JP2849238B2 - Single polarization wave conversion device and liquid crystal video projector device - Google Patents

Single polarization wave conversion device and liquid crystal video projector device

Info

Publication number
JP2849238B2
JP2849238B2 JP3178611A JP17861191A JP2849238B2 JP 2849238 B2 JP2849238 B2 JP 2849238B2 JP 3178611 A JP3178611 A JP 3178611A JP 17861191 A JP17861191 A JP 17861191A JP 2849238 B2 JP2849238 B2 JP 2849238B2
Authority
JP
Japan
Prior art keywords
light
total reflection
liquid crystal
prism
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3178611A
Other languages
Japanese (ja)
Other versions
JPH0527201A (en
Inventor
雅之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3178611A priority Critical patent/JP2849238B2/en
Publication of JPH0527201A publication Critical patent/JPH0527201A/en
Application granted granted Critical
Publication of JP2849238B2 publication Critical patent/JP2849238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、あらゆる偏光方向を
もつ平行光を単一の偏光波に変換する単一偏光波化装置
に関し、またマトリクス型液晶パネルを用いて映像信号
をスクリーン上に拡大投影する液晶ビデオプロジェクタ
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single polarization wave converting device for converting parallel light having any polarization direction into a single polarization wave, and enlarges a video signal on a screen using a matrix type liquid crystal panel. The present invention relates to a liquid crystal video projector for projecting.

【0002】[0002]

【従来の技術】図2は一般に知られている従来の単一偏
光波化装置の斜視図であり、1はあらゆる偏光方向をも
つ平行光をS偏光とP偏光に分離する偏光ビームスプリ
ッタ、2〜5は直角プリズム、6,7は合成用プリズ
ム、8は入射光(の束の断面)、9は出射光(の束の断
面)である。
2. Description of the Related Art FIG. 2 is a perspective view of a generally known conventional single-polarization wave-forming apparatus. 1 is a polarizing beam splitter for separating parallel light having any polarization direction into S-polarized light and P-polarized light. 5 to 5 are right-angle prisms, 6 and 7 are combining prisms, 8 is incident light (cross section of bundle), and 9 is outgoing light (cross section of bundle).

【0003】次に、動作について説明する。まず、図2
において、説明のために、偏光ビームスプリッタ1の光
入射面と入射光軸との間に互いに直交する軸を想定す
る。即ち、光入射面の隣接する二辺と平行にx軸方向、
y軸方向を採り、入射光軸をz軸方向とする。又、偏光
ビームスプリッタ1に入射する光束断面8はその入射面
と等しく正方形状とし、その一辺の長さをrとする。
Next, the operation will be described. First, FIG.
In the following, for the sake of explanation, it is assumed that axes orthogonal to each other are between the light incident surface of the polarizing beam splitter 1 and the incident optical axis. That is, in the x-axis direction parallel to two adjacent sides of the light incident surface,
The y-axis direction is taken, and the incident optical axis is set to the z-axis direction. The cross section 8 of the light beam incident on the polarizing beam splitter 1 has a square shape equal to the incident surface, and the length of one side is r.

【0004】あらゆる偏光方向をもつ平行光が偏光ビー
ムスプリッタ1に入射すると、偏光面が互いに直交する
偏光波(P偏光、S偏光)に分けられ、P偏光波は透過
され、S偏光波は入射光軸(z軸)に直角に反射され
る。これらの偏光波は偏光ビームスプリッタ1から出射
されるときに、その偏光層の位置関係から、P偏光波は
x軸を偏光方向としながらz軸方向に進行し、S偏光波
はy軸を偏光方向としながらx軸方向に進行する。
When parallel light having any polarization direction enters the polarization beam splitter 1, the polarization plane is divided into polarization waves (P polarization and S polarization) orthogonal to each other, the P polarization wave is transmitted, and the S polarization wave is incident. It is reflected at right angles to the optical axis (z-axis). When these polarized waves are emitted from the polarizing beam splitter 1, the P-polarized wave travels in the z-axis direction with the x-axis as the polarization direction, and the S-polarized wave travels in the y-axis, due to the positional relationship of the polarization layers. It advances in the x-axis direction while maintaining the direction.

【0005】偏光ビームスプリッタ1から出射したP偏
光波は直角プリズム2の斜面でy軸方向に反射し、x軸
を偏光方向として進行し、続いて直角プリズム3の斜面
でx軸方向に反射し、y軸を偏光方向として合成用プリ
ズム6へ入射する。一方、偏光ビームスプリッタ1から
出射したS偏光波は直角プリズム4の斜面でy軸方向に
反射し、x軸を偏光方向として進行し、続いて直角プリ
ズム5の斜面でx軸方向に反射し、y軸を偏光方向とし
て合成用プリズム7へ入射する。
The P-polarized wave emitted from the polarizing beam splitter 1 is reflected in the y-axis direction on the inclined surface of the right-angle prism 2, travels with the x-axis as the polarization direction, and subsequently reflected in the x-axis direction on the inclined surface of the right-angle prism 3. , With the y axis as the polarization direction. On the other hand, the S-polarized wave emitted from the polarizing beam splitter 1 is reflected on the inclined surface of the right-angle prism 4 in the y-axis direction, travels with the x-axis as the polarization direction, and subsequently reflected on the inclined surface of the right-angle prism 5 in the x-axis direction. The light enters the combining prism 7 with the y-axis as the polarization direction.

【0006】こうして、偏光ビームスプリッタ1で分離
された2つの偏光波はどちらも同じ偏光方向をもち、か
つ進行方向が等しくなる。ただし、合成用プリズム6,
7の入射時点では光束断面はr×2rの長方形状をして
いる。このため、合成用プリズム6,7を使用して2つ
の偏光波の光軸を屈折により傾斜させ、出射光束断面9
の位置に入射光束と等しいr×rの正方形状に合成す
る。
[0006] Thus, the two polarized waves separated by the polarization beam splitter 1 both have the same polarization direction and have the same traveling direction. However, the combining prism 6,
At the time of incidence of 7, the light beam cross section has a rectangular shape of r × 2r. Therefore, the optical axes of the two polarized waves are tilted by refraction using the combining prisms 6 and 7, and the cross section of the emitted light beam 9
Are combined into a square shape of r × r equal to the incident light flux at the position of.

【0007】図3は従来の液晶ビデオプロジェクタ装置
の構成を示し、10は白色の平行光を発する光源、11
は光源10からの光をS偏光とP偏光に分離する偏光ビ
ームスプリッタ、12,13は全反射ミラー、14,1
5は液晶パネル、16,17は偏光板、18は偏光板1
6,17から出射される出射光を合成する偏光ビームス
プリッタ、19は拡大投影するための投影レンズであ
る。
FIG. 3 shows the configuration of a conventional liquid crystal video projector device, 10 is a light source for emitting white parallel light, and 11 is a light source.
Is a polarization beam splitter that separates light from the light source 10 into S-polarized light and P-polarized light, 12 and 13 are total reflection mirrors, and 14 and 1
5 is a liquid crystal panel, 16 and 17 are polarizing plates, 18 is a polarizing plate 1
A polarizing beam splitter for synthesizing outgoing lights emitted from 6, 6 and 17 is a projection lens for enlarging and projecting.

【0008】次に、動作について説明する。図3におい
て、光源10から出た光は、偏光スプリッタ11により
偏光面が互いに直交する偏光波(S偏光、P偏光)に分
けられる。偏光ビームスプリッタ11は入射光中のP偏
光波を通過させ、S偏光波を反射させる性質があり、基
本的にはここでの損失は殆んどない。偏光ビームスプリ
ッタ11から出たP偏光波は全反射ミラー12で反射さ
れ、液晶パネル14にP偏光波として入射される。一
方、偏光ビームスプリッタ11から出たS偏光波は全反
射ミラー13で反射され、液晶パネル15にS偏光波と
して入射する。
Next, the operation will be described. In FIG. 3, light emitted from a light source 10 is divided by a polarization splitter 11 into polarized waves (S-polarized light and P-polarized light) whose polarization planes are orthogonal to each other. The polarization beam splitter 11 has a property of transmitting a P-polarized wave in incident light and reflecting an S-polarized wave, and basically has little loss here. The P-polarized wave emitted from the polarization beam splitter 11 is reflected by the total reflection mirror 12 and is incident on the liquid crystal panel 14 as a P-polarized wave. On the other hand, the S-polarized wave emitted from the polarization beam splitter 11 is reflected by the total reflection mirror 13 and enters the liquid crystal panel 15 as an S-polarized wave.

【0009】液晶パネル14及び偏光板16と入射偏光
波(この場合はP偏光波)との関係は、図4に示すもの
となる。図において、14a,14cはガラス板、14
bは液晶であり、液晶14bの入射側の配向方向は入射
光の偏光方向と一致し、出射側に向って徐々にねじれて
ゆき、出射側の配向方向が入射側に対してπ/2(rad
)ねじれた構造とする。又、出射側の配向方向と偏光
板16の偏光方向とが一致するように配置する。従っ
て、P偏光波が入射した場合、電界オフ時には図4
(a)に示すようにS偏光波として透過し、電界オン時
には図4(b)に示すように遮断される。同様にして、
S偏光波が液晶パネル15及び偏光板17を通過した場
合には、透過光がP偏光波となる。このため、映像信号
によって電界を制御することにより、液晶パネル14及
び偏光板16からなる第1の光学変調系と液晶パネル1
5及び偏光板17からなる第2の光学変調系とにおいて
光学的変調が行なわれる。
The relationship between the liquid crystal panel 14 and the polarizer 16 and the incident polarized wave (in this case, the P-polarized wave) is as shown in FIG. In the figure, reference numerals 14a and 14c denote glass plates;
b is a liquid crystal, the orientation direction of the incident side of the liquid crystal 14b coincides with the polarization direction of the incident light, gradually twists toward the emission side, and the orientation direction on the emission side is π / 2 ( rad
) The structure shall be twisted. In addition, they are arranged so that the alignment direction on the emission side and the polarization direction of the polarizing plate 16 match. Therefore, when the P-polarized wave is incident, and when the electric field is turned off, FIG.
As shown in FIG. 4A, the light is transmitted as an S-polarized wave, and is cut off as shown in FIG. Similarly,
When the S-polarized wave passes through the liquid crystal panel 15 and the polarizing plate 17, the transmitted light becomes a P-polarized wave. Therefore, by controlling the electric field by the video signal, the first optical modulation system including the liquid crystal panel 14 and the polarizing plate 16 and the liquid crystal panel 1 are controlled.
5 and a second optical modulation system including the polarizing plate 17 perform optical modulation.

【0010】第1の光学的変調系からのS偏光波と第2
の光学的変調系からのP偏光波は偏光ビームスプリッタ
18に入射され、P偏光波は透過するとともにS偏光波
は反射され、第1及び第2の光学変調系からの光が合成
され、投影レンズ19により拡大投影される。
The S-polarized wave from the first optical modulation system and the second
Is input to the polarization beam splitter 18, the P-polarized wave is transmitted, and the S-polarized wave is reflected, and the light from the first and second optical modulation systems is combined and projected. The image is enlarged and projected by the lens 19.

【0011】上記した従来装置において、偏光ビームス
プリッタ11,18により光源からの光を一度P,Sの
偏光波に分離し、その後合成しているのは、光の利用効
率の向上を図るためである。即ち、光源10からの光を
直接光学的変調系で変調する場合には、液晶パネル1
4,15の入射側にも偏光板を配置しなければならず、
この結果片側の偏光波が捨てられるので光の利用率が5
0%に落ち、しかも偏光板の耐熱性の問題により輝度を
上げることが困難となるからである。
In the above-mentioned conventional apparatus, the light from the light source is once separated into P and S polarized waves by the polarization beam splitters 11 and 18 and then combined to improve the light use efficiency. is there. That is, when the light from the light source 10 is directly modulated by the optical modulation system, the liquid crystal panel 1
Polarizers must also be placed on the entrance sides of 4, 15
As a result, since the polarized wave on one side is discarded, the light utilization rate is 5%.
This is because it is difficult to increase the luminance due to the problem of heat resistance of the polarizing plate.

【0012】[0012]

【発明が解決しようとする課題】従来の単一偏光波化装
置は上記のように構成されており、光路として必要な空
間体積が大きく、使用する光学部品が多いために、装置
全体の体積、重量、コストが大きくなった。又、合成用
プリズム6,7によって光軸を傾斜させて合成するため
に、合成された偏光波の光軸が完全には一致しないとい
う課題があった。
The conventional single-polarization wave-forming device is constructed as described above, and requires a large space volume as an optical path and uses a large number of optical components. Weight and cost increased. In addition, since the optical axes are inclined by the combining prisms 6 and 7 for combining, there is a problem that the optical axes of the combined polarized waves do not completely match.

【0013】又、従来の液晶ビデオプロジェクタ装置は
以上のように構成されており、光源光を直接変調する場
合に比べて光の利用率は倍になったが、光路として必要
な空間体積が増加し、かつ偏光ビームスプリッタ11,
18等の光学部品の使用により重量及びコストが増大し
た。
Further, the conventional liquid crystal video projector apparatus is configured as described above. Although the light utilization rate is doubled as compared with the case where the light from the light source is directly modulated, the space volume required as an optical path increases. And the polarizing beam splitter 11,
The use of optical components such as 18, increased weight and cost.

【0014】この発明は上記のような課題を解決するた
めになされたものであり、従来の光の利用率を確保しつ
つ、光路体積、重量、コストを減少させることができ、
かつ出射する偏光波の光軸を単一方向にすることができ
る単一偏光波化装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can reduce the volume, weight, and cost of an optical path while securing the conventional light utilization rate.
It is another object of the present invention to obtain a single polarized wave converting device that can make the optical axis of the emitted polarized wave in a single direction.

【0015】又、この発明は従来同様の光の利用率を確
保しつつ光路体積、重量、コストを減少させることがで
き、かつ投影画像の周辺光量差を改善することができる
液晶ビデオプロジェクタ装置を得ることを目的とする。
Further, the present invention provides a liquid crystal video projector capable of reducing the optical path volume, weight, and cost while maintaining the same light utilization rate as the conventional one, and improving the peripheral light amount difference of the projected image. The purpose is to gain.

【0016】[0016]

【課題を解決するための手段】この発明に係る単一偏光
波化装置は、境界面に偏光層と鏡面を形成した4個のプ
リズムの立方体状結合体における光入出射面を除く4側
面に全反射ミラーを取付けたものである。又、この発明
に係る単一偏光波化装置は、上記全反射ミラーに代っ
て、同じ位置関係で鏡面を有するプリズムを取付けたも
のである。
According to the present invention, there is provided a single-polarization wave-forming apparatus comprising four prisms each having a polarizing layer and a mirror surface formed on a boundary surface and having four light-exit surfaces except a light input / output surface. A total reflection mirror is attached. Further, the single polarized wave converting device according to the present invention is such that a prism having a mirror surface is attached in the same positional relationship instead of the total reflection mirror.

【0017】さらに、この発明に係る液晶ビデオプロジ
ェクタ装置は、光源からの光を単一の偏光波とする上記
単一偏光波化装置と、その出射光を映像信号により光学
変調する液晶パネルと、液晶パネルによる画像を拡大投
影する投影レンズを設けたものである。
Further, the liquid crystal video projector device according to the present invention comprises the above-mentioned single polarization wave converting device for converting light from a light source into a single polarized wave, a liquid crystal panel for optically modulating the emitted light by a video signal, A projection lens for enlarging and projecting an image formed by a liquid crystal panel is provided.

【0018】[0018]

【作用】この発明においては、入射光のうちのP偏光波
は偏光層を透過し、S偏光波は偏光層で反射され、さら
に立方体状プリズム結合体内外の鏡面で反射され、偏光
方向がπ/2rad 回転してP偏光波として出射される。
According to the present invention, the P-polarized wave of the incident light is transmitted through the polarizing layer, the S-polarized wave is reflected by the polarizing layer, and further reflected by mirror surfaces inside and outside the cubic prism combination, and the polarization direction is π. / 2 rad, and is emitted as a P-polarized wave.

【0019】又、この発明においては、光源からの光は
単一の偏光波とされた後光学変調されて拡大投影され
る。
In the present invention, the light from the light source is converted into a single polarized wave, optically modulated, and enlarged and projected.

【0020】[0020]

【実施例】【Example】

実施例1 以下、この発明の実施例を図面とともに説明する。図1
はこの実施例による単一偏光波化装置の構成を示し、2
0〜23はプリズム、24〜29は全反射ミラーであ
る。プリズム20〜23の結合体は立方体を形成してお
り、その辺長をRとする。又、プリズム20,21の結
合体、及びプリズム22,23の結合体はそれぞれ直角
二等辺三角形を底面とし、高さが底面の直角を挟む辺の
長さに等しい三角柱状となっており、共にそれぞれの境
界面に偏光層30,31を形成している。この様子を図
5に示す。即ち、底面の直角を挟む一つの辺とこの辺と
接する面上にない角により形成される平面に偏光層3
0,31を形成する。偏光層30,31は入射光軸に対
してπ/4rad の傾斜を持ち、S偏光波は入射光軸に対
して直角方向に反射される。さらに、三角柱状プリズム
結合体20,21及び22,23の斜面同志を結合して
立方体状とし、プリズム20,22が接する部分に両方
向に全反射の鏡面32を形成する。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG.
Shows the configuration of a single polarization wave converting device according to this embodiment,
Reference numerals 0 to 23 are prisms, and reference numerals 24 to 29 are total reflection mirrors. The combined body of the prisms 20 to 23 forms a cube, and its side length is R. Further, the combined body of the prisms 20 and 21 and the combined body of the prisms 22 and 23 each have a right-angled isosceles triangle as a bottom surface, and have a triangular prism shape whose height is equal to the length of a side sandwiching the right angle of the bottom surface. Polarizing layers 30 and 31 are formed on each boundary surface. This is shown in FIG. That is, the polarizing layer 3 is formed on a plane formed by one side sandwiching the right angle of the bottom surface and a corner not on the surface in contact with this side.
0, 31 are formed. The polarizing layers 30 and 31 have an inclination of π / 4 rad with respect to the incident optical axis, and the S-polarized wave is reflected in a direction perpendicular to the incident optical axis. Further, the inclined surfaces of the triangular prism-shaped prism combination bodies 20, 21 and 22, 23 are combined to form a cubic shape, and a mirror surface 32 of total reflection is formed in a portion where the prisms 20, 22 contact each other in both directions.

【0021】上記した立方体状プリズム結合体20〜2
3の6面のうちの2つの偏光層30,31と辺で接する
面を光入射面とするとともに、各偏光層30,31と点
で接する面を光出射面とする。又、他の4面のうちの偏
光層30,31が対角方向に横断する2面にそれぞれ図
6に示すように、光入射面と接する辺を底辺(長さR)
とし高さが√2R/2の第1の二等辺三角形状全反射ミ
ラー24,27を鏡面を内面としてπ/4rad の傾斜で
取付ける。又、残りの2面にはそれぞれ一対の三角柱状
プリズム20,21及び22,23が接する辺を底辺と
して第1の二等辺三角形状全反射ミラーと同様の関係で
第2の二等辺三角形状全反射ミラー25,28を取付け
るとともに、その対角線を底辺(長さ√2R)として高
さがR/2の第3の二等辺三角形状全反射ミラー26,
29をその鏡面を光出射面側に向けてπ/4rad の傾斜
で取付け、かつ第2及び第3の二等辺三角形状全反射ミ
ラー25,28,26,29の光入射面側斜辺を重ね
る。
The above cubic prism combination bodies 20-2
Out of the six surfaces 3, the surface in contact with the two polarizing layers 30, 31 at the sides is defined as a light incident surface, and the surface in contact with each of the polarizing layers 30, 31 at a point is defined as a light emitting surface. As shown in FIG. 6, the two sides of the other four planes where the polarizing layers 30 and 31 traverse in the diagonal direction each have a base (length R) that is in contact with the light incident plane.
Then, first isosceles triangular total reflection mirrors 24 and 27 having a height of √2R / 2 are attached at an inclination of π / 4 rad with the mirror surfaces as inner surfaces. On the other two surfaces, a second isosceles triangular-shaped total reflection mirror is formed on the same side as the first isosceles triangular-shaped total reflection mirror, with the side where the pair of triangular prism-shaped prisms 20, 21 and 22, 23 contacts each other as the base. Reflection mirrors 25 and 28 are attached, and the third isosceles triangular total reflection mirror 26 having a height of R / 2 with the diagonal line being the base (length 長 2R).
29 is attached with its mirror surface facing the light emitting surface at an inclination of π / 4 rad, and the oblique sides of the second and third isosceles triangular total reflection mirrors 25, 28, 26, 29 on the light incident surface side are overlapped.

【0022】次に、動作について図7、図8を参照して
説明する。33は入射光の区分を示しており、34は出
射光の区分を示している。図9はこれらの区分を入射側
の光軸方向から見た図であり、説明のために各区分にA
〜D、A′〜D′の符号を付している。なお、図7、図
8では図面が煩雑になるのを防止するため、不要な隠れ
た線を省略した。又、説明上、入射光軸と光入射面との
間に互いに直交する軸を想定する。即ち、正方形をした
光入射面(33と等価)の隣接する二辺と平行にx軸方
向、y軸方向を採り、入射光軸をz軸方向とする。
Next, the operation will be described with reference to FIGS. Reference numeral 33 denotes a section of incident light, and reference numeral 34 denotes a section of output light. FIG. 9 is a diagram in which these sections are viewed from the optical axis direction on the incident side.
To D and A 'to D'. In FIGS. 7 and 8, unnecessary hidden lines are omitted in order to prevent the drawings from being complicated. Further, for the sake of description, axes orthogonal to each other are assumed between the incident optical axis and the light incident surface. That is, the x-axis direction and the y-axis direction are taken in parallel with two adjacent sides of the square light incident surface (equivalent to 33), and the incident optical axis is defined as the z-axis direction.

【0023】図7は入射光33の区分Aについての説明
図であり、プリズム20,21の境界面にある偏光層3
0を入射光のうちのP偏光波は透過し、y軸方向を偏光
方向としてそのままz軸方向に出射されて出射光34の
区分Aへ至る。一方、S偏光波は偏光層30においてy
軸方向に反射され、x軸方向を偏光方向として進行し、
続いてプリズム20,22の境界の鏡面32でx軸方向
に反射されてy軸方向を偏光方向として進行し、さらに
全反射ミラー24によりz軸方向に反射されてy軸方向
を偏光方向として出射され、出射光34の区分A′へ至
る。出射光34は2度の鏡面反射により偏光方向がπ/
2rad 回転し、P偏光波となる。又、入射光33の区分
Cについては、装置の対称性より区分Aと全く同様なの
で説明を省略するが、出射光34の区分C,C′にy軸
方向を偏光方向(この例ではP偏光)として出射され
る。
FIG. 7 is an explanatory view of the section A of the incident light 33. The polarizing layer 3 on the boundary between the prisms 20 and 21 is shown in FIG.
At 0, the P-polarized wave of the incident light is transmitted, is emitted in the z-axis direction as it is with the y-axis direction as the polarization direction, and reaches the section A of the emitted light 34. On the other hand, the S-polarized wave
Reflected in the axial direction, travels in the x-axis direction as the polarization direction,
Subsequently, the light is reflected on the mirror surface 32 at the boundary between the prisms 20 and 22 in the x-axis direction and travels with the y-axis direction as the polarization direction, and further reflected on the total reflection mirror 24 in the z-axis direction and emitted with the y-axis direction as the polarization direction. Then, the light reaches the section A 'of the emitted light 34. The outgoing light 34 has a polarization direction of π /
It rotates by 2 rad and becomes a P-polarized wave. The section C of the incident light 33 is completely the same as that of the section A due to the symmetry of the apparatus, and the description thereof is omitted. However, the sections C and C ′ of the outgoing light 34 are polarized in the y-axis direction (P-polarized light in this example). ).

【0024】図8は入射光33の区分Bについての説明
図であり、入射光のうちのP偏光波はプリズム20,2
1の境界面にある偏光層30を透過し、y軸方向を偏光
方向としてそのままz軸方向に出射されて出射光34の
区分Bへ至る。一方、S偏光波は偏光層30においてy
軸方向に反射され、x軸方向を偏光方向として進行し、
プリズム23を透過し、全反射ミラー25によりx軸方
向に反射されてy軸方向を偏光方向として進行し、さら
に全反射ミラー26によりz軸方向に反射されてy軸方
向を偏光方向として出射され、P偏光波として出射光3
4の区分B′へ至る。又、入射光33の区分Dについて
は、装置の対称性より区分Bの場合と全く同様であるの
で説明を省略するが、出射光34の区分D,D′にy軸
方向を偏光方向(この例ではP偏光)として出射され
る。
FIG. 8 is an explanatory diagram of the section B of the incident light 33. The P-polarized wave of the incident light is
1, the light passes through the polarizing layer 30 on the boundary surface of No. 1 and is emitted as it is in the z-axis direction with the y-axis direction as the polarization direction, and reaches the section B of the emitted light 34. On the other hand, the S-polarized wave
Reflected in the axial direction, travels in the x-axis direction as the polarization direction,
The light passes through the prism 23, is reflected in the x-axis direction by the total reflection mirror 25, travels in the y-axis direction as the polarization direction, is further reflected in the z-axis direction by the total reflection mirror 26, and is emitted in the y-axis direction as the polarization direction. Outgoing light 3 as a P-polarized wave
4 to the section B '. The section D of the incident light 33 is completely the same as that of the section B due to the symmetry of the apparatus, and therefore the description is omitted. It is emitted as P-polarized light in the example.

【0025】以上のようにして、あらゆる偏光方向をも
つ平行光束が単一の偏光方向をもつ平行光束に変換され
る。又、出射光束断面積が従来装置と等しいとすると、
r=√2Rの関係が成立する。ただし、このとき出射光
束の光量が従来と等しくなるようにするためには、入射
光束断面積を従来の1/2とし、密度を2倍にすること
は言うまでもない。
As described above, a parallel light beam having any polarization direction is converted into a parallel light beam having a single polarization direction. Also, assuming that the cross section of the emitted light beam is equal to that of the conventional device,
The relationship of r = √2R is established. However, at this time, in order to make the light quantity of the outgoing light beam equal to that in the conventional case, it goes without saying that the cross-sectional area of the incident light beam is set to half of the conventional one and the density is doubled.

【0026】実施例2 上記実施例ではプリズム20〜23の集合体側面に全反
射ミラー24〜29を取付けたが、実施例2としては図
10に示すように、全反射ミラー24〜29に代ってこ
れらと同じ位置関係にある面に鏡面を作成したプリズム
35〜38を取付けており、実施例1と同様の効果を奏
する。
Embodiment 2 In the above embodiment, the total reflection mirrors 24 to 29 are mounted on the side surfaces of the assembly of the prisms 20 to 23. However, in Embodiment 2, as shown in FIG. Therefore, prisms 35 to 38 having mirror surfaces are attached to the surfaces having the same positional relationship as those described above, and the same effects as those of the first embodiment can be obtained.

【0027】なお、上記各実施例では説明上ミラーある
いは鏡面と表現したが、高効率の光学的反射面を有する
ものであれば置き換え可能である。
In the above embodiments, a mirror or a mirror surface is used for the description. However, any mirror having a highly efficient optical reflecting surface can be used.

【0028】実施例3 図11はこの実施例による液晶ビデオプロジェクタ装置
の構成を示し、39は図1、図5〜図9により説明した
単一偏光波化装置であり、光源10からの光を受け、単
一の偏光波(ここではP偏光波)を出射する。他の構成
は従来と同様である。
Embodiment 3 FIG. 11 shows the configuration of a liquid crystal video projector according to this embodiment. Reference numeral 39 denotes a single polarization wave converting device described with reference to FIGS. And emits a single polarized wave (here, a P-polarized wave). Other configurations are the same as the conventional one.

【0029】次に、動作について説明する。光源10の
光は周辺部に比べて中央部の光量が多い。この様子を光
量差分布により横式的に表わしたのが図12(a)であ
る。単一偏光波化装置39は前述したようにP偏光波を
透過させ、S偏光波を移動させてP偏光波として出射す
る。このとき、S偏光波の光量ピークが出射光量波分布
の隅にくるので、図12(b)に示すように出射光量差
分布は周辺が持上った状態となり、画像を拡大投影した
ときの口径食による周辺光量低下を緩和できる。従っ
て、光源10から出た光は単一偏光波化装置39により
単一偏光波となり、液晶パネル14と偏光板16により
光学的に変調され、投影レンズ19により拡大投影され
る。
Next, the operation will be described. The light from the light source 10 has a larger amount of light at the center than at the periphery. FIG. 12A shows this state in a horizontal manner by the light amount difference distribution. The single polarized wave converter 39 transmits the P-polarized wave as described above, moves the S-polarized wave, and emits it as a P-polarized wave. At this time, since the peak of the light amount of the S-polarized wave comes to a corner of the distribution of the emitted light wave, the distribution of the emitted light difference becomes a state in which the periphery is lifted as shown in FIG. It is possible to alleviate a decrease in peripheral light amount due to vignetting. Accordingly, the light emitted from the light source 10 becomes a single polarized wave by the single polarized wave converting device 39, is optically modulated by the liquid crystal panel 14 and the polarizing plate 16, and is enlarged and projected by the projection lens 19.

【0030】なお、上記実施例においては、カラー表示
については言及してないが、液晶パネル14の画素ごと
に色フィルタを形成した単板カラー液晶パネルを使用す
る方式や、単一偏光波化装置39の出射光を色分離して
複数の白黒液晶パネルにより各色光ごとに光学変調した
後に合成する方式や、光源光を色分離した後に複数の単
一偏光波化装置39と白黒液晶パネルを配し、各色光ご
とに光学変調した後に合成する方式に対しても同様の効
果が得られる。
Although the above embodiment does not refer to color display, it does not mention a single color liquid crystal panel in which a color filter is formed for each pixel of the liquid crystal panel 14 or a single polarization wave conversion device. 39, a method in which the emitted light is color-separated and optically modulated for each color light by a plurality of monochrome liquid crystal panels and then combined, or a plurality of single polarization wave converting devices 39 and a monochrome liquid crystal panel are arranged after the light source light is color-separated. However, the same effect can be obtained for a system in which the light is modulated for each color light and then combined.

【0031】実施例4 実施例3では全反射ミラー24〜29を取付けたが、実
施例4としては図10に示すように全反射ミラー24〜
29に代ってこれらと同じ位置関係にある面に鏡面を作
成したプリズム35〜38を取付けており、実施例3と
同様の効果が得られる。
Fourth Embodiment In the third embodiment, the total reflection mirrors 24 to 29 are mounted. In the fourth embodiment, as shown in FIG.
Instead of 29, prisms 35 to 38 having mirror surfaces are attached to the surfaces having the same positional relationship as those described above, and the same effect as in the third embodiment can be obtained.

【0032】[0032]

【発明の効果】以上のようにこの発明によれば、立方体
状プリズム結合体とその外部に設けた鏡面により形成し
ており、光路体積、重量、コストを低減することができ
るとともに、偏光波の光軸を単一方向とすることができ
る。
As described above, according to the present invention, the light-emitting device is formed by the cubic prism combination and the mirror surface provided outside thereof, so that the optical path volume, weight, and cost can be reduced, and the polarization wave can be reduced. The optical axis can be unidirectional.

【0033】又、この発明によれば、光源光を単一偏光
波化装置を通して単一の偏光波としたので、偏光ビーム
スプリッタ等の光学部品を不要とし、光源光束断面積を
半分にすることができ、光利用率を保ちながら光路空
間、光源体積、重量、コストを低減することができ、か
つ投影画像の周辺光量低下を改善することができる。
Further, according to the present invention, since the light source light is converted into a single polarized wave through the single polarization wave converting device, optical components such as a polarization beam splitter are not required, and the light source light beam cross-sectional area is reduced to half. Thus, the optical path space, the light source volume, the weight, and the cost can be reduced while maintaining the light utilization rate, and the decrease in the peripheral light amount of the projected image can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による単一偏光波化装置の斜視図であ
る。
FIG. 1 is a perspective view of a single polarization wave conversion device according to the present invention.

【図2】従来の単一偏光波化装置の斜視図である。FIG. 2 is a perspective view of a conventional single polarization wave conversion device.

【図3】従来の液晶ビデオプロジェクタ装置の構成図で
ある。
FIG. 3 is a configuration diagram of a conventional liquid crystal video projector device.

【図4】従来の液晶ビデオプロジェクタ装置の動作説明
図である。
FIG. 4 is a diagram illustrating the operation of a conventional liquid crystal video projector device.

【図5】この発明による単一偏光波化装置のプリズム部
の構成説明図である。
FIG. 5 is an explanatory diagram of a configuration of a prism portion of the single polarization wave converting device according to the present invention.

【図6】この発明による単一偏光波化装置のミラー部の
斜視図及び正面図である。
FIG. 6 is a perspective view and a front view of a mirror section of the single polarization wave conversion device according to the present invention.

【図7】この発明による単一偏光波化装置の入射光A領
域についての動作説明図である。
FIG. 7 is a diagram illustrating the operation of the single polarization wave conversion device according to the present invention with respect to the incident light A region.

【図8】この発明による単一偏光波化装置の入射光B領
域についての動作説明図である。
FIG. 8 is a diagram illustrating the operation of the single-polarization wave conversion device according to the present invention with respect to the incident light B region.

【図9】この発明による単一偏光波化装置の入射光及び
出射光の区分図である。
FIG. 9 is a sectional view of incident light and outgoing light of the single polarization wave conversion device according to the present invention.

【図10】この発明の他の実施例による単一偏光波化装
置の斜視図である。
FIG. 10 is a perspective view of a single polarization wave conversion device according to another embodiment of the present invention.

【図11】この発明による液晶ビデオプロジェクタ装置
の構成図である。
FIG. 11 is a configuration diagram of a liquid crystal video projector device according to the present invention.

【図12】この発明による液晶ビデオプロジェクタ装置
の入出射光量差分布図である。
FIG. 12 is a diagram showing the distribution of the difference between the input and output light amounts of the liquid crystal video projector device according to the present invention.

【符号の説明】[Explanation of symbols]

10 光源 14 液晶パネル 19 投影レンズ 20〜23,35〜38 プリズム 24〜29 全反射ミラー 30,31 偏光層 32 鏡面 33 入射光 34 出射光 39 単一偏光波化装置 DESCRIPTION OF SYMBOLS 10 Light source 14 Liquid crystal panel 19 Projection lens 20-23,35-38 Prism 24-29 Total reflection mirror 30,31 Polarization layer 32 Mirror surface 33 Incident light 34 Outgoing light 39 Single polarization wave conversion device

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直角二等辺三角形を底面とし、高さが底
面の直角を挟む辺の長さに等しい三角柱状プリズムにお
ける一方の底面の直角を挟む一つの辺とそれと接する面
上にない角により形成される平面に偏光層を形成し、一
対の三角柱状プリズムの共通な側面同志を結合して立方
体状プリズム結合体を形成するとともに、各三角柱状プ
リズムの偏光層で分離された四面体片同志が接する部分
に全反射鏡面を形成し、立方体状プリズム結合体の6面
のうちの2つの偏光層と辺で接する面を光入射面とする
とともに各偏光層と点で接する面を光出射面としたとき
に、他の4面のうちの偏光層が対角方向に横断する2面
にそれぞれ光入射面と接する辺を底辺とし高さがその√
2/2倍の第1の二等辺三角形状全反射ミラーをその鏡
面を内面としてπ/4rad の傾斜で取付け、残りの2面
にはそれぞれ一対の三角柱状プリズムが接する辺を底辺
として第1の二等辺三角形状全反射ミラーと同様の関係
で第2の二等辺三角形状全反射ミラーを取付けるととも
に、その対角線を底辺とし高さがその√2/4倍の第3
の二等辺三角形状全反射ミラーをその鏡面を光出射面側
に向けて取り付け、かつ第2及び第3の二等辺三角形状
全反射ミラーの光入射面側斜辺を重ねたことを特徴とす
る単一偏光波化装置。
1. A triangular prism having a base of a right-angled isosceles triangle and a height equal to the length of a side sandwiching the right angle of the bottom surface, one side sandwiching the right angle of one bottom surface and an angle not on a surface in contact with the one side. A polarizing layer is formed on the plane to be formed, and a common side surface of a pair of triangular prisms is combined to form a cubic prism combined body, and tetrahedral pieces separated by the polarizing layer of each triangular prism are combined. A total reflection mirror surface is formed at a portion where the two surfaces are in contact with each other, and a surface that is in contact with two polarizing layers on the sides of the six surfaces of the cubic prism combination is a light incident surface, and a surface that is in contact with each polarizing layer at a point is a light emitting surface. , The two surfaces of the other four surfaces that the polarizing layer traverses in the diagonal direction have the sides that are in contact with the light incident surface as bases, and the height is Δ
A 2 / 2-fold first isosceles triangular total reflection mirror is attached with its mirror surface as the inner surface at an inclination of π / 4 rad. A second isosceles triangular total reflection mirror is attached in the same relation as the isosceles triangular total reflection mirror, and a third diagonal line whose base is the base and whose height is.
Characterized in that the isosceles triangular total reflection mirror is mounted with its mirror surface facing the light emitting surface side, and the oblique sides of the second and third isosceles triangular total reflection mirrors on the light incident surface side are overlapped. One polarization wave device.
【請求項2】 立方体状プリズム結合体の光入射面と光
反射面以外の4つの面に上記各全反射ミラーに代って同
じ位置関係で鏡面を有するプリズムを取付けたことを特
徴とする請求項1記載の単一偏光波化装置。
2. A prism having mirror surfaces in the same positional relationship instead of the total reflection mirrors is attached to four surfaces other than the light incident surface and the light reflection surface of the cubic prism combined body. Item 2. A single polarization wave-forming device according to Item 1.
【請求項3】 光源からの光を単一の偏光波とする単一
偏光波化装置と、この単一偏光波化装置からの光を映像
信号により光学変調する液晶パネルと、液晶パネルによ
る画像を拡大投影する投影レンズを備えた液晶ビデオプ
ロジェクタ装置において、単一偏光波化装置は、直角二
等辺三角形を底面とし、高さが底面の直角を挟む一辺の
長さに等しい三角柱状プリズムにおける一方の底面の直
角を挟む一辺とそれに接する面上にない角により形成さ
れる平面に偏光層を形成し、一対の三角柱状プリズムの
共通な側面同志を結合して立方体状プリズム結合体を形
成するとともに、各三角柱状プリズムの偏光層で分離さ
れた四面体片同志が接する部分に全反射鏡面を形成し、
立方体状プリズム結合体の6面のうちの2つの偏光層と
辺で接する面を光入射面とするとともに各偏光層と点で
接する面を光出射面とし、他の4面のうちの偏光層が対
角方向に横断する2面にそれぞれ光入射面と接する辺を
底辺とし高さがその√2/2倍の第1の二等辺三角形状
全反射ミラーをその鏡面を内面としてπ/4rad の傾斜
で取付け、残りの2面にはそれぞれ一対の三角柱状プリ
ズムが接する辺を底辺として第1の二等辺三角形状全反
射ミラーと同様の関係で第2の二等辺三角形状全反射ミ
ラーを取付けるとともに、その対角線を底辺とし高さが
その√2/4倍の第3の二等辺三角形状全反射ミラーを
その鏡面を内面にして取付け、かつ第2及び第3の二等
辺三角形状全反射ミラーの光入射面側斜辺を重ねたこと
を特徴とする液晶ビデオプロジェクタ装置。
3. A single polarization wave converting device that converts light from a light source into a single polarization wave, a liquid crystal panel that optically modulates light from the single polarization wave converting device with a video signal, and an image formed by the liquid crystal panel. In a liquid crystal video projector device equipped with a projection lens for enlarging and projecting, a single polarization wave-forming device has a right-angled isosceles triangle as a base and a height equal to the length of one side sandwiching the right-angle of the bottom. A polarizing layer is formed on a plane formed by one side sandwiching the right angle of the bottom surface of the bottom and a corner not on the surface in contact with it, and the common side surfaces of a pair of triangular prisms are combined to form a cubic prism combined body , Forming a total reflection mirror surface where the tetrahedral pieces separated by the polarizing layer of each triangular prism contact each other,
Of the six faces of the cubic prism assembly, the face that contacts two polarizing layers on the sides is a light incident face, the face that contacts each polarizing layer at a point is a light emitting face, and the polarizing layer of the other four faces is Is a first isosceles triangular total reflection mirror whose sides are in contact with the light incident surface on the two diagonally crossing surfaces and whose height is √ / 2 times the height thereof. The second two isosceles triangular total reflection mirrors are attached to the remaining two surfaces in the same relation as the first isosceles triangular total reflection mirror, with the sides where the pair of triangular prisms contact each other as the bases. A third isosceles triangular total reflection mirror whose diagonal is the base and whose height is √2 / 4 times as large as that of the second surface and the second and third isosceles triangular total reflection mirrors, Liquid crystal display characterized by overlapping oblique sides on the light incident surface side Oh projector apparatus.
【請求項4】 立方体状プリズム結合体の光入射面と光
反射面以外の4つの面に上記各全反射ミラーに代って同
じ位置関係で鏡面を有するプリズムを取付けたことを特
徴とする請求項3記載の液晶ビデオプロジェクタ装置。
4. A prism having mirror surfaces in the same positional relationship instead of each of the total reflection mirrors is attached to four surfaces other than the light incident surface and the light reflection surface of the cubic prism combined body. Item 4. A liquid crystal video projector according to item 3.
JP3178611A 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device Expired - Fee Related JP2849238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178611A JP2849238B2 (en) 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178611A JP2849238B2 (en) 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device

Publications (2)

Publication Number Publication Date
JPH0527201A JPH0527201A (en) 1993-02-05
JP2849238B2 true JP2849238B2 (en) 1999-01-20

Family

ID=16051479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178611A Expired - Fee Related JP2849238B2 (en) 1991-07-19 1991-07-19 Single polarization wave conversion device and liquid crystal video projector device

Country Status (1)

Country Link
JP (1) JP2849238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446570B1 (en) * 1996-08-20 2004-11-16 세이코 엡슨 가부시키가이샤 Optical element, polarized illumination device and projection display device
JP3609715B2 (en) 2000-11-27 2005-01-12 三洋電機株式会社 Color separation / synthesis device and liquid crystal projector using the same

Also Published As

Publication number Publication date
JPH0527201A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
US20070247694A1 (en) Light pipe based projection engine
JP2001092005A (en) Projector for display of electronic picture
JPH09146061A (en) Liquid crystal projection device
TW557402B (en) Optical unit and the projection type projector device using the same
JP3609715B2 (en) Color separation / synthesis device and liquid crystal projector using the same
JP2002182307A (en) Projection type display device
JPH11281930A (en) Projection display device
JP4520943B2 (en) Compound prism and light source unit
JP2849238B2 (en) Single polarization wave conversion device and liquid crystal video projector device
JP2002023110A (en) Projection system using polarizing beam splitter
JP3641291B2 (en) Polarization conversion element and method of using the same
US7350927B2 (en) Image display apparatus
JPH08184930A (en) Projecting device
US20050231811A1 (en) Projector
JP3428004B2 (en) Color separation light emitting device
JP3615869B2 (en) Liquid crystal projector and projection display system using the same
JPH08184801A (en) Polarization direction alignment element and liquid crystal video projector using the same
KR100515447B1 (en) Projecting images
JP2586841B2 (en) Polarization conversion element and image projection device using the same
JP3614002B2 (en) Reflective electro-optical device and projection display device
KR0120405Y1 (en) Image projection apparatus
JP3964494B2 (en) Polarization conversion optical system
JPH0962196A (en) Light source of display device
JP3008407B2 (en) X-shaped prism
JP4687295B2 (en) Optical apparatus and projector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees