JPH0527201A - Single polarized light wave generation device and video projector device - Google Patents

Single polarized light wave generation device and video projector device

Info

Publication number
JPH0527201A
JPH0527201A JP3178611A JP17861191A JPH0527201A JP H0527201 A JPH0527201 A JP H0527201A JP 3178611 A JP3178611 A JP 3178611A JP 17861191 A JP17861191 A JP 17861191A JP H0527201 A JPH0527201 A JP H0527201A
Authority
JP
Japan
Prior art keywords
light
total reflection
prism
triangular
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3178611A
Other languages
Japanese (ja)
Other versions
JP2849238B2 (en
Inventor
Masayuki Tsuji
雅之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3178611A priority Critical patent/JP2849238B2/en
Publication of JPH0527201A publication Critical patent/JPH0527201A/en
Application granted granted Critical
Publication of JP2849238B2 publication Critical patent/JP2849238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To set the optical axis of a projected polarized light wave to a single direction by reducing the optical path capacity, weight, and cost while maintaining a high light utilization rate. CONSTITUTION:Total reflecting mirrors 24-29 are fitted to four flanks of a cube, consisting of four prisms 20-23 having polarizing layers 30 and 31 and a mirror surface 32 on border surfaces, except a light incidence/projection surface, and incident light is split by the polarizing layers 30 and 31 into light beams which have mutually orthogonal planes of polarization; and the P polarized wave travels straight as it is and is projected and the S polarized light wave after being reflected by the polarizing layers 30 and 31 is reflected by the mirror surface 32 and total reflecting mirrors 24-29 to have its polarizing direction rotated by pi/2rad, so that the light is projected as a P polarized light wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、あらゆる偏光方向を
もつ平行光を単一の偏光波に変換する単一偏光波化装置
に関し、またマトリクス型液晶パネルを用いて映像信号
をスクリーン上に拡大投影する液晶ビデオプロジェクタ
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single polarization wave converting device for converting parallel light having all polarization directions into a single polarization wave, and also enlarging a video signal on a screen by using a matrix type liquid crystal panel. The present invention relates to a liquid crystal video projector device for projecting.

【0002】[0002]

【従来の技術】図2は一般に知られている従来の単一偏
光波化装置の斜視図であり、1はあらゆる偏光方向をも
つ平行光をS偏光とP偏光に分離する偏光ビームスプリ
ッタ、2〜5は直角プリズム、6,7は合成用プリズ
ム、8は入射光(の束の断面)、9は出射光(の束の断
面)である。
2. Description of the Related Art FIG. 2 is a perspective view of a generally known conventional single polarization wave conversion device, wherein 1 is a polarization beam splitter for separating parallel light having any polarization direction into S polarization and P polarization. ˜5 are right angle prisms, 6 and 7 are synthesizing prisms, 8 is incident light (cross section of the bundle), and 9 is outgoing light (cross section of the bundle).

【0003】次に、動作について説明する。まず、図2
において、説明のために、偏光ビームスプリッタ1の光
入射面と入射光軸との間に互いに直交する軸を想定す
る。即ち、光入射面の隣接する二辺と平行にx軸方向、
y軸方向を採り、入射光軸をz軸方向とする。又、偏光
ビームスプリッタ1に入射する光束断面8はその入射面
と等しく正方形状とし、その一辺の長さをrとする。
Next, the operation will be described. First, FIG.
In the above, for the sake of description, axes that are orthogonal to each other are assumed between the light incident surface of the polarization beam splitter 1 and the incident optical axis. That is, in the x-axis direction parallel to the two adjacent sides of the light incident surface,
The y-axis direction is taken and the incident optical axis is the z-axis direction. The cross section 8 of the light beam incident on the polarization beam splitter 1 has the same square shape as the incident surface, and the length of one side is r.

【0004】あらゆる偏光方向をもつ平行光が偏光ビー
ムスプリッタ1に入射すると、偏光面が互いに直交する
偏光波(P偏光、S偏光)に分けられ、P偏光波は透過
され、S偏光波は入射光軸(z軸)に直角に反射され
る。これらの偏光波は偏光ビームスプリッタ1から出射
されるときに、その偏光層の位置関係から、P偏光波は
x軸を偏光方向としながらz軸方向に進行し、S偏光波
はy軸を偏光方向としながらx軸方向に進行する。
When parallel light having all polarization directions is incident on the polarization beam splitter 1, it is divided into polarized waves (P-polarized light and S-polarized light) whose polarization planes are orthogonal to each other, the P-polarized wave is transmitted, and the S-polarized wave is incident. It is reflected at right angles to the optical axis (z axis). When these polarized waves are emitted from the polarization beam splitter 1, due to the positional relationship of the polarizing layers, the P polarized waves travel in the z axis direction with the x axis as the polarization direction, and the S polarized waves have the y axis as polarized light. Direction, while proceeding in the x-axis direction.

【0005】偏光ビームスプリッタ1から出射したP偏
光波は直角プリズム2の斜面でy軸方向に反射し、x軸
を偏光方向として進行し、続いて直角プリズム3の斜面
でx軸方向に反射し、y軸を偏光方向として合成用プリ
ズム6へ入射する。一方、偏光ビームスプリッタ1から
出射したS偏光波は直角プリズム4の斜面でy軸方向に
反射し、x軸を偏光方向として進行し、続いて直角プリ
ズム5の斜面でx軸方向に反射し、y軸を偏光方向とし
て合成用プリズム7へ入射する。
The P-polarized wave emitted from the polarization beam splitter 1 is reflected in the y-axis direction on the slope of the right-angle prism 2, travels with the x-axis as the polarization direction, and is then reflected in the x-axis direction on the slope of the right-angle prism 3. , Y-axis as the polarization direction and enters the combining prism 6. On the other hand, the S-polarized wave emitted from the polarization beam splitter 1 is reflected in the y-axis direction on the slope of the right-angle prism 4, travels with the x-axis as the polarization direction, and then is reflected in the x-axis direction on the slope of the right-angle prism 5, The light enters the combining prism 7 with the y axis as the polarization direction.

【0006】こうして、偏光ビームスプリッタ1で分離
された2つの偏光波はどちらも同じ偏光方向をもち、か
つ進行方向が等しくなる。ただし、合成用プリズム6,
7の入射時点では光束断面はr×2rの長方形状をして
いる。このため、合成用プリズム6,7を使用して2つ
の偏光波の光軸を屈折により傾斜させ、出射光束断面9
の位置に入射光束と等しいr×rの正方形状に合成す
る。
Thus, the two polarized waves separated by the polarization beam splitter 1 both have the same polarization direction and the traveling directions are the same. However, the synthesizing prism 6,
At the time of incidence of 7, the light beam cross section has a rectangular shape of r × 2r. Therefore, the synthesizing prisms 6 and 7 are used to incline the optical axes of the two polarized waves by refraction, and the outgoing light beam cross section 9
The light flux is combined into a square of r × r which is equal to the incident light flux at the position.

【0007】図3は従来の液晶ビデオプロジェクタ装置
の構成を示し、10は白色の平行光を発する光源、11
は光源10からの光をS偏光とP偏光に分離する偏光ビ
ームスプリッタ、12,13は全反射ミラー、14,1
5は液晶パネル、16,17は偏光板、18は偏光板1
6,17から出射される出射光を合成する偏光ビームス
プリッタ、19は拡大投影するための投影レンズであ
る。
FIG. 3 shows the structure of a conventional liquid crystal video projector device, 10 is a light source for emitting white parallel light, and 11 is a light source.
Is a polarization beam splitter that separates the light from the light source 10 into S-polarized light and P-polarized light, 12 and 13 are total reflection mirrors, and 14
5 is a liquid crystal panel, 16 and 17 are polarizing plates, and 18 is a polarizing plate 1.
A polarization beam splitter that combines the outgoing lights emitted from the optical systems 6 and 17, and a projection lens 19 for enlarging and projecting.

【0008】次に、動作について説明する。図3におい
て、光源10から出た光は、偏光スプリッタ11により
偏光面が互いに直交する偏光波(S偏光、P偏光)に分
けられる。偏光ビームスプリッタ11は入射光中のP偏
光波を通過させ、S偏光波を反射させる性質があり、基
本的にはここでの損失は殆んどない。偏光ビームスプリ
ッタ11から出たP偏光波は全反射ミラー12で反射さ
れ、液晶パネル14にP偏光波として入射される。一
方、偏光ビームスプリッタ11から出たS偏光波は全反
射ミラー13で反射され、液晶パネル15にS偏光波と
して入射する。
Next, the operation will be described. In FIG. 3, the light emitted from the light source 10 is split by the polarization splitter 11 into polarized waves (S-polarized light, P-polarized light) whose polarization planes are orthogonal to each other. The polarization beam splitter 11 has the property of passing the P-polarized wave in the incident light and reflecting the S-polarized wave, and basically there is almost no loss here. The P-polarized wave emitted from the polarization beam splitter 11 is reflected by the total reflection mirror 12 and is incident on the liquid crystal panel 14 as the P-polarized wave. On the other hand, the S-polarized wave emitted from the polarization beam splitter 11 is reflected by the total reflection mirror 13 and enters the liquid crystal panel 15 as the S-polarized wave.

【0009】液晶パネル14及び偏光板16と入射偏光
波(この場合はP偏光波)との関係は、図4に示すもの
となる。図において、14a,14cはガラス板、14
bは液晶であり、液晶14bの入射側の配向方向は入射
光の偏光方向と一致し、出射側に向って徐々にねじれて
ゆき、出射側の配向方向が入射側に対してπ/2(rad
)ねじれた構造とする。又、出射側の配向方向と偏光
板16の偏光方向とが一致するように配置する。従っ
て、P偏光波が入射した場合、電界オフ時には図4
(a)に示すようにS偏光波として透過し、電界オン時
には図4(b)に示すように遮断される。同様にして、
S偏光波が液晶パネル15及び偏光板17を通過した場
合には、透過光がP偏光波となる。このため、映像信号
によって電界を制御することにより、液晶パネル14及
び偏光板16からなる第1の光学変調系と液晶パネル1
5及び偏光板17からなる第2の光学変調系とにおいて
光学的変調が行なわれる。
The relationship between the liquid crystal panel 14 and the polarizing plate 16 and the incident polarized wave (P polarized wave in this case) is as shown in FIG. In the figure, 14a and 14c are glass plates, 14
Reference numeral b denotes a liquid crystal, and the alignment direction on the incident side of the liquid crystal 14b coincides with the polarization direction of the incident light and gradually twists toward the emission side, and the alignment direction on the emission side is π / 2 (with respect to the incidence side. rad
) Use a twisted structure. Further, they are arranged so that the orientation direction on the output side and the polarization direction of the polarizing plate 16 coincide with each other. Therefore, when the P-polarized wave is incident, when the electric field is off, as shown in FIG.
As shown in FIG. 4A, the S-polarized light is transmitted, and when the electric field is on, it is blocked as shown in FIG. Similarly,
When the S-polarized wave passes through the liquid crystal panel 15 and the polarizing plate 17, the transmitted light becomes a P-polarized wave. Therefore, by controlling the electric field by the video signal, the first optical modulation system including the liquid crystal panel 14 and the polarizing plate 16 and the liquid crystal panel 1 are formed.
Optical modulation is performed in the second optical modulation system composed of the optical disc 5 and the polarizing plate 17.

【0010】第1の光学的変調系からのS偏光波と第2
の光学的変調系からのP偏光波は偏光ビームスプリッタ
18に入射され、P偏光波は透過するとともにS偏光波
は反射され、第1及び第2の光学変調系からの光が合成
され、投影レンズ19により拡大投影される。
The S-polarized wave from the first optical modulation system and the second
The P-polarized wave from the optical modulation system is incident on the polarization beam splitter 18, the P-polarized wave is transmitted and the S-polarized wave is reflected, and the lights from the first and second optical modulation systems are combined and projected. The image is enlarged and projected by the lens 19.

【0011】上記した従来装置において、偏光ビームス
プリッタ11,18により光源からの光を一度P,Sの
偏光波に分離し、その後合成しているのは、光の利用効
率の向上を図るためである。即ち、光源10からの光を
直接光学的変調系で変調する場合には、液晶パネル1
4,15の入射側にも偏光板を配置しなければならず、
この結果片側の偏光波が捨てられるので光の利用率が5
0%に落ち、しかも偏光板の耐熱性の問題により輝度を
上げることが困難となるからである。
In the above-mentioned conventional apparatus, the light beams from the light source are once separated into P and S polarized waves by the polarization beam splitters 11 and 18 and then combined to improve the light utilization efficiency. is there. That is, when the light from the light source 10 is directly modulated by the optical modulation system, the liquid crystal panel 1
Polarizers must also be arranged on the incident side of 4, 15,
As a result, the polarized wave on one side is discarded, so the light utilization rate is 5
This is because it falls to 0%, and it is difficult to increase the brightness due to the problem of heat resistance of the polarizing plate.

【0012】[0012]

【発明が解決しようとする課題】従来の単一偏光波化装
置は上記のように構成されており、光路として必要な空
間体積が大きく、使用する光学部品が多いために、装置
全体の体積、重量、コストが大きくなった。又、合成用
プリズム6,7によって光軸を傾斜させて合成するため
に、合成された偏光波の光軸が完全には一致しないとい
う課題があった。
The conventional single polarization wave conversion device is configured as described above, and since the space volume required for the optical path is large and many optical parts are used, the volume of the entire device is Weight and cost have increased. Further, there is a problem that the optical axes of the combined polarized waves do not completely coincide because the optical axes are inclined by the combining prisms 6 and 7.

【0013】又、従来の液晶ビデオプロジェクタ装置は
以上のように構成されており、光源光を直接変調する場
合に比べて光の利用率は倍になったが、光路として必要
な空間体積が増加し、かつ偏光ビームスプリッタ11,
18等の光学部品の使用により重量及びコストが増大し
た。
Further, the conventional liquid crystal video projector apparatus is configured as described above, and the light utilization rate is doubled as compared with the case where the light source light is directly modulated, but the spatial volume required as an optical path is increased. And the polarization beam splitter 11,
The use of optical components such as 18 added weight and cost.

【0014】この発明は上記のような課題を解決するた
めになされたものであり、従来の光の利用率を確保しつ
つ、光路体積、重量、コストを減少させることができ、
かつ出射する偏光波の光軸を単一方向にすることができ
る単一偏光波化装置を得ることを目的とする。
The present invention has been made to solve the above problems, and can reduce the optical path volume, weight, and cost while ensuring the conventional light utilization rate.
Moreover, it is an object of the present invention to obtain a single polarization wave conversion device capable of directing the optical axis of the emitted polarization wave in a single direction.

【0015】又、この発明は従来同様の光の利用率を確
保しつつ光路体積、重量、コストを減少させることがで
き、かつ投影画像の周辺光量差を改善することができる
液晶ビデオプロジェクタ装置を得ることを目的とする。
Further, according to the present invention, there is provided a liquid crystal video projector device capable of reducing the optical path volume, weight and cost while ensuring the same utilization ratio of light as in the prior art and improving the peripheral light amount difference of the projected image. The purpose is to get.

【0016】[0016]

【課題を解決するための手段】この発明に係る単一偏光
波化装置は、境界面に偏光層と鏡面を形成した4個のプ
リズムの立方体状結合体における光入出射面を除く4側
面に全反射ミラーを取付けたものである。又、この発明
に係る単一偏光波化装置は、上記全反射ミラーに代っ
て、同じ位置関係で鏡面を有するプリズムを取付けたも
のである。
A single polarization wave conversion device according to the present invention has four side surfaces except a light input / output surface in a cube-shaped combination of four prisms having a polarizing layer and a mirror surface on the boundary surface. It is equipped with a total reflection mirror. Further, in the single polarization wave converting device according to the present invention, instead of the total reflection mirror, a prism having a mirror surface with the same positional relationship is attached.

【0017】さらに、この発明に係る液晶ビデオプロジ
ェクタ装置は、光源からの光を単一の偏光波とする上記
単一偏光波化装置と、その出射光を映像信号により光学
変調する液晶パネルと、液晶パネルによる画像を拡大投
影する投影レンズを設けたものである。
Further, the liquid crystal video projector device according to the present invention comprises the above-mentioned single polarization wave converting device for converting light from a light source into a single polarization wave, and a liquid crystal panel for optically modulating the emitted light by a video signal. A projection lens for enlarging and projecting an image on the liquid crystal panel is provided.

【0018】[0018]

【作用】この発明においては、入射光のうちのP偏光波
は偏光層を透過し、S偏光波は偏光層で反射され、さら
に立方体状プリズム結合体内外の鏡面で反射され、偏光
方向がπ/2rad 回転してP偏光波として出射される。
In the present invention, the P-polarized wave of the incident light is transmitted through the polarizing layer, the S-polarized wave is reflected by the polarizing layer, and further reflected by the mirror surface inside and outside the cubic prism combination, and the polarization direction is π. It is rotated by / 2 rad and emitted as a P-polarized wave.

【0019】又、この発明においては、光源からの光は
単一の偏光波とされた後光学変調されて拡大投影され
る。
Further, in the present invention, the light from the light source is converted into a single polarized wave, which is then optically modulated and enlarged and projected.

【0020】[0020]

【実施例】【Example】

実施例1 以下、この発明の実施例を図面とともに説明する。図1
はこの実施例による単一偏光波化装置の構成を示し、2
0〜23はプリズム、24〜29は全反射ミラーであ
る。プリズム20〜23の結合体は立方体を形成してお
り、その辺長をRとする。又、プリズム20,21の結
合体、及びプリズム22,23の結合体はそれぞれ直角
二等辺三角形を底面とし、高さが底面の直角を挟む辺の
長さに等しい三角柱状となっており、共にそれぞれの境
界面に偏光層30,31を形成している。この様子を図
5に示す。即ち、底面の直角を挟む一つの辺とこの辺と
接する面上にない角により形成される平面に偏光層3
0,31を形成する。偏光層30,31は入射光軸に対
してπ/4rad の傾斜を持ち、S偏光波は入射光軸に対
して直角方向に反射される。さらに、三角柱状プリズム
結合体20,21及び22,23の斜面同志を結合して
立方体状とし、プリズム20,22が接する部分に両方
向に全反射の鏡面32を形成する。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Figure 1
Shows the configuration of a single polarization wave conversion device according to this embodiment.
Reference numerals 0 to 23 are prisms, and reference numerals 24 to 29 are total reflection mirrors. The combined body of the prisms 20 to 23 forms a cube, and the side length is R. Further, the combined body of the prisms 20 and 21 and the combined body of the prisms 22 and 23 each have an isosceles right triangle as a bottom surface, and the height is a triangular column shape equal to the length of sides sandwiching the right angle of the bottom surface. Polarizing layers 30 and 31 are formed on the respective boundary surfaces. This state is shown in FIG. That is, the polarizing layer 3 is formed on a plane formed by one side that sandwiches the right angle of the bottom surface and a corner that is not on the surface in contact with this side.
0, 31 are formed. The polarizing layers 30 and 31 have an inclination of π / 4 rad with respect to the incident optical axis, and the S-polarized wave is reflected in the direction perpendicular to the incident optical axis. Further, the inclined surfaces of the triangular prism-shaped prism coupling bodies 20, 21 and 22, 23 are coupled to form a cubic shape, and a mirror surface 32 of total reflection in both directions is formed at a portion where the prisms 20 and 22 contact each other.

【0021】上記した立方体状プリズム結合体20〜2
3の6面のうちの2つの偏光層30,31と辺で接する
面を光入射面とするとともに、各偏光層30,31と点
で接する面を光出射面とする。又、他の4面のうちの偏
光層30,31が対角方向に横断する2面にそれぞれ図
6に示すように、光入射面と接する辺を底辺(長さR)
とし高さが√2R/2の第1の二等辺三角形状全反射ミ
ラー24,27を鏡面を内面としてπ/4rad の傾斜で
取付ける。又、残りの2面にはそれぞれ一対の三角柱状
プリズム20,21及び22,23が接する辺を底辺と
して第1の二等辺三角形状全反射ミラーと同様の関係で
第2の二等辺三角形状全反射ミラー25,28を取付け
るとともに、その対角線を底辺(長さ√2R)として高
さがR/2の第3の二等辺三角形状全反射ミラー26,
29をその鏡面を光出射面側に向けてπ/4rad の傾斜
で取付け、かつ第2及び第3の二等辺三角形状全反射ミ
ラー25,28,26,29の光入射面側斜辺を重ね
る。
The above cube-shaped prism coupling bodies 20 to 2
Of the six surfaces of No. 3, the surface that is in contact with the two polarizing layers 30 and 31 at the side is a light incident surface, and the surface that is in contact with each of the polarizing layers 30 and 31 at a point is the light emitting surface. In addition, as shown in FIG. 6, the two surfaces of the other four surfaces which the polarization layers 30 and 31 cross in a diagonal direction are the bases (length R) which are in contact with the light incident surface.
Then, the first isosceles triangular total reflection mirrors 24 and 27 having a height of √2R / 2 are attached with an inclination of π / 4 rad with the mirror surface as the inner surface. In addition, on the other two surfaces, the second isosceles triangle-shaped total reflection mirror is used in the same relationship as the first isosceles triangular total reflection mirror with the sides in contact with the pair of triangular prisms 20, 21 and 22, 23 as the bases. The reflection mirrors 25 and 28 are mounted, and the third isosceles triangular total reflection mirror 26 having a diagonal of the bottom side (length √2R) and a height of R / 2,
29 is attached with its mirror surface facing the light emitting surface side at an inclination of π / 4 rad, and the oblique sides of the second and third isosceles triangular total reflection mirrors 25, 28, 26, 29 on the light incident surface side are overlapped.

【0022】次に、動作について図7、図8を参照して
説明する。33は入射光の区分を示しており、34は出
射光の区分を示している。図9はこれらの区分を入射側
の光軸方向から見た図であり、説明のために各区分にA
〜D、A′〜D′の符号を付している。なお、図7、図
8では図面が煩雑になるのを防止するため、不要な隠れ
た線を省略した。又、説明上、入射光軸と光入射面との
間に互いに直交する軸を想定する。即ち、正方形をした
光入射面(33と等価)の隣接する二辺と平行にx軸方
向、y軸方向を採り、入射光軸をz軸方向とする。
Next, the operation will be described with reference to FIGS. 7 and 8. Reference numeral 33 indicates a section of incident light, and 34 indicates a section of emitted light. FIG. 9 is a view of these sections as seen from the optical axis direction on the incident side.
.About.D and A'.about.D 'are attached. Note that unnecessary hidden lines are omitted in FIGS. 7 and 8 to prevent the drawings from being complicated. For the sake of explanation, it is assumed that mutually orthogonal axes are provided between the incident optical axis and the light incident surface. That is, the x-axis direction and the y-axis direction are taken parallel to the two adjacent sides of the square light incident surface (equivalent to 33), and the incident optical axis is the z-axis direction.

【0023】図7は入射光33の区分Aについての説明
図であり、プリズム20,21の境界面にある偏光層3
0を入射光のうちのP偏光波は透過し、y軸方向を偏光
方向としてそのままz軸方向に出射されて出射光34の
区分Aへ至る。一方、S偏光波は偏光層30においてy
軸方向に反射され、x軸方向を偏光方向として進行し、
続いてプリズム20,22の境界の鏡面32でx軸方向
に反射されてy軸方向を偏光方向として進行し、さらに
全反射ミラー24によりz軸方向に反射されてy軸方向
を偏光方向として出射され、出射光34の区分A′へ至
る。出射光34は2度の鏡面反射により偏光方向がπ/
2rad 回転し、P偏光波となる。又、入射光33の区分
Cについては、装置の対称性より区分Aと全く同様なの
で説明を省略するが、出射光34の区分C,C′にy軸
方向を偏光方向(この例ではP偏光)として出射され
る。
FIG. 7 is an explanatory view of the section A of the incident light 33, and the polarizing layer 3 on the boundary surface between the prisms 20 and 21.
The P-polarized wave of the incident light of 0 is transmitted and is emitted in the z-axis direction as it is with the y-axis direction as the polarization direction and reaches the section A of the emitted light 34. On the other hand, the S polarized wave is y in the polarizing layer 30.
It is reflected in the axial direction and travels with the x-axis direction as the polarization direction,
Subsequently, the light is reflected in the x-axis direction by the mirror surface 32 at the boundary between the prisms 20 and 22 and proceeds in the y-axis direction as the polarization direction, and further reflected in the z-axis direction by the total reflection mirror 24 and emitted in the y-axis direction as the polarization direction. The emitted light 34 reaches the section A ′. The outgoing light 34 has a polarization direction of π / due to two-time specular reflection.
It rotates by 2 rad and becomes a P-polarized wave. The section C of the incident light 33 is completely the same as the section A due to the symmetry of the device, and therefore the description thereof is omitted. However, the y-axis direction is the polarization direction (P polarized light in this example) for the sections C and C ′ of the outgoing light 34. ) Is emitted as.

【0024】図8は入射光33の区分Bについての説明
図であり、入射光のうちのP偏光波はプリズム20,2
1の境界面にある偏光層30を透過し、y軸方向を偏光
方向としてそのままz軸方向に出射されて出射光34の
区分Bへ至る。一方、S偏光波は偏光層30においてy
軸方向に反射され、x軸方向を偏光方向として進行し、
プリズム23を透過し、全反射ミラー25によりx軸方
向に反射されてy軸方向を偏光方向として進行し、さら
に全反射ミラー26によりz軸方向に反射されてy軸方
向を偏光方向として出射され、P偏光波として出射光3
4の区分B′へ至る。又、入射光33の区分Dについて
は、装置の対称性より区分Bの場合と全く同様であるの
で説明を省略するが、出射光34の区分D,D′にy軸
方向を偏光方向(この例ではP偏光)として出射され
る。
FIG. 8 is an explanatory view of the section B of the incident light 33, in which the P-polarized wave of the incident light is the prisms 20 and 2.
The light passes through the polarizing layer 30 on the boundary surface of No. 1 and is emitted as it is in the z-axis direction with the y-axis direction as the polarization direction, and reaches the section B of the emitted light 34. On the other hand, the S polarized wave is y in the polarizing layer 30.
It is reflected in the axial direction and travels with the x-axis direction as the polarization direction,
The light passes through the prism 23, is reflected in the x-axis direction by the total reflection mirror 25, proceeds in the y-axis direction as the polarization direction, is further reflected in the z-axis direction by the total reflection mirror 26, and is emitted in the y-axis direction as the polarization direction. , Emitted light as P-polarized wave 3
4 to section B '. The section D of the incident light 33 is completely the same as the case of the section B due to the symmetry of the device, and therefore the description thereof will be omitted. It is emitted as P-polarized light in the example).

【0025】以上のようにして、あらゆる偏光方向をも
つ平行光束が単一の偏光方向をもつ平行光束に変換され
る。又、出射光束断面積が従来装置と等しいとすると、
r=√2Rの関係が成立する。ただし、このとき出射光
束の光量が従来と等しくなるようにするためには、入射
光束断面積を従来の1/2とし、密度を2倍にすること
は言うまでもない。
As described above, the parallel light beams having all the polarization directions are converted into the parallel light beams having the single polarization direction. Also, assuming that the outgoing light beam cross-sectional area is equal to that of the conventional device,
The relation of r = √2R is established. However, in this case, it is needless to say that the cross-sectional area of the incident light flux is halved and the density is doubled in order to make the light quantity of the emitted light flux equal to the conventional one.

【0026】実施例2 上記実施例ではプリズム20〜23の集合体側面に全反
射ミラー24〜29を取付けたが、実施例2としては図
10に示すように、全反射ミラー24〜29に代ってこ
れらと同じ位置関係にある面に鏡面を作成したプリズム
35〜38を取付けており、実施例1と同様の効果を奏
する。
Example 2 In the above example, the total reflection mirrors 24 to 29 were attached to the side surfaces of the aggregate of the prisms 20 to 23. However, as a second example, as shown in FIG. Therefore, the prisms 35 to 38 having mirror surfaces are attached to the surfaces having the same positional relationship as these, and the same effect as that of the first embodiment is obtained.

【0027】なお、上記各実施例では説明上ミラーある
いは鏡面と表現したが、高効率の光学的反射面を有する
ものであれば置き換え可能である。
In each of the above embodiments, the mirror or the mirror surface is used for the sake of description, but any mirror having a highly efficient optical reflecting surface can be replaced.

【0028】実施例3 図11はこの実施例による液晶ビデオプロジェクタ装置
の構成を示し、39は図1、図5〜図9により説明した
単一偏光波化装置であり、光源10からの光を受け、単
一の偏光波(ここではP偏光波)を出射する。他の構成
は従来と同様である。
Embodiment 3 FIG. 11 shows the configuration of a liquid crystal video projector device according to this embodiment, and 39 is the single polarization wave converting device described with reference to FIG. 1 and FIGS. It receives and emits a single polarized wave (here, P polarized wave). Other configurations are the same as the conventional one.

【0029】次に、動作について説明する。光源10の
光は周辺部に比べて中央部の光量が多い。この様子を光
量差分布により横式的に表わしたのが図12(a)であ
る。単一偏光波化装置39は前述したようにP偏光波を
透過させ、S偏光波を移動させてP偏光波として出射す
る。このとき、S偏光波の光量ピークが出射光量波分布
の隅にくるので、図12(b)に示すように出射光量差
分布は周辺が持上った状態となり、画像を拡大投影した
ときの口径食による周辺光量低下を緩和できる。従っ
て、光源10から出た光は単一偏光波化装置39により
単一偏光波となり、液晶パネル14と偏光板16により
光学的に変調され、投影レンズ19により拡大投影され
る。
Next, the operation will be described. The light amount of the light source 10 is larger in the central portion than in the peripheral portion. FIG. 12A shows this state laterally by the light amount difference distribution. As described above, the single polarization wave converting device 39 transmits the P polarization wave, moves the S polarization wave, and emits the P polarization wave as the P polarization wave. At this time, since the light quantity peak of the S-polarized wave comes to a corner of the outgoing light quantity wave distribution, the outgoing light quantity difference distribution is in a state in which the periphery is raised as shown in FIG. 12B, and when the image is enlarged and projected. It is possible to mitigate the decrease in peripheral light amount due to vignetting. Therefore, the light emitted from the light source 10 becomes a single polarization wave by the single polarization wave conversion device 39, is optically modulated by the liquid crystal panel 14 and the polarizing plate 16, and is enlarged and projected by the projection lens 19.

【0030】なお、上記実施例においては、カラー表示
については言及してないが、液晶パネル14の画素ごと
に色フィルタを形成した単板カラー液晶パネルを使用す
る方式や、単一偏光波化装置39の出射光を色分離して
複数の白黒液晶パネルにより各色光ごとに光学変調した
後に合成する方式や、光源光を色分離した後に複数の単
一偏光波化装置39と白黒液晶パネルを配し、各色光ご
とに光学変調した後に合成する方式に対しても同様の効
果が得られる。
In the above embodiment, although the color display is not mentioned, a system using a single plate color liquid crystal panel in which a color filter is formed for each pixel of the liquid crystal panel 14 or a single polarization wave conversion device is used. A method of color-separating the outgoing light of 39 and optically modulating each color light by a plurality of black-and-white liquid crystal panels, or a method of synthesizing the light, and a plurality of single polarization wave conversion devices 39 and a black-and-white liquid crystal panel after color-separating the light of the light source. However, the same effect can be obtained even in a system in which each color light is optically modulated and then combined.

【0031】実施例4 実施例3では全反射ミラー24〜29を取付けたが、実
施例4としては図10に示すように全反射ミラー24〜
29に代ってこれらと同じ位置関係にある面に鏡面を作
成したプリズム35〜38を取付けており、実施例3と
同様の効果が得られる。
Fourth Embodiment Although the total reflection mirrors 24 to 29 are attached in the third embodiment, as the fourth embodiment, as shown in FIG.
In place of 29, prisms 35 to 38 each having a mirror surface formed on a surface having the same positional relationship as these are mounted, and the same effect as that of the third embodiment can be obtained.

【0032】[0032]

【発明の効果】以上のようにこの発明によれば、立方体
状プリズム結合体とその外部に設けた鏡面により形成し
ており、光路体積、重量、コストを低減することができ
るとともに、偏光波の光軸を単一方向とすることができ
る。
As described above, according to the present invention, the cube-shaped prism coupling body and the mirror surface provided outside the cube-shaped prism coupling body are formed, so that the optical path volume, weight, and cost can be reduced, and the polarization wave The optical axis can be unidirectional.

【0033】又、この発明によれば、光源光を単一偏光
波化装置を通して単一の偏光波としたので、偏光ビーム
スプリッタ等の光学部品を不要とし、光源光束断面積を
半分にすることができ、光利用率を保ちながら光路空
間、光源体積、重量、コストを低減することができ、か
つ投影画像の周辺光量低下を改善することができる。
Further, according to the present invention, since the light source light is made into a single polarized wave through the single polarization wave converting device, optical parts such as a polarization beam splitter are unnecessary, and the light source light beam cross-sectional area is halved. Therefore, it is possible to reduce the optical path space, the volume of the light source, the weight, and the cost while maintaining the light utilization rate, and it is possible to improve the reduction of the peripheral light amount of the projected image.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による単一偏光波化装置の斜視図であ
る。
FIG. 1 is a perspective view of a single polarization wave conversion device according to the present invention.

【図2】従来の単一偏光波化装置の斜視図である。FIG. 2 is a perspective view of a conventional single polarization wave conversion device.

【図3】従来の液晶ビデオプロジェクタ装置の構成図で
ある。
FIG. 3 is a configuration diagram of a conventional liquid crystal video projector device.

【図4】従来の液晶ビデオプロジェクタ装置の動作説明
図である。
FIG. 4 is an operation explanatory diagram of a conventional liquid crystal video projector device.

【図5】この発明による単一偏光波化装置のプリズム部
の構成説明図である。
FIG. 5 is a structural explanatory view of a prism portion of the single polarization wave conversion device according to the present invention.

【図6】この発明による単一偏光波化装置のミラー部の
斜視図及び正面図である。
6A and 6B are a perspective view and a front view of a mirror portion of a single polarization wave converting device according to the present invention.

【図7】この発明による単一偏光波化装置の入射光A領
域についての動作説明図である。
FIG. 7 is an operation explanatory diagram of an incident light A region of the single polarization wave converting device according to the present invention.

【図8】この発明による単一偏光波化装置の入射光B領
域についての動作説明図である。
FIG. 8 is an operation explanatory diagram for an incident light B region of the single polarization wave conversion device according to the present invention.

【図9】この発明による単一偏光波化装置の入射光及び
出射光の区分図である。
FIG. 9 is a sectional view of incident light and emitted light of the single polarization wave conversion device according to the present invention.

【図10】この発明の他の実施例による単一偏光波化装
置の斜視図である。
FIG. 10 is a perspective view of a single polarization wave conversion device according to another embodiment of the present invention.

【図11】この発明による液晶ビデオプロジェクタ装置
の構成図である。
FIG. 11 is a configuration diagram of a liquid crystal video projector device according to the present invention.

【図12】この発明による液晶ビデオプロジェクタ装置
の入出射光量差分布図である。
FIG. 12 is an input / output light amount difference distribution map of the liquid crystal video projector device according to the present invention.

【符号の説明】[Explanation of symbols]

10 光源 14 液晶パネル 19 投影レンズ 20〜23,35〜38 プリズム 24〜29 全反射ミラー 30,31 偏光層 32 鏡面 33 入射光 34 出射光 39 単一偏光波化装置 10 light sources 14 LCD panel 19 Projection lens 20-23, 35-38 Prism 24-29 Total reflection mirror 30,31 Polarizing layer 32 mirror surface 33 incident light 34 outgoing light 39 Single polarization wave conversion device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直角二等辺三角形を底面とし、高さが底
面の直角を挟む辺の長さに等しい三角柱状プリズムにお
ける一方の底面の直角を挟む一つの辺とそれと接する面
上にない角により形成される平面に偏光層を形成し、一
対の三角柱状プリズムの共通な側面同志を結合して立方
体状プリズム結合体を形成するとともに、各三角柱状プ
リズムの偏光層で分離された四面体片同志が接する部分
に全反射鏡面を形成し、立方体状プリズム結合体の6面
のうちの2つの偏光層と辺で接する面を光入射面とする
とともに各偏光層と点で接する面を光出射面としたとき
に、他の4面のうちの偏光層が対角方向に横断する2面
にそれぞれ光入射面と接する辺を底辺とし高さがその√
2/2倍の第1の二等辺三角形状全反射ミラーをその鏡
面を内面としてπ/4rad の傾斜で取付け、残りの2面
にはそれぞれ一対の三角柱状プリズムが接する辺を底辺
として第1の二等辺三角形状全反射ミラーと同様の関係
で第2の二等辺三角形状全反射ミラーを取付けるととも
に、その対角線を底辺とし高さがその√2/4倍の第3
の二等辺三角形状全反射ミラーをその鏡面を光出射面側
に向けて取り付け、かつ第2及び第3の二等辺三角形状
全反射ミラーの光入射面側斜辺を重ねたことを特徴とす
る単一偏光波化装置。
1. An isosceles right triangle is used as a base, and a height of one side of a triangular prism having a height equal to the sides of the right side of the bottom is defined by one side of the right side of the bottom and a corner not on the surface in contact with the side. A polarizing layer is formed on the plane to be formed, and common side surfaces of a pair of triangular prisms are combined to form a cubic prism combined body, and tetrahedral pieces separated by the polarizing layer of each triangular prism are combined. A total reflection mirror surface is formed in a portion where is in contact with, and a surface which is in contact with two polarizing layers at two sides of the six surfaces of the cubic prism combined body is a light incident surface and a surface which is in point contact with each polarizing layer is a light emitting surface. Then, the two sides of the other four planes that the polarization layer crosses in a diagonal direction are the sides that are in contact with the light incident plane, and the height is √
The first isosceles triangular total reflection mirror of 2/2 times is attached with the mirror surface as the inner surface at an inclination of π / 4 rad, and the other two surfaces have the sides in contact with the pair of triangular prisms as the bases. A second isosceles triangular total reflection mirror is mounted in the same relationship as the isosceles triangular total reflection mirror, and a third line whose diagonal is the base is √2 / 4 times its height.
The isosceles triangular total reflection mirror is attached so that its mirror surface faces the light emission surface side, and the oblique sides of the second and third isosceles triangular total reflection mirrors on the light incident surface side are overlapped. One polarization wave converter.
【請求項2】 立方体状プリズム結合体の光入射面と光
反射面以外の4つの面に上記各全反射ミラーに代って同
じ位置関係で鏡面を有するプリズムを取付けたことを特
徴とする請求項1記載の単一偏光波化装置。
2. A prism having a mirror surface in the same positional relationship is attached to each of the four surfaces other than the light incident surface and the light reflecting surface of the cubic prism assembly in place of the respective total reflection mirrors. Item 1. A single polarization wave conversion device according to item 1.
【請求項3】 光源からの光を単一の偏光波とする単一
偏光波化装置と、この単一偏光波化装置からの光を映像
信号により光学変調する液晶パネルと、液晶パネルによ
る画像を拡大投影する投影レンズを備えた液晶ビデオプ
ロジェクタ装置において、単一偏光波化装置は、直角二
等辺三角形を底面とし、高さが底面の直角を挟む一辺の
長さに等しい三角柱状プリズムにおける一方の底面の直
角を挟む一辺とそれに接する面上にない角により形成さ
れる平面に偏光層を形成し、一対の三角柱状プリズムの
共通な側面同志を結合して立方体状プリズム結合体を形
成するとともに、各三角柱状プリズムの偏光層で分離さ
れた四面体片同志が接する部分に全反射鏡面を形成し、
立方体状プリズム結合体の6面のうちの2つの偏光層と
辺で接する面を光入射面とするとともに各偏光層と点で
接する面を光出射面とし、他の4面のうちの偏光層が対
角方向に横断する2面にそれぞれ光入射面と接する辺を
底辺とし高さがその√2/2倍の第1の二等辺三角形状
全反射ミラーをその鏡面を内面としてπ/4rad の傾斜
で取付け、残りの2面にはそれぞれ一対の三角柱状プリ
ズムが接する辺を底辺として第1の二等辺三角形状全反
射ミラーと同様の関係で第2の二等辺三角形状全反射ミ
ラーを取付けるとともに、その対角線を底辺とし高さが
その√2/4倍の第3の二等辺三角形状全反射ミラーを
その鏡面を内面にして取付け、かつ第2及び第3の二等
辺三角形状全反射ミラーの光入射面側斜辺を重ねたこと
を特徴とする液晶ビデオプロジェクタ装置。
3. A single polarization wave conversion device for converting light from a light source into a single polarization wave, a liquid crystal panel for optically modulating the light from the single polarization conversion device with a video signal, and an image formed by the liquid crystal panel. In a liquid crystal video projector device equipped with a projection lens for enlarging and projecting, a single polarization wave conversion device has a base of a right-angled isosceles triangle and a height of one side of a triangular prism that is equal to the length of one side sandwiching the right angle of the bottom face. While forming a polarizing layer on a plane formed by one side sandwiching the right angle of the bottom surface of the base and a corner not on the surface in contact with it, common side surfaces of a pair of triangular prisms are combined to form a cubic prism combined body. , A total reflection mirror surface is formed at the portion where the tetrahedral pieces separated by the polarizing layer of each triangular prism contact.
Of the six faces of the cube-shaped prism combination, the face that is in contact with two polarizing layers at the side is the light incident face, and the face that is in point contact with each polarizing layer is the light emitting face, and the other of the four faces is the polarizing layer. Of the first isosceles triangular total reflection mirror whose base is the side in contact with the light incident surface and whose height is √2 / 2 times that of the two surfaces that intersect in the diagonal direction are π / 4 rad of which the mirror surface is the inner surface. The second isosceles triangular total reflection mirror is mounted in the same relationship as the first isosceles triangular total reflection mirror, with the sides contacting the pair of triangular prisms being the bottom sides on the remaining two surfaces. , A third isosceles triangle-shaped total reflection mirror having a diagonal line as a base and a height of √2 / 4 times that of the second side and a third isosceles triangle-shaped total reflection mirror. Liquid crystal display characterized by stacking hypotenuses on the light incident surface side Oh projector apparatus.
【請求項4】 立方体状プリズム結合体の光入射面と光
反射面以外の4つの面に上記各全反射ミラーに代って同
じ位置関係で鏡面を有するプリズムを取付けたことを特
徴とする請求項3記載の液晶ビデオプロジェクタ装置。
4. A prism having a mirror surface in the same positional relationship is mounted on each of the four surfaces other than the light incident surface and the light reflecting surface of the cubic prism combined body, instead of the respective total reflection mirrors. Item 3. A liquid crystal video projector device according to item 3.
JP3178611A 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device Expired - Fee Related JP2849238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178611A JP2849238B2 (en) 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178611A JP2849238B2 (en) 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device

Publications (2)

Publication Number Publication Date
JPH0527201A true JPH0527201A (en) 1993-02-05
JP2849238B2 JP2849238B2 (en) 1999-01-20

Family

ID=16051479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178611A Expired - Fee Related JP2849238B2 (en) 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device

Country Status (1)

Country Link
JP (1) JP2849238B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008118A1 (en) * 1996-08-20 1998-02-26 Seiko Epson Corporation Polarized light separating/combining optical element, polarized light illuminating apparatus and projection-type display device
WO2002042807A1 (en) * 2000-11-27 2002-05-30 Sanyo Electric Co., Ltd. Color separating/synthesizing element and liquid crystal projector using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008118A1 (en) * 1996-08-20 1998-02-26 Seiko Epson Corporation Polarized light separating/combining optical element, polarized light illuminating apparatus and projection-type display device
US6108132A (en) * 1996-08-20 2000-08-22 Seiko Epson Corporation Polarized light separating/combining optical element, polarized light illuminating apparatus and projection-type display device
US6348997B1 (en) 1996-08-20 2002-02-19 Seiko Epson Corporation Polarizing illuminating device and projector
US6348996B1 (en) 1996-08-20 2002-02-19 Seiko Epson Corporation Polarization illumination device and projector
KR100446570B1 (en) * 1996-08-20 2004-11-16 세이코 엡슨 가부시키가이샤 Optical element, polarized illumination device and projection display device
WO2002042807A1 (en) * 2000-11-27 2002-05-30 Sanyo Electric Co., Ltd. Color separating/synthesizing element and liquid crystal projector using it
US6840626B2 (en) 2000-11-27 2005-01-11 Sanyo Electric Co., Ltd. Color separating/synthesizing element and liquid crystal projector using it

Also Published As

Publication number Publication date
JP2849238B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP2913864B2 (en) Polarization conversion optical system, polarization beam splitter, and liquid crystal display device
US6229581B1 (en) Projection type picture display apparatus
US6945651B2 (en) Optical unit and projection type projector apparatus using the same
JP3879125B2 (en) Projection display apparatus and illumination optical system therefor
JP2002014419A (en) Projector
US8888290B2 (en) Polarization beam splitters for image projection apparatus
JPS6259919A (en) Projection type color display device
JPH11281930A (en) Projection display device
JP4520943B2 (en) Compound prism and light source unit
JP2861187B2 (en) Polarization conversion element for light source
JP2002023110A (en) Projection system using polarizing beam splitter
JP2849238B2 (en) Single polarization wave conversion device and liquid crystal video projector device
JP3684927B2 (en) Illumination optical system and projection display device using the same
JPH04177335A (en) Projection type liquid crystal display device
JP2691785B2 (en) Projection display device
JP3684926B2 (en) Illumination optical system and projection display device using the same
JP3640360B2 (en) Polarization direction alignment element
US20050231811A1 (en) Projector
JP3428004B2 (en) Color separation light emitting device
JP3964494B2 (en) Polarization conversion optical system
JPH08184801A (en) Polarization direction alignment element and liquid crystal video projector using the same
JP3614002B2 (en) Reflective electro-optical device and projection display device
JP3615869B2 (en) Liquid crystal projector and projection display system using the same
JP2586841B2 (en) Polarization conversion element and image projection device using the same
JP3008407B2 (en) X-shaped prism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees