JPH05272536A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPH05272536A
JPH05272536A JP7062092A JP7062092A JPH05272536A JP H05272536 A JPH05272536 A JP H05272536A JP 7062092 A JP7062092 A JP 7062092A JP 7062092 A JP7062092 A JP 7062092A JP H05272536 A JPH05272536 A JP H05272536A
Authority
JP
Japan
Prior art keywords
bearing
movable body
movable
electrodes
bearing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7062092A
Other languages
Japanese (ja)
Inventor
Seiichiro Murai
誠一郎 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7062092A priority Critical patent/JPH05272536A/en
Publication of JPH05272536A publication Critical patent/JPH05272536A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C31/00Bearings for parts which both rotate and move linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0404Electrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a bearing device capable of increasing the support rigidity of a mobile body supported on a bearing body by the fluid pressure in the noncontact state. CONSTITUTION:A bearing device is provided with a bearing body 1, a mobile body 4 supported on the bearing body 1, a feed hole 6 feeding a fluid between the opposite faces of the bearing body 1 and mobile body 4 and supporting the mobile body on the bearing body 1 in the noncontact state via the fluid pressure, and a power source 9 applying the voltage across the bearing body 1 and mobile body 4 to generate electrostatic force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は流体の圧力を利用して
可動体を非接触状態で支持する軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing device for supporting a movable body in a non-contact state by utilizing the pressure of fluid.

【0002】[0002]

【従来の技術】軸受装置には種々のタイプのものがあ
り、その1つに軸などの可動体を軸受体に対して流体の
静圧、動圧あるいはスクイ−ズ圧などの圧力を利用して
非接触状態で支持する、いわゆる流体軸受装置が知られ
ている。
2. Description of the Related Art There are various types of bearing devices. One of them is a movable body such as a shaft which utilizes static pressure, dynamic pressure or squeeze pressure of fluid against the bearing body. There is known a so-called hydrodynamic bearing device which is supported in a non-contact state.

【0003】このような軸受装置は、可動体が軸受体に
対して非接触状態で支持されるという構成により支持精
度、摩擦係数、磨耗などの点で多くの利点を有する反
面、非接触状態であるがゆえに、可動体が振動などの外
力の影響を受け、支持状態が不安定になるということが
ある。とくに、流体として圧縮性の気体が用いられてい
る場合にはその傾向が顕著となる。
Such a bearing device has many advantages in terms of supporting accuracy, coefficient of friction, wear, etc. due to the structure in which the movable body is supported in a non-contact state with respect to the bearing body, but in the non-contact state. Therefore, the movable body may be affected by an external force such as vibration, and the supporting state may become unstable. Especially, when a compressible gas is used as the fluid, the tendency becomes remarkable.

【0004】一方、最近では、半導体微細加工技術や極
限機械加工技術の進歩にともない、種々のアクチュエ−
タが開発されている。そのようなアクチュエ−タに用い
られる軸受装置においては、可動体を単に支持するだけ
でなく、軸方向に沿って進退駆動することが要求される
場合がある。
On the other hand, recently, along with the progress of semiconductor fine processing technology and extreme mechanical processing technology, various actuators have been developed.
Is being developed. In the bearing device used for such an actuator, it is sometimes required not only to support the movable body but also to drive it back and forth along the axial direction.

【0005】しかしながら、従来の流体圧を利用した軸
受装置は、可動体を単に非接触状態で支持するだけの構
造であった。そのため、上記可動体を進退駆動するに
は、それ専用の駆動手段が必要になるということがあっ
た。
However, the conventional bearing device utilizing the fluid pressure has a structure of simply supporting the movable body in a non-contact state. Therefore, in order to drive the movable body forward and backward, a drive means dedicated for the movable body may be required.

【0006】[0006]

【発明が解決しようとする課題】このように、従来の流
体圧を用いた非接触型の軸受装置は外力に対して可動体
の支持状態が不安定になるということがあった。また、
可動体を単に支持しているだけであるから、この可動体
を軸方向に沿って駆動する場合にはそれ専用の駆動手段
が必要となるということもあった。
As described above, in the conventional non-contact type bearing device using the fluid pressure, the supporting state of the movable body may become unstable with respect to the external force. Also,
Since the movable body is simply supported, there is a case where a driving means dedicated to the movable body is required to drive the movable body in the axial direction.

【0007】この発明の第1の目的は、可動体を流体圧
を利用して非接触状態で支持する場合に、その支持状態
が外力の影響を受けずらい安定した状態とすることがで
きるようにした軸受装置を提供することにある。
A first object of the present invention is to support a movable body in a non-contact state by utilizing fluid pressure so that the supporting state can be kept stable without being affected by an external force. Another object of the present invention is to provide such a bearing device.

【0008】この発明の第2の目的は、可動体を流体圧
を利用して支持する場合に、その支持状態を外力に対し
て影響を受けずらい安定した状態とすることができると
ともに、専用の駆動手段を用いずに、上記可動体を軸方
向に進退駆動できるようにした軸受装置を提供すること
にある。
A second object of the present invention is that, when a movable body is supported by utilizing fluid pressure, the supporting state can be made stable without being affected by external force, and it can be used exclusively. Another object of the present invention is to provide a bearing device capable of driving the movable body to move back and forth in the axial direction without using the driving means.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に第1の発明は、軸受体と、この軸受体に支持される可
動体と、上記軸受体と可動体との対向面間に流体を供給
し、この流体圧によって上記可動体を上記軸受体に非接
触状態で支持する流体供給手段と、上記軸受体と可動体
との間に電圧を印加して静電力を発生させる静電力発生
手段とを具備したことを特徴とする。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a bearing body, a movable body supported by the bearing body, and a fluid between a facing surface of the bearing body and the movable body. And a fluid supply means for supporting the movable body in a non-contact state with the bearing body by the fluid pressure, and an electrostatic force generation for applying an electric voltage between the bearing body and the movable body to generate an electrostatic force. And means.

【0010】第2の発明は、内周面が軸受面に形成され
た軸受体と、この軸受体に挿入された軸状の可動体と、
上記軸受体の軸受面と上記可動体の外周面との間に流体
を供給し、この流体圧によって上記可動体を上記軸受体
に非接触状態で支持する流体供給手段と、上記軸受体の
軸受面の軸方向に沿って所定の配置状態で設けられた複
数の軸受側電極と、上記可動体の外周面に軸方向に沿っ
て所定の配置状態で設けられ上記軸受側電極との間に印
加される電圧によって静電力を発生する複数の可動側電
極とを具備したことを特徴とする。
According to a second aspect of the present invention, a bearing body having an inner peripheral surface formed on the bearing surface, and a shaft-shaped movable body inserted into the bearing body,
Fluid supplying means for supplying a fluid between the bearing surface of the bearing body and the outer peripheral surface of the movable body, and supporting the movable body in a non-contact state with the bearing body by the fluid pressure, and a bearing of the bearing body. Applied between a plurality of bearing-side electrodes provided in a predetermined arrangement along the axial direction of the surface and the bearing-side electrodes provided in a predetermined arrangement along the axial direction on the outer peripheral surface of the movable body. A plurality of movable electrodes that generate an electrostatic force by the applied voltage.

【0011】[0011]

【作用】上記第1の発明によれば、可動体は、軸受体に
対して流体圧によって非接触状態で支持できるだけでな
く、静電力による吸引力によっても支持されるから、そ
の支持状態の安定化を計ることができる。
According to the first aspect of the invention, the movable body can be supported not only in a non-contact state with the bearing body by fluid pressure but also by a suction force by an electrostatic force, so that the supporting state is stable. Can be measured.

【0012】上記第2の発明によれば、可動体と軸受体
との電極間で発生する静電力による吸引力を軸方向に沿
って移動するよう制御することで、流体圧により非接触
状態で支持された上記可動体に軸方向の推力を与えるこ
とができる。
According to the second aspect of the invention, the attraction force due to the electrostatic force generated between the electrodes of the movable body and the bearing body is controlled so as to move along the axial direction, so that the fluid pressure causes no contact. An axial thrust can be applied to the supported movable body.

【0013】[0013]

【実施例】以下、この発明の実施例を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1はこの発明の第1の実施例を示すスラ
スト型の静圧軸受装置であり、この静圧軸受装置は軸受
体1を有する。この軸受体1の軸受面2には、上記軸受
体1路電気的に絶縁されて軸受側電極3が設けられてい
る。上記軸受面2の上方には厚板状の可動体4が配置さ
れている。この可動体4の上記軸受面2と対向する下面
には、上記可動体4と電気的に絶縁されて可動側電極5
が設けられている。上記軸受側電極3と可動側電極5と
は、たとえばCr(クロム)やNi(ニッケル)などを
1〜2ミクロンの厚さで蒸着することで形成されてい
る。
FIG. 1 shows a thrust type hydrostatic bearing device according to a first embodiment of the present invention. The hydrostatic bearing device has a bearing body 1. The bearing surface 2 of the bearing body 1 is provided with a bearing side electrode 3 which is electrically insulated from the bearing body 1 path. A thick plate-shaped movable body 4 is arranged above the bearing surface 2. On the lower surface of the movable body 4 facing the bearing surface 2, the movable side electrode 5 is electrically insulated from the movable body 4.
Is provided. The bearing-side electrode 3 and the movable-side electrode 5 are formed, for example, by depositing Cr (chrome), Ni (nickel), or the like in a thickness of 1 to 2 microns.

【0015】上記可動体4には流体としての圧縮空気の
供給孔6が厚さ方向に穿設されている。この供給孔6の
先端は供給孔6に比べて十分に小径な絞り7を介して可
動体4の可動側電極5が設けられた部分の下面に開口し
ている。上記供給孔6の後端には供給ホ−ス8の一端が
接続されている。この供給ホ−ス8の他端は図示しない
圧縮空気の供給源に連通している。供給源からの圧縮空
気を上記絞り7から噴出させれば、上記可動体4は、そ
の圧縮空気の静圧によって上記軸受面2から浮上した非
接触状態で支持される。
A supply hole 6 for compressed air as a fluid is formed in the movable body 4 in the thickness direction. The tip of the supply hole 6 is opened to the lower surface of the portion of the movable body 4 where the movable-side electrode 5 is provided via a diaphragm 7 having a diameter sufficiently smaller than that of the supply hole 6. One end of a supply hose 8 is connected to the rear end of the supply hole 6. The other end of the supply hose 8 communicates with a compressed air supply source (not shown). When the compressed air from the supply source is ejected from the throttle 7, the movable body 4 is supported by the static pressure of the compressed air so as to float from the bearing surface 2 in a non-contact state.

【0016】上記軸受側電極3と、上記可動側電極5と
はそれぞれ電源9に接続されている。上記電源9をオン
にして上記軸受側電極3と可動側電極5との間に電圧を
印加すれば、上記各電極3、5に電荷が帯電されるか
ら、これら電極間には静電力による吸引力が発生する。
The bearing side electrode 3 and the movable side electrode 5 are connected to a power source 9, respectively. When the power source 9 is turned on and a voltage is applied between the bearing-side electrode 3 and the movable-side electrode 5, electric charges are charged on the electrodes 3 and 5, so that electrostatic attraction is applied between these electrodes. Power is generated.

【0017】上記構成の軸受装置によれば、可動体4に
は、絞り7から噴出される圧縮空気の静圧によってF2
の浮上力が生じるから、上記可動体4は上記軸受体1の
軸受面2に非接触状態で浮上支持される。また、圧縮空
気によって浮上された可動体4は、軸受側電極3と可動
側電極5との間に生じる静電力による吸引力F1 によっ
て浮上状態が保持される。
According to the bearing device having the above structure, the movable body 4 is subjected to F 2 by the static pressure of the compressed air jetted from the throttle 7.
Therefore, the movable body 4 is levitationally supported on the bearing surface 2 of the bearing body 1 in a non-contact state. Further, the movable body 4 levitated by the compressed air is kept in a levitated state by the attractive force F 1 due to the electrostatic force generated between the bearing side electrode 3 and the movable side electrode 5.

【0018】圧縮空気により可動体4が浮上した状態で
の支持は、支持剛性が十分に高くなく、不安定である。
しかしながら、上記可動体4は静電力による吸引力によ
って浮上状態が保持されているから、その吸引力によっ
て支持剛性が高められれる。したがって、可動体4は外
部からの振動などの影響を受けずらいから、支持状態を
安定化することができる。上記軸受側電極3と可動側電
極5との間に発生する静電力(吸引力)F1 は、 F1 =ε0 ・εr ・W・L・(V2 /2D2 ) … (1)式
The support in a state where the movable body 4 is floated by the compressed air is unstable because the support rigidity is not sufficiently high.
However, since the floating state of the movable body 4 is maintained by the attractive force of the electrostatic force, the supporting rigidity is increased by the attractive force. Therefore, the movable body 4 is unlikely to be affected by external vibrations and the like, so that the supporting state can be stabilized. The electrostatic force (suction force) F 1 generated between the bearing-side electrode 3 and the movable-side electrode 5 is F 1 = ε 0 · ε r · W · L · (V 2 / 2D 2 )… Equation (1)

【0019】で表される。ここで、ε0 は真空中の誘電
率、εr は電極間の間隔Gを満たす物質の比誘電率、W
は電極の幅、Lは電極の長さ、Dは電極間の距離、Vは
印加電圧である。すなわち、上記(1)式より、電極間
の距離Dが小さいほどF1 を大きくできる。また、流体
に比誘電率が高いものを用いることでも、F1 を大きく
できる。図2はこの発明の第2の実施例を示す。なお、
第1の実施例と同一部分には同一記号を付して説明を省
略する。
It is represented by Where ε 0 is the permittivity in vacuum, ε r is the relative permittivity of the substance satisfying the gap G between the electrodes, and W
Is the electrode width, L is the electrode length, D is the distance between the electrodes, and V is the applied voltage. That is, from the above formula (1), the smaller the distance D between the electrodes, the larger F 1 can be made. F 1 can also be increased by using a fluid having a high relative dielectric constant. FIG. 2 shows a second embodiment of the present invention. In addition,
The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0020】この実施例は動圧軸受装置であり、その可
動体4aの幅方向一端側の下面には軸受体1の上面の軸
受面2との間隔Gをくさび状に変化させるための段差部
11が設けられている。この可動体4aの下面には可動
側電極5が設けられ、上記軸受体1と可動体4aとの間
の間隔Gには、圧縮空気が上記可動体4aの段差部11
側、つまり間隔Gが大きな一端側から供給されるように
なっている。
This embodiment is a hydrodynamic bearing device, and a step portion for changing a gap G between the upper surface of the bearing body 1 and the bearing surface 2 on the lower surface of the movable body 4a at one end in the width direction in a wedge shape. 11 is provided. A movable-side electrode 5 is provided on the lower surface of the movable body 4a, and compressed air is present in the step portion 11 of the movable body 4a in a gap G between the bearing body 1 and the movable body 4a.
It is adapted to be supplied from the side, that is, one end side where the gap G is large.

【0021】上記隙間Gに供給された圧縮空気は、上記
間隔Gが次第に狭くなることによって動圧を生じる。し
たがって、上記可動体4aはその動圧により上記軸受体
1に非接触状態で浮上支持されるとともに、軸受側電極
3と可動側電極5との間に生じる吸引力によって浮上状
態が保持される。図3はこの発明の第3の実施例を示
す。なお、第1の実施例と同一部分には同一記号を付し
て説明を省略する。
The compressed air supplied to the gap G produces dynamic pressure as the gap G becomes gradually narrower. Therefore, the movable body 4a is levitationally supported by the bearing body 1 in a non-contact state by its dynamic pressure, and the floating state is maintained by the suction force generated between the bearing side electrode 3 and the movable side electrode 5. FIG. 3 shows a third embodiment of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0022】この実施例はスクイ−ズ圧を利用した軸受
装置で、構成は上記第1の実施例とほぼ同じであるが、
軸受体1の軸受面2に対して可動体4bを非接触状態で
保持するために、上記可動体4bを矢印で示すように上
記軸受面2に対して接離する方向に振動駆動される。
This embodiment is a bearing device utilizing squeeze pressure, and the construction is almost the same as that of the first embodiment,
In order to hold the movable body 4b in a non-contact state with the bearing surface 2 of the bearing body 1, the movable body 4b is oscillated and driven in a direction of approaching and separating from the bearing surface 2 as shown by an arrow.

【0023】それによって、軸受面2と可動体4bの下
面との間の隙間Gの空気圧が周囲の空気圧よりも高くな
るから、その圧力によって上記可動体4bが非接触状態
で保持されるようになっている。
As a result, the air pressure in the gap G between the bearing surface 2 and the lower surface of the movable body 4b becomes higher than the surrounding air pressure, so that the movable body 4b is held in a non-contact state by the pressure. Is becoming

【0024】すなわち、この発明は軸受体1に可動体
4、4a、4bを非接触状態で浮上させて支持するため
の流体圧は、静圧、動圧、スクイ−ズ圧のいずれであっ
てもよい。以下、静圧を利用したこの発明の他の実施例
について説明する。
That is, according to the present invention, the fluid pressure for floating and supporting the movable bodies 4, 4a, 4b on the bearing body 1 in a non-contact state is any of static pressure, dynamic pressure and squeeze pressure. Good. Hereinafter, another embodiment of the present invention utilizing static pressure will be described.

【0025】図4と図5はジャ−ナル軸受装置に適用し
たこの発明の第4の実施例で、図中21は円筒状の軸受
体である。この軸受体21の内周面、つまり軸受面21
aには周方向に90度間隔で4つの軸受側電極22が上
記軸受体21と電気的に絶縁されて設けられている。軸
受体21の周壁の各軸受側電極22と対応する部分に
は、それぞれ供給孔23が厚さ方向(径方向)に沿って
形成されている。供給孔23の先端は絞り24を介して
軸受体21の軸受面21aに開孔し、後端は図示しない
圧縮空気の供給源に連通している。
4 and 5 show a fourth embodiment of the present invention applied to a journal bearing device, and 21 in the figures is a cylindrical bearing body. The inner peripheral surface of the bearing body 21, that is, the bearing surface 21
Four bearing-side electrodes 22 are provided at a at 90 ° intervals in the circumferential direction so as to be electrically insulated from the bearing body 21. A supply hole 23 is formed in a portion of the peripheral wall of the bearing body 21 corresponding to each bearing side electrode 22 along the thickness direction (radial direction). The tip of the supply hole 23 is opened in the bearing surface 21a of the bearing body 21 through the throttle 24, and the rear end is in communication with a compressed air supply source (not shown).

【0026】上記軸受体21には軸状の可動体25が挿
通されている。この可動体25は導電性の材料によって
形成されていて、電源9に接続されている。なお、上記
軸受側電極22も上記電源9に接続されている。
A shaft-shaped movable body 25 is inserted through the bearing body 21. The movable body 25 is made of a conductive material and is connected to the power source 9. The bearing side electrode 22 is also connected to the power source 9.

【0027】上記構成の軸受装置によれば、軸受体21
に形成された4つの供給孔23から圧縮空気を供給し、
各絞り24から噴出させれば、その圧縮空気の静圧によ
って可動体25を軸受体21の軸受面21aに非接触状
態で保持することができる。その状態で軸受側電極22
と可動体25との間に電圧を印加すれば、これらの間に
発生する静電力による吸引力が上記可動体25に周方向
においてほぼ均一に作用する。したがって、上記可動体
25を圧縮空気の静圧と静電力による吸引力とで安定し
た状態で保持することができる。
According to the bearing device having the above structure, the bearing body 21
Compressed air is supplied from the four supply holes 23 formed in
If jetted from each throttle 24, the movable body 25 can be held in a non-contact state with the bearing surface 21a of the bearing body 21 by the static pressure of the compressed air. In that state, the bearing-side electrode 22
When a voltage is applied between the movable body 25 and the movable body 25, the attraction force due to the electrostatic force generated between the movable body 25 and the movable body 25 acts on the movable body 25 substantially uniformly in the circumferential direction. Therefore, the movable body 25 can be held in a stable state by the static pressure of compressed air and the suction force of electrostatic force.

【0028】図6はジャ−ナル軸受装置に適用したこの
発明の第5の実施例で、図中31は角筒状の軸受体であ
る。この軸受体31の内面には4つのパッド32の基端
が取付けられている。各パッド32の先端面は円筒状の
軸受面をなす円弧面32aに形成されていて、各円弧面
32aにはそれぞれ第1乃至第4の軸受側電極33a〜
33dが電気的に絶縁されて取着されている。
FIG. 6 shows a fifth embodiment of the present invention applied to a journal bearing device, and 31 in the drawing is a rectangular cylindrical bearing body. The base ends of four pads 32 are attached to the inner surface of the bearing body 31. The tip end surface of each pad 32 is formed into an arc surface 32a forming a cylindrical bearing surface, and each arc surface 32a has first to fourth bearing side electrodes 33a to 33a.
33d is electrically insulated and attached.

【0029】上記4つのパッド32の円弧面32aがな
す軸受面には軸状の可動体34が挿入されている。この
可動体34は導電性の材料によって形成されていて、電
源9に接続されている。
A shaft-shaped movable body 34 is inserted into the bearing surface formed by the circular arc surfaces 32a of the four pads 32. The movable body 34 is made of a conductive material and is connected to the power source 9.

【0030】上記各軸受側電極33a〜33dはそれぞ
れスイッチ35および可変抵抗器36を介して上記電源
9に接続されている。上記スイッチ35をオンにして可
変抵抗器36の抵抗値を制御すれば、各軸受側電極33
a〜33dに印加する電圧を変えることができるように
なっている。上記4つのパッド32にはそれぞれ圧縮空
気の供給孔37が形成され、これら供給孔37は絞り3
8を介して円弧面32aに開口している。
The bearing-side electrodes 33a to 33d are connected to the power source 9 via a switch 35 and a variable resistor 36, respectively. If the resistance value of the variable resistor 36 is controlled by turning on the switch 35, each bearing side electrode 33
The voltage applied to a to 33d can be changed. Compressed air supply holes 37 are formed in each of the four pads 32, and these supply holes 37 are formed by the throttle 3
8 to the circular arc surface 32a.

【0031】このような構成によれば、各可変抵抗器3
6を調整して第1乃至第4の軸受側電極33a〜33d
に流れる電圧を制御すれば、各軸受側電極33a〜33
dと可動体34との間に発生する吸引力を変えることが
できる。それによって、各軸受側電極33a〜33dと
可動体34との間隔を制御できるから、軸受体31に対
する上記可動体34の支持位置を補正することができ
る。つまり、可動体34が偏心しているような場合に、
その偏心を補正することができる。
According to such a configuration, each variable resistor 3
6 to adjust the first to fourth bearing side electrodes 33a to 33d
If the voltage flowing to the bearings is controlled, the bearing side electrodes 33a to 33a
The suction force generated between d and the movable body 34 can be changed. Thereby, the distance between each of the bearing side electrodes 33a to 33d and the movable body 34 can be controlled, so that the supporting position of the movable body 34 with respect to the bearing body 31 can be corrected. That is, when the movable body 34 is eccentric,
The eccentricity can be corrected.

【0032】図7はジャ−ナル軸受装置に適用したこの
発明の第6の実施例で、図中41は円筒状の軸受体であ
る。この軸受体41には周方向に4つの供給孔42が周
壁の厚さ方向に形成されている。各供給孔42の先端は
絞り43を介して上記軸受体41の軸受面となる内周面
41aに開口しており、基端は図示しない圧縮空気の供
給源に連通している。
FIG. 7 shows a sixth embodiment of the present invention applied to a journal bearing device, and 41 in the drawing is a cylindrical bearing body. In this bearing body 41, four supply holes 42 are formed in the circumferential direction in the thickness direction of the peripheral wall. The tip of each supply hole 42 is opened to the inner peripheral surface 41a, which serves as the bearing surface of the bearing body 41, through the throttle 43, and the base end communicates with a compressed air supply source (not shown).

【0033】上記軸受体41の内周面41aには2つで
対をなす第1乃至第4の軸受側電極44a〜44dが各
供給孔42の両側に上記軸受体41と電気的に絶縁され
て設けられている。上記軸受体41には軸状の可動体4
5が挿通されている。この可動体45の外周面には周方
向に90度間隔で4つの可動側電極46a〜46dが上
記可動体45と電気的に絶縁されて設けられている。つ
まり、それぞれ1つの可動側電極46a〜46dに対し
て一対の軸受側電極44a〜44dが対称な状態で対向
している。詳細は図示しないが、上記軸受側電極44a
〜44dは直流電源9に接続され、上記可動側電極46
a〜46dは同じく上記電源9に接続されている。
On the inner peripheral surface 41a of the bearing body 41, two pairs of first to fourth bearing side electrodes 44a to 44d are electrically insulated from the bearing body 41 on both sides of each supply hole 42. Are provided. The bearing body 41 includes a shaft-shaped movable body 4
5 is inserted. On the outer peripheral surface of the movable body 45, four movable-side electrodes 46a to 46d are provided at 90 degree intervals in the circumferential direction so as to be electrically insulated from the movable body 45. That is, the pair of bearing-side electrodes 44a to 44d are symmetrically opposed to the respective movable-side electrodes 46a to 46d. Although not shown in detail, the bearing side electrode 44a
44d are connected to the DC power supply 9, and the movable electrode 46 is
Similarly, a to 46d are connected to the power source 9.

【0034】このような構成によれば、各供給孔42か
ら圧縮空気を供給して可動体45を軸受体41に非接触
状態で保持し、この状態で軸受側電極44a〜44dと
可動側電極46a〜46dの間に直流電圧を印加すれ
ば、上記可動体45は静電力による吸引力によっても保
持されることになる。
According to this structure, compressed air is supplied from each supply hole 42 to hold the movable body 45 in a non-contact state with the bearing body 41. In this state, the bearing side electrodes 44a to 44d and the movable side electrode are held. When a DC voltage is applied between 46a to 46d, the movable body 45 is also held by the attractive force of electrostatic force.

【0035】静電力による吸引力は、図に矢印で示すよ
うに1つの可動電極と2つの軸受側電極との間でほぼ対
称に発生し、しかもその吸引力は直径方向に対して傾斜
して作用する。つまり、1つの可動側電極と一対の軸受
側電極とのの間に吸引力が発生するため、可動体45
は、回転方向の外力に対して回転しずらい。
The attraction force due to the electrostatic force is generated substantially symmetrically between the one movable electrode and the two bearing side electrodes as shown by the arrow in the figure, and the attraction force is inclined with respect to the diametrical direction. To work. That is, since a suction force is generated between one movable side electrode and the pair of bearing side electrodes, the movable body 45
Is hard to rotate against an external force in the rotating direction.

【0036】図8はジャ−ナル軸受装置に適用したこの
発明の第7の実施例で、図中51は円筒状の軸受体であ
る。この軸受体51には軸受面となるその内周面51a
に絞り52を介して先端が連通する複数の供給孔53が
軸方向に所定間隔、かつ周方向に180度間隔で形成さ
れている。各供給孔53の後端は図示しない圧縮空気の
供給源に連通している。上記軸受体51の内周面51a
には、周方向に180度づつ位置を順次ずらした複数の
軸受側電極54a、54b、…が軸方向にちどり状とな
る所定間隔で設けられている。
FIG. 8 shows a seventh embodiment of the present invention applied to a journal bearing device, and 51 in the figure is a cylindrical bearing body. The bearing body 51 has an inner peripheral surface 51a serving as a bearing surface.
In addition, a plurality of supply holes 53, the ends of which communicate with each other via the diaphragm 52, are formed at predetermined intervals in the axial direction and at 180 ° intervals in the circumferential direction. The rear end of each supply hole 53 communicates with a compressed air supply source (not shown). Inner peripheral surface 51a of the bearing body 51
, Are provided with a plurality of bearing-side electrodes 54a, 54b, ..., Which are sequentially displaced by 180 degrees in the circumferential direction, at predetermined intervals in the form of a strip in the axial direction.

【0037】上記軸受体51に挿通された軸状の可動体
55の外周面には、軸方向に沿って所定間隔で第1乃至
第nの複数の可動側電極55a、55b、…が上記可動
体55と電気的に絶縁されて設けられている。上記軸受
側電極54a、54b、…は駆動制御部56を介して電
源9に接続され、上記可動側電極55a、55b、…は
同じ上記電源9に接続されている。上記駆動制御部56
は上記軸受側電極54a、54b、…への電圧の印加を
制御するようになっている。すなわち、駆動制御部56
は、その操作によって複数の可動側電極55a、55
b、…に同時に電圧を印加したり、第1の可動側電極5
5aから第2、第3、…と順次に電圧を印加するなどの
制御が行えるようになっている。
On the outer peripheral surface of the shaft-shaped movable body 55 inserted through the bearing body 51, a plurality of first to n-th movable side electrodes 55a, 55b, ... Are movable at predetermined intervals along the axial direction. It is provided so as to be electrically insulated from the body 55. The bearing side electrodes 54a, 54b, ... Are connected to the power source 9 via the drive control unit 56, and the movable side electrodes 55a, 55b ,. The drive control unit 56
Controls the application of voltage to the bearing side electrodes 54a, 54b, .... That is, the drive control unit 56
By the operation, a plurality of movable electrodes 55a, 55
voltage is simultaneously applied to b, ...
Control such as sequentially applying a voltage from 5a to the second, third, ...

【0038】このような構成において、各供給孔53か
ら圧縮空気を噴出し、その圧力で可動体55を軸受体5
1に非接触状態で支持したならば、複数の軸受側電極5
4a、54b、…と可動側電極55a、55b、…とに
電圧を印加すれば、それによって発生する静電力による
吸引力も保持力として作用するから、可動体55の保持
状態を安定化することができる。
In such a structure, compressed air is jetted from each supply hole 53, and the pressure causes the movable body 55 to move to the bearing body 5.
1 is supported in a non-contact state, a plurality of bearing-side electrodes 5
If a voltage is applied to the movable side electrodes 55a, 55b, ..., The attraction force by the electrostatic force generated thereby also acts as a holding force, so that the holding state of the movable body 55 can be stabilized. it can.

【0039】一方、駆動制御部56を操作して複数の軸
受側電極54a、54b、…に順次に電圧を印加する
と、上記可動体55に軸方向の推力を発生させることが
できる。つまり、図8に示す状態において、複数の可動
側電極の1つである55aに着目して考えると、まず、
第1の軸受側電極54aにだけに電圧を印加すると、こ
の電極54aと上記可動側電極55aとの間に発生する
吸引力によって可動体55はこれら電極54a、55a
が対向する状態(図8の状態)まで矢印で示す軸方向に
スライドする。この状態で、上記可動側電極55aはそ
の一部だけが第2の軸受側電極54bに対向する。
On the other hand, when the drive controller 56 is operated to sequentially apply a voltage to the plurality of bearing side electrodes 54a, 54b, ..., A thrust force can be generated in the movable body 55 in the axial direction. That is, in the state shown in FIG. 8, when considering 55a, which is one of the plurality of movable electrodes, first,
When a voltage is applied only to the first bearing side electrode 54a, the movable body 55 causes the electrodes 54a and 55a to move by the attractive force generated between the electrode 54a and the movable side electrode 55a.
Slide in the axial direction indicated by the arrow until they face each other (state of FIG. 8). In this state, only a part of the movable side electrode 55a faces the second bearing side electrode 54b.

【0040】つぎに、上記第1の軸受側電極54aへの
通電を遮断し、第2の軸受側電極54bへ通電する。そ
れによって、第2の軸受側電極54bと可動側電極55
aとの間に吸引力が発生するから、その吸引力によって
これら電極が対向する状態まで可動体55が軸方向に駆
動される。上記可動側電極55aと第2の軸受側電極5
4bとが対向すると、上記可動側電極55aの一部は第
3の軸受側電極54cに対向するから、ついでこの第3
の軸受側電極54cに電圧を印加すれば、上記可動体5
5を同様に駆動することができる。
Next, the energization to the first bearing side electrode 54a is cut off, and the second bearing side electrode 54b is energized. Thereby, the second bearing side electrode 54b and the movable side electrode 55
Since a suction force is generated between the movable body 55 and a, the movable body 55 is axially driven by the suction force until the electrodes face each other. The movable side electrode 55a and the second bearing side electrode 5
4b, a part of the movable electrode 55a faces the third bearing electrode 54c.
If a voltage is applied to the bearing side electrode 54c of the movable body 5,
5 can be driven similarly.

【0041】つまり、軸受体51と可動体55とにそれ
ぞれ電極を設け、これら電極間に静電力を発生させるこ
とで、上記可動体55の圧縮空気による非接触状態での
支持状態を安定させることができるばかりか、可動体5
5の軸方向に沿って所定間隔で設けられた複数の可動側
電極55a、55b、…への通電を制御することで、上
記可動体55を軸方向へ駆動することができる。
That is, electrodes are provided on the bearing body 51 and the movable body 55, respectively, and an electrostatic force is generated between these electrodes to stabilize the supporting state of the movable body 55 in the non-contact state by the compressed air. In addition to being able to do, movable body 5
The movable body 55 can be driven in the axial direction by controlling the energization of the plurality of movable-side electrodes 55a, 55b, ...

【0042】したがって、可動体55を非接触状態駆動
することができるばかりか、そのための専用の駆動手段
を必要としない。なお、可動体55の駆動精度は、軸受
側電極54a、54b、…の間隔を変えることで制御で
きる。
Therefore, not only the movable body 55 can be driven in a non-contact state, but also a dedicated drive means therefor is not required. The driving accuracy of the movable body 55 can be controlled by changing the distance between the bearing-side electrodes 54a, 54b, ....

【0043】図9と図10はスライド軸受装置に適用し
たこの発明の第8の実施例を示す。図中61は上面が開
放した矩形断面のガイド溝62が形成された軸受体であ
る。この軸受体61のガイド溝62の内面には全体にわ
たって軸受側電極63が上記軸受体61と電気的に絶縁
して設けられている。
9 and 10 show an eighth embodiment of the present invention applied to a slide bearing device. In the figure, reference numeral 61 denotes a bearing body having a rectangular guide groove 62 whose upper surface is open. A bearing side electrode 63 is provided on the entire inner surface of the guide groove 62 of the bearing body 61 so as to be electrically insulated from the bearing body 61.

【0044】上記軸受体61のガイド溝62に、その溝
方向に沿ってスライド自在に支持される可動体64は、
所定の厚さを有する矩形板状をなしている。この可動体
64の上面および前後方向の端面を除く外面には可動側
電極65が上記可動体64と電気的に絶縁して設けられ
ている。可動体64には供給孔66が形成されている。
この供給孔66は図9に示すようにほぼ十字状に分岐さ
れ、先端は上記可動体64の下面および両側面にそれぞ
れ絞り67を介して開口している。供給孔66の後端は
図示しない圧縮空気の供給源に連通している。この供給
源から圧縮空気を供給して3つの絞り67から噴出させ
れば、可動体64を上記軸受体61に非接触状態で支持
することができる。
The movable body 64 slidably supported in the guide groove 62 of the bearing body 61 along the groove direction is
It has a rectangular plate shape with a predetermined thickness. A movable electrode 65 is provided on the outer surface of the movable body 64 excluding the upper surface and the end surface in the front-rear direction so as to be electrically insulated from the movable body 64. A supply hole 66 is formed in the movable body 64.
The supply hole 66 is branched in a substantially cross shape as shown in FIG. 9, and the tip end is opened to the lower surface and both side surfaces of the movable body 64 through the diaphragm 67, respectively. The rear end of the supply hole 66 communicates with a compressed air supply source (not shown). By supplying compressed air from this supply source and ejecting it from the three throttles 67, the movable body 64 can be supported by the bearing body 61 in a non-contact state.

【0045】上記軸受側電極63はア−スされ、可動側
電極65は電源9に接続されている。したがって、可動
体64が軸受体61のガイド溝62に非接触状態で支持
された状態で上記軸受側電極63と可動側電極65との
間に直流電圧を印加すれば、上記可動体64を圧縮空気
だけでなく、静電力による吸引力によっても保持し、そ
の保持状態の安定化が計れる。しかも、可動体64は軸
受体61のガイド溝62に沿ってスライドさせることも
可能である。
The bearing side electrode 63 is grounded, and the movable side electrode 65 is connected to the power source 9. Therefore, if a DC voltage is applied between the bearing side electrode 63 and the movable side electrode 65 while the movable body 64 is supported in the guide groove 62 of the bearing body 61 in a non-contact state, the movable body 64 is compressed. It can be held not only by air but also by suction force by electrostatic force, and the holding state can be stabilized. Moreover, the movable body 64 can be slid along the guide groove 62 of the bearing body 61.

【0046】なお、この発明は上記各実施例に限定され
ず、種々変形可能である。たとえば、流体としては圧縮
空気に限定されず、電気絶縁性の液体などであってもよ
く、ジャ−ナル軸受に適用した第4乃至第7の実施例に
おいて軸状の各可動体の外周面に溝を形成し、可動体と
軸受体との間に供給される流体に動圧を発生させ、その
動圧で可動体を非接触状態で支持するようにしてもよ
い。
The present invention is not limited to the above embodiments and can be variously modified. For example, the fluid is not limited to compressed air, and may be an electrically insulating liquid or the like. In the fourth to seventh embodiments applied to the journal bearing, the fluid can be applied to the outer peripheral surface of each axial movable body. A groove may be formed to generate a dynamic pressure in the fluid supplied between the movable body and the bearing body, and the dynamic pressure may support the movable body in a non-contact state.

【0047】また、軸受体と可動体とを導電性の材料で
形成した場合、これらに電極を設けず、直接、電源に接
続して電圧を印加するようにしても、これら可動体と軸
受体との間に静電力を発生させることができる。
When the bearing body and the movable body are made of a conductive material, the movable body and the bearing body may be directly connected to a power source to apply a voltage without providing electrodes. An electrostatic force can be generated between and.

【0048】[0048]

【発明の効果】以上述べたように第1の発明は、軸受体
と可動体との間に流体を供給して上記可動体を非接触状
態で支持する場合に、上記軸受体と可動体との間に静電
力による吸引力を発生させるようにした。
As described above, according to the first aspect of the invention, when the fluid is supplied between the bearing body and the movable body to support the movable body in a non-contact state, A suction force by an electrostatic force is generated between the two.

【0049】そのため、可動体を流体によって非接触状
態で支持した場合に生じる支持剛性の低下を静電力によ
る吸引力で補うことができるから、上記可動体を外力に
よって振動しずらい安定した状態で支持することができ
る。
Therefore, the reduction in the supporting rigidity that occurs when the movable body is supported by the fluid in a non-contact state can be compensated for by the attractive force of the electrostatic force. Can be supported.

【0050】また、第2の発明によれば、可動体の支持
状態を静電力による吸引力で安定化させるために電極を
設ける場合、その電極を可動体と軸受体との軸方向に沿
って所定の配置状態で設けたので、上記電極への電圧の
印加を制御することで、上記可動体に軸方向の推力を与
えることができる。
According to the second aspect of the invention, when an electrode is provided to stabilize the supporting state of the movable body by the attractive force of electrostatic force, the electrode is provided along the axial direction of the movable body and the bearing body. Since they are provided in a predetermined arrangement state, the thrust in the axial direction can be applied to the movable body by controlling the application of the voltage to the electrodes.

【0051】そのため、アクチュエ−タなどに利用する
場合、可動体を非接触で精度よく駆動することができる
ばかりか、可動体を駆動するのにそれ専用の駆動手段を
必要としないから、構成の簡略化が計れる。
Therefore, when it is used for an actuator or the like, not only can the movable body be accurately driven in a non-contact manner, but also a driving means dedicated to the driving of the movable body is not required. Can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す静圧軸受装置に
適用した場合の構成図。
FIG. 1 is a configuration diagram when applied to a hydrostatic bearing device according to a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す動圧軸受装置に
適用した場合の構成図。
FIG. 2 is a configuration diagram when applied to a dynamic pressure bearing device showing a second embodiment of the present invention.

【図3】この発明の第3の実施例を示すスクイ−ズ型軸
受装置に適用した場合の構成図。
FIG. 3 is a configuration diagram when applied to a squeeze type bearing device showing a third embodiment of the present invention.

【図4】この発明の第4の実施例を示すジャ−ナル軸受
装置に適用した場合の軸方向に沿う断面図。
FIG. 4 is a sectional view taken along the axial direction when applied to a journal bearing device showing a fourth embodiment of the present invention.

【図5】同じく図4のA−A線に沿う断面図。FIG. 5 is a sectional view taken along line AA of FIG.

【図6】この発明の第5の実施例を示すジャ−ナル軸受
装置に適用した場合の軸方向と直交する方向の断面図。
FIG. 6 is a sectional view in a direction orthogonal to the axial direction when applied to a journal bearing device showing a fifth embodiment of the present invention.

【図7】この発明の第6の実施例を示すジャ−ナル軸受
装置に適用した場合の軸方向と直交する方向の断面図。
FIG. 7 is a cross-sectional view in a direction orthogonal to the axial direction when applied to a journal bearing device showing a sixth embodiment of the present invention.

【図8】この発明の第7の実施例を示すジャ−ナル軸受
装置に適用した場合の軸方向に沿う断面図。
FIG. 8 is a sectional view taken along the axial direction when applied to a journal bearing device showing a seventh embodiment of the invention.

【図9】この発明の第8の実施例を示すスライド軸受装
置に適用した場合の断面図。
FIG. 9 is a sectional view when applied to a slide bearing device showing an eighth embodiment of the present invention.

【図10】同じく図9のB−B線に沿う断面図。FIG. 10 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1…軸受体、2…軸受面、3…軸受側電極、4…可動
体、5…可動側電極、6…供給孔、7…絞り、8…電
源。
DESCRIPTION OF SYMBOLS 1 ... Bearing body, 2 ... Bearing surface, 3 ... Bearing side electrode, 4 ... Movable body, 5 ... Movable side electrode, 6 ... Supply hole, 7 ... A diaphragm, 8 ... Power supply.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸受体と、この軸受体に支持される可動
体と、上記軸受体と可動体との対向面間に流体を供給
し、この流体圧によって上記可動体を上記軸受体に非接
触状態で支持する流体供給手段と、上記軸受体と可動体
との間に電圧を印加して静電力を発生させる静電力発生
手段とを具備したことを特徴とする軸受装置。
1. A fluid is supplied between a bearing body, a movable body supported by the bearing body, and the facing surfaces of the bearing body and the movable body, and the fluid pressure prevents the movable body from being applied to the bearing body. A bearing device comprising: a fluid supply means for supporting in a contact state; and an electrostatic force generating means for applying a voltage between the bearing body and the movable body to generate an electrostatic force.
【請求項2】 内周面が軸受面に形成された軸受体と、
この軸受体に挿入された軸状の可動体と、上記軸受体の
軸受面と上記可動体の外周面との間に流体を供給し、こ
の流体圧によって上記可動体を上記軸受体に非接触状態
で支持する流体供給手段と、上記軸受体の軸受面の軸方
向に沿って所定の配置状態で設けられた複数の軸受側電
極と、上記可動体の外周面に軸方向に沿って所定の配置
状態で設けられ上記軸受側電極との間に印加される電圧
によって静電力を発生する複数の可動側電極とを具備し
たことを特徴とする軸受装置。
2. A bearing body having an inner peripheral surface formed on the bearing surface,
Fluid is supplied between the shaft-shaped movable body inserted in the bearing body and the bearing surface of the bearing body and the outer peripheral surface of the movable body, and the fluid pressure causes the movable body to be in non-contact with the bearing body. Fluid supply means for supporting in a state, a plurality of bearing-side electrodes provided in a predetermined arrangement along the axial direction of the bearing surface of the bearing body, and a predetermined number along the axial direction on the outer peripheral surface of the movable body. A bearing device comprising: a plurality of movable electrodes that are provided in an arranged state and that generate an electrostatic force by a voltage applied between the electrodes and the bearing electrodes.
JP7062092A 1992-03-27 1992-03-27 Bearing device Pending JPH05272536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7062092A JPH05272536A (en) 1992-03-27 1992-03-27 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7062092A JPH05272536A (en) 1992-03-27 1992-03-27 Bearing device

Publications (1)

Publication Number Publication Date
JPH05272536A true JPH05272536A (en) 1993-10-19

Family

ID=13436842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7062092A Pending JPH05272536A (en) 1992-03-27 1992-03-27 Bearing device

Country Status (1)

Country Link
JP (1) JPH05272536A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610643B1 (en) * 1998-05-14 2006-08-09 에이에스엠엘 네델란즈 비.브이. Gas bearing and lithographic apparatus including such a bearing, device manufacturing method and device manufactured thereby, and a method for manufacturing the gas bearing
WO2007108399A1 (en) * 2006-03-22 2007-09-27 Kyocera Corporation Static pressure slider, and conveying apparatus and processing apparatus having the same
CN113315278A (en) * 2021-05-18 2021-08-27 西安热工研究院有限公司 Rotor magnetic suspension bearing-free device and method under complex working conditions
CN115560000A (en) * 2022-11-14 2023-01-03 冈田精机(常州)有限公司 Air supporting main shaft assembly and machine tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610643B1 (en) * 1998-05-14 2006-08-09 에이에스엠엘 네델란즈 비.브이. Gas bearing and lithographic apparatus including such a bearing, device manufacturing method and device manufactured thereby, and a method for manufacturing the gas bearing
WO2007108399A1 (en) * 2006-03-22 2007-09-27 Kyocera Corporation Static pressure slider, and conveying apparatus and processing apparatus having the same
KR101009320B1 (en) * 2006-03-22 2011-01-18 쿄세라 코포레이션 Static pressure slider, and conveying apparatus and processing apparatus having the same
JP5178507B2 (en) * 2006-03-22 2013-04-10 京セラ株式会社 Static pressure slider, conveying device and processing device provided with the same
CN113315278A (en) * 2021-05-18 2021-08-27 西安热工研究院有限公司 Rotor magnetic suspension bearing-free device and method under complex working conditions
CN113315278B (en) * 2021-05-18 2023-02-28 西安热工研究院有限公司 Rotor magnetic suspension bearing-free device and method under complex working conditions
CN115560000A (en) * 2022-11-14 2023-01-03 冈田精机(常州)有限公司 Air supporting main shaft assembly and machine tool

Similar Documents

Publication Publication Date Title
US5548175A (en) Vibration driven motor
JP3272661B2 (en) Electrostatic actuator using alternating voltage patterns
EP2017905B1 (en) Actuator
US7274131B2 (en) Piezoelectric motor with actuator to move the rotor about two orthogonal axes
JPH04281372A (en) Electric traction motor
KR20050114208A (en) High resolution piezoelectric motor
JPH05272536A (en) Bearing device
JP4742277B2 (en) Equivalent capacity actuator drive unit
US5821669A (en) Vibration wave motor having piezoelectric pressure member
JPH04145220A (en) Moving body supporting device
EP0530822A2 (en) Guide device for vibration driven motor
JP3342267B2 (en) Pressure dam type journal bearing
JPH11190336A (en) Guide roller supported by static pressure bearing
JPS63231028A (en) Vibration damping device
JP3143582B2 (en) Hydrostatic bearing device and positioning stage using the same
JP2010065844A (en) Static pressure gas bearing device particularly for vacuum use and related electrostatic pre-load unit
JPH1026203A (en) Friction drive mechanism
JP3561892B2 (en) Fine cutting feed method for machine tool work
JPH0646870B2 (en) Linear actuator
JPH0837784A (en) Moving device and control method of moving device
JPH07143763A (en) Electrostatic actuator and its driving method
JP2850413B2 (en) Electrostatic actuator
JPH0842569A (en) Bearing device
JPH11210749A (en) Slide table device
JPH02292517A (en) Squeeze bearing