerant compressed by the compressor 10 changes from low pressure P L to high pressure P H , and when it passes through the second pressure reducing device 22, the gas Pressure is high pressure P
It falls from H to a low pressure P L , enters the evaporator 14, and is then introduced to the inlet side of the compressor 10.

【0018】圧縮機10による圧縮仕事は、例えば図3
に示すように、圧縮機10の出口側の圧力が高圧PH
なり、この高圧PH が15〜20kg/cm2 の範囲に
なるのが望ましい。圧縮機10の吸入圧力が1〜5kg
/cm2 の範囲で圧縮機出口側の吹出圧力(高圧PH
が15kg/cm2 以上であると圧縮動力がより大きく
なるからである。
The compression work by the compressor 10 is shown in FIG.
As shown in, the pressure on the outlet side of the compressor 10 becomes high pressure P H , and this high pressure P H is preferably in the range of 15 to 20 kg / cm 2 . The suction pressure of the compressor 10 is 1 to 5 kg
Blow pressure (high pressure P H ) on the compressor outlet side in the range of / cm 2
Is more than 15 kg / cm 2 , the compression power becomes larger.

【0019】前記第1実施例によると、圧縮機10を内
燃機関1により駆動するため、内燃機関1の負荷が増大
し、内燃機関で発生する熱が冷却温水に伝達され、この
冷却温水のもつ熱がヒータコア3aで送風温度を上昇さ
せ、ヒータコア3aの暖房能力も増大する。従って、エ
バポレータ14での高温低圧の熱ガス冷媒により空気が
加熱され、この加熱された空気はさらにヒータコア3a
で内燃機関冷却温水から熱を奪ってさらに高温に加熱さ
れる。従って、空調装置6による暖房能力はかなり増大
する。これにより急速暖房が可能となる。
According to the first embodiment, since the compressor 10 is driven by the internal combustion engine 1, the load of the internal combustion engine 1 increases, and the heat generated in the internal combustion engine is transferred to the cooling hot water, and the cooling hot water has this. The heat raises the temperature of the air blown by the heater core 3a, and the heating capacity of the heater core 3a also increases. Therefore, the high temperature and low pressure hot gas refrigerant in the evaporator 14 heats the air, and the heated air is further heated by the heater core 3a.
Thus, heat is taken from the hot water for cooling the internal combustion engine to be heated to a higher temperature. Therefore, the heating capacity of the air conditioner 6 is considerably increased. This enables rapid heating.

【0020】次に、本発明の特徴部分としてのホットガ
スサイクルの弁制御を図4に示す制御フローに基づいて
説明する。まず、ステップ40にて圧力センサ27のセ
ンサ信号をECU32に取り込む。次いでステップ41
に進み、配管16内の高圧側の圧力PH の単位時間当た
りの変化率ΔPH /ΔtがΔPH /Δt<K1 (ただし
1 :定数)であるか否かを判断する。ΔPH /Δt≧
1 であると判断されると、ホットガスサイクルが過渡
状態であるとみなし、第1〜第3の電磁弁23、24、
25の切替を行わない。ΔPH /Δt<K1 であると判
断されると、ホットガスサイクルが定常状態であるとみ
なす。
Next, valve control of the hot gas cycle, which is a characteristic part of the present invention, will be described based on the control flow shown in FIG. First, at step 40, the sensor signal of the pressure sensor 27 is taken into the ECU 32. Then step 41
Then, it is determined whether or not the rate of change ΔP H / Δt of the high-pressure side pressure P H in the pipe 16 per unit time is ΔP H / Δt <K 1 (where K 1 : a constant). ΔP H / Δt ≧
If it is determined that K 1, it is considered that the hot gas cycle is in a transient state, and the first to third solenoid valves 23, 24,
25 is not switched. If it is determined that ΔP H / Δt <K 1 , the hot gas cycle is considered to be in a steady state.

【0021】定常状態時、ステップ41からステップ4
2に進み、圧力センサ27による検出圧力PH が定数K
2 (ただしK2 >K1 )であるかを判断し、PH ≦K2
であると判断されると、冷媒量不足であると判定し、ス
テップ43に進み、第1の電磁弁23と第3の電磁弁2
5を開にし、第2の電磁弁24を閉じる。これによりコ
ンデンサ11に寝込んでいる冷媒を第1の減圧装置29
および第3の電磁弁25を経由してホットガスサイクル
回路に補給する。ステップ42でPH >K2 であると判
断されると、ステップ44に進み、PH >K3 (ただし
3 >K2 )であるかを判断し、PH >K3 であると判
断されると、ホットガスサイクルの冷媒量過剰であると
判定し、ステップ46に進み、第1の電磁弁23および
第2の電磁弁24を開にし、第3の電磁弁25を閉じ
る。これによりホットガスサイクルの冷媒をコンデンサ
11に取り込み、ホットガスサイクルを循環する冷媒量
を低減する。ステップ44でPH ≦K3 であると判断さ
れると、冷媒量が適正量と判定し、ステップ45に進み
第1の電磁弁23と第3の電磁弁25を閉じ、第2の電
磁弁24を開にする。これにより前述したバイパス管2
0を通るホットガスサイクルによりエバポレータ24で
冷媒のもつ熱が空気に放熱され、ヒータコア3aによる
温水放熱主暖房を補完する。このように、第1〜第3の
電磁弁23、24、25の切替動作の組み合わせにより
ホットガスサイクルを流れる冷媒量の過不足を制御する
ため、エバポレータ14から空気への放熱量を安定に
し、安定した暖房能力を確保することができる。
In the steady state, step 41 to step 4
2, the pressure P H detected by the pressure sensor 27 is a constant K.
2 (however, K 2 > K 1 ) is judged, and P H ≦ K 2
If it is determined that the amount of refrigerant is insufficient, the process proceeds to step 43, and the first solenoid valve 23 and the third solenoid valve 2 are determined.
5 is opened and the second solenoid valve 24 is closed. As a result, the refrigerant accumulated in the condenser 11 is removed from the first pressure reducing device 29.
And via the third solenoid valve 25 to replenish the hot gas cycle circuit. If in step 42 it is determined that the P H> K 2, the process proceeds to step 44, it is determined whether the P H> K 3 (provided that K 3> K 2), determined that the P H> K 3 Then, it is determined that the amount of refrigerant in the hot gas cycle is excessive, and the routine proceeds to step 46, where the first solenoid valve 23 and the second solenoid valve 24 are opened and the third solenoid valve 25 is closed. As a result, the refrigerant of the hot gas cycle is taken into the condenser 11, and the amount of refrigerant circulating in the hot gas cycle is reduced. If in step 44 it is determined that the P H ≦ K 3, the amount of refrigerant is determined to a proper amount, the first solenoid valve 23 proceeds to step 45 to close the third electromagnetic valve 25, the second solenoid valve Open 24. As a result, the bypass pipe 2 described above
Due to the hot gas cycle passing through 0, the heat of the refrigerant is radiated to the air by the evaporator 24 and complements the hot water heat radiation main heating by the heater core 3a. In this way, in order to control the excess or deficiency of the refrigerant amount flowing through the hot gas cycle by the combination of the switching operations of the first to third electromagnetic valves 23, 24, 25, the heat radiation amount from the evaporator 14 to the air is stabilized, A stable heating capacity can be secured.

【0022】本発明の第2実施例を図5に示す。第2実
施例による冷媒回路は、ホットガスサイクルを循環する
冷媒が異常高圧になるのを防止するため、前記第1実施
例に用いた第3の電磁弁25に代えて、リリーフ機能付
きの逆止弁30を設けたものである。逆止弁30は、例
えば、レシーバ12と第1の減圧装置29との間に第1
の減圧装置29側に冷媒が流れるように配置される。そ
して、逆止弁30には、冷媒の圧力が例えばエバポレー
タ14の最大耐圧値に達する前にレシーバ12側に冷媒
を逃すリリーフ弁30aが設けられる。
A second embodiment of the present invention is shown in FIG. In the refrigerant circuit according to the second embodiment, in order to prevent the refrigerant circulating in the hot gas cycle from becoming an abnormally high pressure, instead of the third solenoid valve 25 used in the first embodiment, a reverse valve with a relief function is provided. The stop valve 30 is provided. The check valve 30 is provided, for example, between the receiver 12 and the first pressure reducing device 29.
It is arranged so that the refrigerant flows to the pressure reducing device 29 side. The check valve 30 is provided with a relief valve 30a that allows the refrigerant to escape to the receiver 12 side before the pressure of the refrigerant reaches, for example, the maximum pressure resistance value of the evaporator 14.

【0023】暖房時、第1の電磁弁23を閉じ、第2の
電磁弁24を開くと、ホットガスサイクルを冷媒が循環
する。このとき、ECU32が冷媒量不足であると判断
すると、第1の電磁弁23を開き、第2の電磁弁24を
閉じ、コンデンサ11に停滞している冷媒を逆止弁30
を経由してホットガスサイクルに補給する。ECU32
が冷媒量過剰であると判断すると、第1の電磁弁23お
よび第2の電磁弁24をともに開き、ホットガスサイク
ルを循環する冷媒の一部を第1の電磁弁23を経由して
コンデンサ11側へ逃す。そして、ホットガスサイクル
を循環する冷媒の圧力が異常に上昇し、逆止弁30に並
列に配されたリリーフ弁30aの開弁圧に達した場合、
高圧冷媒を第1の減圧装置29、逆止弁30およびレシ
ーバ12に冷房時と逆方向に流通しコンデンサ11側に
逃す。
When the first solenoid valve 23 is closed and the second solenoid valve 24 is opened during heating, the refrigerant circulates in the hot gas cycle. At this time, when the ECU 32 determines that the amount of refrigerant is insufficient, the first electromagnetic valve 23 is opened, the second electromagnetic valve 24 is closed, and the refrigerant remaining in the condenser 11 is removed by the check valve 30.
To the hot gas cycle via. ECU 32
Is determined to be an excessive amount of refrigerant, both the first solenoid valve 23 and the second solenoid valve 24 are opened, and a part of the refrigerant circulating in the hot gas cycle is passed through the first solenoid valve 23 to the condenser 11 Miss to the side. When the pressure of the refrigerant circulating in the hot gas cycle rises abnormally and reaches the valve opening pressure of the relief valve 30a arranged in parallel with the check valve 30,
The high-pressure refrigerant flows through the first pressure reducing device 29, the check valve 30, and the receiver 12 in the direction opposite to that during cooling, and escapes to the condenser 11 side.

【0024】本発明の第3実施例を図6に示す。第3実
施例による冷媒回路は、エバポレータ14とコンプレッ
サ10との間に冷媒の温度と圧力から過熱度を検出する
スーパヒート検出センサ31を設けたものである。この
実施例では、圧力センサ33は、エバポレータ14の入
口側の冷媒圧力を検出するようにバイパス管20の他端
20bとエバポレータ14との間に設けられる。
A third embodiment of the present invention is shown in FIG. The refrigerant circuit according to the third embodiment is provided with a superheat detection sensor 31 for detecting the degree of superheat from the temperature and pressure of the refrigerant between the evaporator 14 and the compressor 10. In this embodiment, the pressure sensor 33 is provided between the other end 20b of the bypass pipe 20 and the evaporator 14 so as to detect the refrigerant pressure on the inlet side of the evaporator 14.

【0025】暖房時、ECU32は、圧力センサ33お
よびスーパヒート検出センサ31の検出信号に基づいて
第1の電磁弁23、第2の電磁弁24および第3の電磁
弁25を制御する。この場合、スーパヒート検出センサ
31が過熱度大と検知したときまたは圧力センサ33が
所定の圧力値より小と検知したとき、冷媒量不足である
と判断し、第1の電磁弁23を開き、第2の電磁弁24
を閉じ、コンデンサ11に停滞している冷媒を逆止弁3
0を経由してホットガスサイクルに補給する。また、圧
力センサ33が所定の圧力値より大と検知したとき、冷
媒量過剰であると判断し、第1の電磁弁23および第2
の電磁弁24をともに開き、ホットガスサイクルを循環
する冷媒の一部を第1の電磁弁23を経由してコンデン
サ11側へ逃す。これにより、ホットガスサイクルを循
環する冷媒量が適正な量に制御されるとともに、冷媒の
異常高圧が確実に防止される。
During heating, the ECU 32 controls the first solenoid valve 23, the second solenoid valve 24, and the third solenoid valve 25 based on the detection signals of the pressure sensor 33 and the superheat detection sensor 31. In this case, when the superheat detection sensor 31 detects that the degree of superheat is high or when the pressure sensor 33 detects that it is lower than a predetermined pressure value, it is determined that the refrigerant amount is insufficient, the first solenoid valve 23 is opened, and the first solenoid valve 23 is opened. 2 solenoid valve 24
To close the refrigerant in the condenser 11 with the check valve 3
Supply to the hot gas cycle via 0. Further, when the pressure sensor 33 detects that the pressure value is higher than the predetermined pressure value, it is determined that the refrigerant amount is excessive, and the first solenoid valve 23 and the second solenoid valve 23
The solenoid valve 24 is also opened to allow a part of the refrigerant circulating in the hot gas cycle to escape to the condenser 11 side via the first solenoid valve 23. As a result, the amount of refrigerant circulating in the hot gas cycle is controlled to an appropriate amount, and abnormal high pressure of the refrigerant is reliably prevented.

【0026】なお、前記第1実施例〜第3実施例では、
内燃機関の冷却温水を熱源とするヒータコアと冷媒回路
に循環される冷媒(ホットガス)とを本暖房装置の主装
置および補助装置の熱源としているが、前記主装置の熱
源は内燃機関の冷却温水に限られず、その他の熱源であ
っても良いことはもちろんである。また圧縮機の駆動源
は内燃機関としたが、これに代えて、電圧源を用いても
よい。さらに、冷媒量の制御性能を高めるため、圧力セ
ンサ、スーパヒート検出センサ等を必要に応じ冷媒回路
中に複数個設けてもよい。
In the first to third embodiments,
The heater core that uses the hot water for cooling the internal combustion engine as a heat source and the refrigerant (hot gas) that circulates in the refrigerant circuit are the heat sources for the main device and the auxiliary device of the present heating device. Of course, other heat sources may be used. Although the internal combustion engine was used as the drive source of the compressor, a voltage source may be used instead of this. Furthermore, in order to improve the controllability of the amount of refrigerant, a plurality of pressure sensors, superheat detection sensors, etc. may be provided in the refrigerant circuit as needed.

【0027】[0027]

【発明の効果】以上説明したように、本発明の空調装置
によれば、冷媒回路の高温高圧のガス冷媒を用いた簡易
な暖房装置が構成されるから、この暖房装置を主暖房装
置に加えると暖房能力がアップされるので、急速暖房が
可能になるという効果がある。更に本発明の空調装置に
よれば、高温高圧ガス冷媒の回路を循環する冷媒量を過
不足なく制御するため、補助暖房装置による暖房能力を
安定した状態で発揮でき、圧縮機の耐久性を向上するこ
とができるという効果がある。
As described above, according to the air conditioner of the present invention, a simple heating device using a high-temperature and high-pressure gas refrigerant in the refrigerant circuit is constructed, so this heating device is added to the main heating device. And since the heating capacity is improved, there is an effect that rapid heating becomes possible. Further, according to the air conditioner of the present invention, the amount of refrigerant circulating in the circuit of the high-temperature high-pressure gas refrigerant is controlled without excess or deficiency, so that the heating capacity of the auxiliary heating device can be exhibited in a stable state, and the durability of the compressor is improved. There is an effect that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による空調装置の冷媒回路
を示す回路図である。
FIG. 1 is a circuit diagram showing a refrigerant circuit of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1実施例による冷凍サイクルを示す
部分モリエル線図である。
FIG. 2 is a partial Mollier diagram showing the refrigeration cycle according to the first embodiment of the present invention.

【図3】本発明の第1実施例で用いた圧縮機の吸入圧力
と圧縮動力の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between suction pressure and compression power of the compressor used in the first embodiment of the present invention.

【図4】本発明の第1実施例による空調装置の電磁弁の
切替動作を示すフローチャート図である。
FIG. 4 is a flowchart showing a switching operation of solenoid valves of the air conditioner according to the first embodiment of the present invention.

【図5】本発明の第2実施例による空調装置の冷媒回路
を示す回路図である。
FIG. 5 is a circuit diagram showing a refrigerant circuit of an air conditioner according to a second embodiment of the present invention.

【図6】本発明の第3実施例による空調装置の冷媒回路
を示す回路図である。
FIG. 6 is a circuit diagram showing a refrigerant circuit of an air conditioner according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 内燃機関 3 温水ヒータ(主暖房装置) 10 圧縮機(冷媒圧縮機) 11 コンデンサ 14 エバポレータ(熱交換器) 20 バイパス管 20a 分岐部 20b 接続部 22 第2の減圧装置(減圧装置) 23 第1の電磁弁(第1の制御弁) 24 第2の電磁弁(第2の制御弁) 25 第3の電磁弁(第3の制御弁) 29 第1の減圧装置 31 スーパヒート検出センサ(制御手段) 32 ECU(制御手段) 1 Internal Combustion Engine 3 Hot Water Heater (Main Heating Device) 10 Compressor (Refrigerant Compressor) 11 Condenser 14 Evaporator (Heat Exchanger) 20 Bypass Pipe 20a Branch 20b Connection 22 Second Pressure Reduction Device (Pressure Reduction Device) 23 First Solenoid valve (first control valve) 24 second solenoid valve (second control valve) 25 third solenoid valve (third control valve) 29 first pressure reducing device 31 superheat detection sensor (control means) 32 ECU (control means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木下 宏 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kinoshita 1-1-1, Showa-cho, Kariya city, Aichi prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主暖房装置を備えた空調装置であって、 冷媒圧縮機と、 この冷媒圧縮機の吐出側に接続されるコンデンサと、 前記冷媒圧縮機の吸入側に接続される熱交換器であっ
て、この熱交換器を流通する空気流路と前記主暖房装置
で加熱される空気流路とが少なくとも一部一致するよう
に前記主暖房装置に対し直列に設けられる熱交換器と、 前記冷媒圧縮機と前記コンデンサとを結ぶ経路に設けら
れる第1の制御弁と、 前記コンデンサを迂回して前記第1の制御弁の入口側か
ら前記コンデンサと前記熱交換器とを結ぶ経路に接続さ
れるバイパス管と、 前記バイパス管の途中に設けられる減圧装置と、 前記バイパス管の途中に設けられる第2の制御弁と、 前記コンデンサの出口側と前記バイパス管の接続部との
間に設けられる第3の制御弁と、 前記冷媒圧縮機、前記バイパス管、前記減圧装置および
前記熱交換器を循環する冷媒を前記コンデンサ側に逃す
制御手段と前記コンデンサ側より回収する制御手段とを
備えたことを特徴とする空調装置。
1. An air conditioner including a main heating device, comprising a refrigerant compressor, a condenser connected to a discharge side of the refrigerant compressor, and a heat exchanger connected to an intake side of the refrigerant compressor. The heat exchanger provided in series with the main heating device so that the air flow passage flowing through the heat exchanger and the air flow passage heated by the main heating device at least partially coincide with each other, A first control valve provided in a path connecting the refrigerant compressor and the condenser, and a path connecting the condenser and the heat exchanger from the inlet side of the first control valve, bypassing the condenser Provided between the outlet side of the condenser and the connection portion of the bypass pipe, a decompression device provided in the middle of the bypass pipe, a second control valve provided in the middle of the bypass pipe, The third system A valve, a control means for releasing the refrigerant circulating in the refrigerant compressor, the bypass pipe, the pressure reducing device and the heat exchanger to the condenser side, and a control means for recovering the refrigerant from the condenser side. Air conditioner.
JP11168892A 1992-01-30 1992-04-30 Air conditioner Expired - Fee Related JP3189255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11168892A JP3189255B2 (en) 1992-01-30 1992-04-30 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1517792 1992-01-30
JP4-15177 1992-01-30
JP11168892A JP3189255B2 (en) 1992-01-30 1992-04-30 Air conditioner

Publications (2)

Publication Number Publication Date
JPH05272817A true JPH05272817A (en) 1993-10-22
JP3189255B2 JP3189255B2 (en) 2001-07-16

Family

ID=26351289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11168892A Expired - Fee Related JP3189255B2 (en) 1992-01-30 1992-04-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP3189255B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000784A2 (en) 1998-11-10 2000-05-17 Denso Corporation Vehicle air conditioner with windshield anti-fog feature
US6105375A (en) * 1998-11-25 2000-08-22 Denso Corporation Refrigerating cycle apparatus with condenser-side refrigerant recovery mode
EP1065452A2 (en) 1999-06-29 2001-01-03 Denso Corporation Refrigerant cycle system having hot-gas bypass structure
EP1293367A2 (en) 2001-09-13 2003-03-19 Denso Corporation Vehicle air conditioner having refrigerant cycle with heating function
US6748753B2 (en) 2002-02-27 2004-06-15 Denso Corporation Air conditioner
US6751968B2 (en) 2002-06-12 2004-06-22 Denso Corporation Vehicle air conditioner having refrigerant cycle with heating function
FR2853957A1 (en) * 2003-02-24 2004-10-22 Denso Corp REFRIGERATION CYCLE SYSTEM
US6935125B2 (en) 2003-05-13 2005-08-30 Denso Corporation Air conditioning system
JP2006264584A (en) * 2005-03-25 2006-10-05 Suzuki Motor Corp Air-conditioning device
JP2006264568A (en) * 2005-03-25 2006-10-05 Nissan Diesel Motor Co Ltd Cooling/refrigerating device and automobile equipped with it
WO2007069583A1 (en) * 2005-12-16 2007-06-21 Daikin Industries, Ltd. Air conditioner
DE19910584B4 (en) * 1998-03-12 2008-04-17 Denso Corp., Kariya Coolant or refrigerant cycle for a vehicle air conditioning system
WO2011064942A1 (en) * 2009-11-25 2011-06-03 ダイキン工業株式会社 Refrigeration device for container
JP2011178372A (en) * 2010-03-04 2011-09-15 Calsonic Kansei Corp Air conditioner for vehicle and operation switching method thereof
JP2012254670A (en) * 2011-06-07 2012-12-27 Denso Corp Air conditioning device
WO2014073689A1 (en) * 2012-11-09 2014-05-15 サンデン株式会社 Vehicle air conditioner
CN105689021A (en) * 2016-03-30 2016-06-22 天津亭华科技有限公司 Low-temperature constant temperature device of high-temperature and low-temperature testing box

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910584B4 (en) * 1998-03-12 2008-04-17 Denso Corp., Kariya Coolant or refrigerant cycle for a vehicle air conditioning system
US6311505B1 (en) 1998-11-10 2001-11-06 Denso Corporation Vehicle air conditioner with windshield anti-fog feature
EP1000784A2 (en) 1998-11-10 2000-05-17 Denso Corporation Vehicle air conditioner with windshield anti-fog feature
US6105375A (en) * 1998-11-25 2000-08-22 Denso Corporation Refrigerating cycle apparatus with condenser-side refrigerant recovery mode
DE19956252B4 (en) * 1998-11-25 2008-04-30 Denso Corp., Kariya Cooling Cycle Device with Condenser Side Coolant Return Mode
EP1065452A2 (en) 1999-06-29 2001-01-03 Denso Corporation Refrigerant cycle system having hot-gas bypass structure
US6266965B1 (en) 1999-06-29 2001-07-31 Denso Corporation Refrigerant cycle system having hot-gas bypass structure
EP1293367A2 (en) 2001-09-13 2003-03-19 Denso Corporation Vehicle air conditioner having refrigerant cycle with heating function
US6662579B2 (en) 2001-09-13 2003-12-16 Denso Corporation Vehicle air conditioner having refrigerant cycle with heating function
US6748753B2 (en) 2002-02-27 2004-06-15 Denso Corporation Air conditioner
US6898944B2 (en) 2002-02-27 2005-05-31 Denso Corporation Air conditioner
US6751968B2 (en) 2002-06-12 2004-06-22 Denso Corporation Vehicle air conditioner having refrigerant cycle with heating function
DE10325606B4 (en) * 2002-06-12 2015-10-15 Denso Corporation Method for a vehicle air conditioner with a cooling circuit with heating function
DE102004008410B4 (en) 2003-02-24 2019-10-10 Denso Corporation Refrigerant cycle system
FR2853957A1 (en) * 2003-02-24 2004-10-22 Denso Corp REFRIGERATION CYCLE SYSTEM
US6935125B2 (en) 2003-05-13 2005-08-30 Denso Corporation Air conditioning system
JP2006264568A (en) * 2005-03-25 2006-10-05 Nissan Diesel Motor Co Ltd Cooling/refrigerating device and automobile equipped with it
JP2006264584A (en) * 2005-03-25 2006-10-05 Suzuki Motor Corp Air-conditioning device
US7878010B2 (en) 2005-12-16 2011-02-01 Daikin Industries, Ltd. Air conditioner
WO2007069583A1 (en) * 2005-12-16 2007-06-21 Daikin Industries, Ltd. Air conditioner
WO2011064942A1 (en) * 2009-11-25 2011-06-03 ダイキン工業株式会社 Refrigeration device for container
EP2505939A1 (en) * 2009-11-25 2012-10-03 Daikin Industries, Ltd. Refrigeration device for container
CN102725597A (en) * 2009-11-25 2012-10-10 大金工业株式会社 Container refrigeration apparatus
US9316423B2 (en) 2009-11-25 2016-04-19 Daikin Industries, Ltd. Container refrigeration apparatus
EP2505939A4 (en) * 2009-11-25 2014-06-18 Daikin Ind Ltd Refrigeration device for container
JP2011178372A (en) * 2010-03-04 2011-09-15 Calsonic Kansei Corp Air conditioner for vehicle and operation switching method thereof
JP2012254670A (en) * 2011-06-07 2012-12-27 Denso Corp Air conditioning device
CN104853942A (en) * 2012-11-09 2015-08-19 三电控股株式会社 Vehicle air conditioner
US20150298525A1 (en) * 2012-11-09 2015-10-22 Sanden Holdings Corporation Vehicle air conditioner
JP2014094674A (en) * 2012-11-09 2014-05-22 Sanden Corp Air conditioner for vehicle
US10421337B2 (en) 2012-11-09 2019-09-24 Sanden Holdings Corporation Vehicle air conditioner
WO2014073689A1 (en) * 2012-11-09 2014-05-15 サンデン株式会社 Vehicle air conditioner
CN104853942B (en) * 2012-11-09 2019-11-12 三电控股株式会社 Air conditioner for vehicles
CN105689021A (en) * 2016-03-30 2016-06-22 天津亭华科技有限公司 Low-temperature constant temperature device of high-temperature and low-temperature testing box

Also Published As

Publication number Publication date
JP3189255B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JP3237187B2 (en) Air conditioner
JPH05272817A (en) Air conditioner
US6574977B2 (en) Heat pump cycle
US7559206B2 (en) Supercritical heat pump cycle system
CA2421481C (en) Automotive air conditioning system
US5878810A (en) Air-conditioning apparatus
JP3026884B2 (en) Transport refrigeration apparatus and method for improving its heating capacity
US6058728A (en) Refrigerant cycle for vehicle air conditioner
US6397613B1 (en) Refrigerating cycle apparatus
US6192695B1 (en) Refrigerating cycle
US6725676B2 (en) Refrigerant cycle system with hot gas heating function
JPH07108817A (en) Air conditioner for electric vehicle
EP0916914A2 (en) A refrigerating cycle
JP2964705B2 (en) Air conditioner
JP2020015382A (en) Vehicle air-conditioner
JP4036015B2 (en) Air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JP3339040B2 (en) Vehicle air conditioner
JP2841708B2 (en) Refrigeration equipment
JP4133084B2 (en) Air conditioner for vehicles
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JPH05157376A (en) Air conditioner
KR100917173B1 (en) Cooling and heating system for vehicle
JPH06193972A (en) Air conditioner
JP3291886B2 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees