JPH05271670A - Temperature control device for crude gas at crude gas cooler exit - Google Patents

Temperature control device for crude gas at crude gas cooler exit

Info

Publication number
JPH05271670A
JPH05271670A JP4100572A JP10057292A JPH05271670A JP H05271670 A JPH05271670 A JP H05271670A JP 4100572 A JP4100572 A JP 4100572A JP 10057292 A JP10057292 A JP 10057292A JP H05271670 A JPH05271670 A JP H05271670A
Authority
JP
Japan
Prior art keywords
crude gas
temperature
gas
cooler
coal gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100572A
Other languages
Japanese (ja)
Inventor
Mutsuo Kato
睦男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4100572A priority Critical patent/JPH05271670A/en
Publication of JPH05271670A publication Critical patent/JPH05271670A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PURPOSE:To improve the thermal efficiency of a composite coal gasification and power generation plant and the desulfurization efficiency of a dry desulfurization apparatus. CONSTITUTION:An economizer 39 is installed in an evaporator 20 installed in the main body 19 of a crude gas cooler 17 through which a coal-gasification gas 8 flows. A temp. control device 42 is connected to a duct 43 connected to a gas exit pipe 24 of the cooler 17. A valve opening command signal 43 is sent from the control device 42 to a three-way valve 41 to control the opening of the valve 41 and to thereby control the amt. of water delivered from the valve 41 to the economizer 39. Thus, the temp. of the gas 8 delivered from the cooler 17 to a dry desulfurization apparatus 26 is controlled to a specified value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粗ガスクーラ出口の粗
ガス温度制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crude gas temperature controller for a crude gas cooler outlet.

【0002】[0002]

【従来の技術】近年、熱効率を向上させるため、石炭ガ
ス化炉で生成された石炭ガス化ガス(粗ガス)によりガ
スタービンを駆動して発電を行うと共に石炭ガス化ガス
により加熱されて生成した蒸気により蒸気タービンを駆
動して発電を行う石炭ガス化複合発電設備が提案されて
いる。
2. Description of the Related Art In recent years, in order to improve thermal efficiency, coal gasification gas (crude gas) generated in a coal gasification furnace is used to drive a gas turbine to generate electric power, and is also heated by the coal gasification gas to be generated. A coal gasification combined cycle power generation facility that drives a steam turbine with steam to generate power has been proposed.

【0003】而して、上記石炭ガス化複合発電設備の概
略のフロー系統は、図3に示されている。
A schematic flow system of the coal gasification combined cycle power generation facility is shown in FIG.

【0004】図中、1は石炭ガス化炉であり、該石炭ガ
ス化炉1は、内部に炉室2を有するガス化炉本体3とガ
ス化炉本体3の上部に設けられたガス化原料投入口4と
ガス化炉本体3の下部に設けられた石炭ガス化ガス送出
口5を備え、ガス化原料投入口4からガス化炉本体3の
炉室2内へ石炭及び水のスラリー6と酸素若しくは空気
7を投入して反応させ、発生した石炭ガス化ガス8を石
炭ガス化ガス送出口5から下方へ送出し得るようになっ
ている。
In the figure, reference numeral 1 is a coal gasification furnace, and the coal gasification furnace 1 has a gasification furnace main body 3 having a furnace chamber 2 inside and a gasification raw material provided above the gasification furnace main body 3. An inlet 4 and a coal gasification gas outlet 5 provided in the lower part of the gasification furnace body 3 are provided, and a slurry 6 of coal and water is introduced from the gasification raw material inlet 4 into the furnace chamber 2 of the gasification furnace body 3. Oxygen or air 7 is introduced and reacted, and the generated coal gasification gas 8 can be delivered downward from the coal gasification gas delivery port 5.

【0005】9は石炭ガス化炉1の直下に設置された第
一段の粗ガスクーラであり、該粗ガスクーラ9は、内部
に空間10を有する円筒状のクーラ本体11とクーラ本
体11内に収納された円筒状の蒸発器12と蒸発器12
の下部に接続された円筒状のシール塔13とを備え、蒸
発器12の側部には蒸発器12内の空間14を通って下
降してきた石炭ガス化ガス8を粗ガスクーラ9から送出
すための石炭ガス化ガス出口管15が接続されている。
又シール塔13は、下端をクーラ本体11内の下部に貯
留したシール水16に挿入されている。
Reference numeral 9 denotes a first-stage crude gas cooler installed directly below the coal gasification furnace 1. The crude gas cooler 9 is housed in a cylindrical cooler body 11 having a space 10 inside and a cooler body 11. Cylindrical evaporator 12 and evaporator 12
And a cylindrical seal tower 13 connected to the lower part of the evaporator 12, and the coal gasification gas 8 descending through the space 14 in the evaporator 12 is delivered to the side of the evaporator 12 from the crude gas cooler 9. The coal gasification gas outlet pipe 15 of is connected.
The lower end of the sealing tower 13 is inserted into the sealing water 16 stored in the lower portion of the cooler body 11.

【0006】17は第一段の粗ガスクーラ9に並置され
た第ニ段の粗ガスクーラであり、該粗ガスクーラ17
は、内部に空間18を有する円筒状のクーラ本体19と
クーラ本体19内に収納された円筒状の蒸発器20とを
備え、蒸発器20の側部には、前記粗ガスクーラ9の石
炭ガス化ガス出口管15からダクト21を介して送られ
てきた石炭ガス化ガス8を蒸発器20内の空間22へ導
入するための石炭ガス化ガス入口管23が接続されてい
る。又クーラ本体19の上端には、蒸発器20内の空間
22を通って上昇してきた石炭ガス化ガス8を外部へ送
出する石炭ガス化ガス出口管24が接続されており、該
石炭ガス化ガス出口管24から送出された石炭ガス化ガ
ス8はダクト25を介して乾式脱硫装置26へ送給し得
るようになっている。
Reference numeral 17 denotes a second-stage crude gas cooler juxtaposed with the first-stage crude gas cooler 9.
Is equipped with a cylindrical cooler body 19 having a space 18 inside and a cylindrical evaporator 20 housed in the cooler body 19, and at the side of the evaporator 20 is a coal gasification of the crude gas cooler 9. A coal gasification gas inlet pipe 23 for introducing the coal gasification gas 8 sent from the gas outlet pipe 15 through the duct 21 into the space 22 in the evaporator 20 is connected. Further, a coal gasification gas outlet pipe 24 for sending out the coal gasification gas 8 that has risen through the space 22 in the evaporator 20 to the outside is connected to the upper end of the cooler body 19, and the coal gasification gas is connected. The coal gasification gas 8 delivered from the outlet pipe 24 can be delivered to the dry desulfurization device 26 via the duct 25.

【0007】27はスチームドラム28から管路29を
介して吸込まれた水45を管路30,31から蒸発器1
2,20へ送給する給水ポンプ、32は凝縮器33から
管路34を介して吸込まれた水46を管路40及び蒸発
器20の空間22内に設置された節炭器39並に管路4
4を介してスチームドラム28へ送給する給水ポンプ、
35,36は蒸発器12,20で発生した蒸気をスチー
ムドラム28へ送給する管路、37はスチームドラム2
8から管路38を介して送給された蒸気により駆動され
る蒸気タービンである。尚節炭器39は、流体の流れ方
向が石炭ガス化ガス8の流れ方向と同様下方から上方と
なるよう、即ち並行流となるように構成されている。
Reference numeral 27 designates the water 45 sucked from the steam drum 28 via the pipeline 29 from the pipelines 30 and 31 to the evaporator 1.
2, a water supply pump 32 for supplying water 46 to the condenser 20, and water 46 sucked from the condenser 33 through the pipe line 34, and a pipe for the economizer 39 installed in the pipe line 40 and the space 22 of the evaporator 20. Road 4
4, a water feed pump that feeds the steam drum 28 via
Numerals 35 and 36 are pipes for feeding the steam generated in the evaporators 12 and 20 to the steam drum 28, and 37 is a steam drum 2
8 is a steam turbine driven by steam fed from a pipe 38. The economizer 39 is configured such that the flow direction of the fluid is from the lower side to the upper side, that is, the parallel flow, as in the flow direction of the coal gasification gas 8.

【0008】上記石炭ガス化複合発電設備においては、
石炭及び水のスラリー6と酸素若しくは空気7が、ガス
化原料投入口4から石炭ガス化炉1の炉室2内に供給さ
れ、反応して石炭ガス化ガス8が発生し、発生した石炭
ガス化ガス8は、炉室2から石炭ガス化ガス送出口5を
経て、粗ガスクーラ9のクーラ本体11内に収納された
蒸発器12の空間14へ導入され、蒸発器12内を流れ
る流体(水及び蒸気)を加熱しつつ空間14を下降し、
石炭ガス化ガス出口管15からクーラ本体11外へ送出
され、ダクト21から粗ガスクーラ17のクーラ本体1
9内に収納された蒸発器20の空間22へ導入され、蒸
発器20内を流れる流体(水及び蒸気)を加熱しつつ空
間22を上昇し、石炭ガス化ガス出口管24からクーラ
本体19外へ送出され、ダクト25を経て乾式脱硫装置
26へ導入され、乾式脱硫装置26で脱硫された上図示
してないガスタービンへ送給されてガスタービンが駆動
され、該ガスタービンを駆動した後の石炭ガス化ガス8
はガスタービン外へ排出される。
In the above coal gasification combined cycle power generation facility,
Coal and water slurry 6 and oxygen or air 7 are supplied from the gasification raw material inlet 4 into the furnace chamber 2 of the coal gasification furnace 1 to react with each other to generate a coal gasification gas 8, and the generated coal gas The gasification gas 8 is introduced into the space 14 of the evaporator 12 housed in the cooler body 11 of the crude gas cooler 9 from the furnace chamber 2 through the coal gasification gas outlet 5, and the fluid (water (And steam) while descending through the space 14,
The cooler body 1 of the crude gas cooler 17 is delivered from the coal gasification gas outlet pipe 15 to the outside of the cooler body 11 and from the duct 21.
9 is introduced into the space 22 of the evaporator 20 housed in the interior of the evaporator 20, and the space 22 is raised while heating the fluid (water and steam) flowing in the evaporator 20, and the space outside the cooler body 19 is discharged from the coal gasification gas outlet pipe 24. To the gas turbine, which is desulfurized by the dry desulfurization device 26 and is fed to a gas turbine (not shown) that has been desulfurized by the dry desulfurization device 26, and the gas turbine is driven. Coal gasification gas 8
Is discharged outside the gas turbine.

【0009】一方、スチームドラム28から管路29を
介して給水ポンプ27へ吸込まれた水45は、該給水ポ
ンプ27から吐出されて管路30,31から蒸発器1
2,20へ送給され、該蒸発器12,20を上昇しつつ
石炭ガス化ガス8により加熱され、蒸気となって管路3
5,36へ送出され、管路35,36からスチームドラ
ム28へ送給され、該スチームドラム28で水を分離さ
れて管路38から蒸気タービン37へ送給され、蒸気タ
ービン37を駆動して後凝縮器33へ送られ、凝縮して
水に戻り、凝縮器33からの水46は管路34を介して
給水ポンプ32へ吸込まれ、給水ポンプ32から吐出さ
れて管路40から節炭器39、管路44を経てスチーム
ドラム28へ送給される。
On the other hand, the water 45 sucked from the steam drum 28 into the water supply pump 27 via the pipe 29 is discharged from the water supply pump 27 and from the pipes 30 and 31 to the evaporator 1.
2, 20 and are heated by the coal gasification gas 8 while rising in the evaporators 12 and 20 to become steam, and the pipeline 3
5 and 36, and is sent to the steam drum 28 from the pipes 35 and 36, water is separated by the steam drum 28 and sent to the steam turbine 37 from the pipe 38, and the steam turbine 37 is driven. The water is sent to the post-condenser 33, condensed and returned to water, and the water 46 from the condenser 33 is sucked into the water supply pump 32 via the pipe 34, discharged from the water supply pump 32, and discharged from the pipe 40 to the economizer. 39, and is sent to the steam drum 28 via the pipe line 44.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述の
如き石炭ガス化複合発電設備においては、設備全体の熱
効率を向上させるため及び乾式脱硫装置26の脱硫効率
を向上させるため、乾式脱硫装置26の入口における石
炭ガス化ガス8の温度を約400℃〜450℃の範囲で
一定に制御する必要があるが、従来は特別な温度制御は
行ってはおらず、従って熱効率や脱硫効率を向上させる
ことができないという問題があった。
However, in the integrated coal gasification combined cycle power generation facility as described above, in order to improve the thermal efficiency of the entire facility and the desulfurization efficiency of the dry desulfurization unit 26, the inlet of the dry desulfurization unit 26 is improved. It is necessary to control the temperature of the coal gasification gas 8 in the range of about 400 ° C. to 450 ° C. to a constant level, but conventionally, no special temperature control has been performed, and therefore thermal efficiency and desulfurization efficiency cannot be improved. There was a problem.

【0011】本発明は、斯かる実情に鑑み、石炭ガス化
複合発電設備の熱効率及び乾式脱硫装置の脱硫効率を向
上させることのできる粗ガスクーラ出口の粗ガス温度制
御装置を提供することを目的としてなしたものである。
In view of the above situation, the present invention has an object to provide a crude gas temperature control device at the outlet of a crude gas cooler capable of improving the thermal efficiency of the integrated coal gasification combined cycle power generation facility and the desulfurization efficiency of the dry desulfurization device. It is what you have done.

【0012】[0012]

【課題を解決するための手段】本発明は、クーラ本体内
に夫々異なる管路から被加熱流体が導入される複数組の
熱交換器が収納され且つクーラ本体内へ導入された粗ガ
スにより前記各熱交換器内の被加熱流体を加熱し得るよ
うにした粗ガスクーラの出口と該粗ガスクーラからの粗
ガスを脱硫する乾式脱硫装置との間に、検出した粗ガス
の温度と設定した粗ガスの温度とから偏差温度を求め、
該偏差温度に対応した弁開度指令信号を出力する温度調
節器を設け、前記複数組の熱交換器のうち何れかの熱交
換器へ被加熱流体を送給する管路に、前記温度調節器か
らの弁開度指令信号により開度を調節される制御弁を設
けたものである。
According to the present invention, a plurality of sets of heat exchangers into which fluid to be heated is introduced from different pipes are housed in a cooler body, and the crude gas introduced into the cooler body is used for the above-mentioned purposes. Between the outlet of the crude gas cooler capable of heating the fluid to be heated in each heat exchanger and the dry desulfurization device for desulfurizing the crude gas from the crude gas cooler, the detected temperature of the crude gas and the set crude gas The deviation temperature is calculated from the temperature of
A temperature controller for outputting a valve opening command signal corresponding to the deviation temperature is provided, and the temperature controller is provided in a pipe line for supplying a fluid to be heated to any one of the plurality of heat exchangers. A control valve whose opening is adjusted by a valve opening command signal from the container is provided.

【0013】[0013]

【作用】クーラ本体内へ導入された粗ガスは、各熱交換
器内の被加熱流体を加熱して粗ガスクーラから乾式脱硫
装置へ送給される。その際、温度調節器においては、粗
ガスの温度が検出されると共に該温度と設定温度との偏
差に対応した弁開度指令信号が制御弁に与えられ、制御
弁の開度が調整される。このため制御弁を通って所定の
熱交換器へ導入される流体の流量が調整され、クーラ本
体から乾式脱硫装置へ送給される粗ガスの温度は所定の
温度に制御される。
The crude gas introduced into the cooler body heats the fluid to be heated in each heat exchanger and is fed from the crude gas cooler to the dry desulfurization device. At that time, in the temperature controller, the temperature of the crude gas is detected, and a valve opening command signal corresponding to the deviation between the temperature and the set temperature is given to the control valve to adjust the opening of the control valve. .. Therefore, the flow rate of the fluid introduced into the predetermined heat exchanger through the control valve is adjusted, and the temperature of the crude gas sent from the cooler body to the dry desulfurization device is controlled to the predetermined temperature.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の一実施例であって、図中、
図1と同一の符号を付した部分は同一のものを表わして
おり、基本的な構成は図3に示す従来のものと同様であ
るが、本実施例の特徴とするところは、図1に示す如
く、乾式脱硫装置26の入口における石炭ガス化ガス8
の温度を一定に制御するために、給水ポンプ32から節
炭器39へ水を送給する管路40の中途部に三方弁41
を接続すると共に、スチームドラム28へ水をバイパス
させるバイパス管路47を三方弁41に接続し、粗ガス
クーラ17の石炭ガス化ガス出口管24と乾式脱硫装置
26を結ぶダクト25の中途部に温度調節器42を接続
し、該温度調節器42により求めた弁開度指令信号43
を三方弁41へ与え得るようにした点にある。
FIG. 1 shows an embodiment of the present invention.
1 are the same as those in FIG. 1, and the basic configuration is the same as the conventional one shown in FIG. 3. However, the feature of the present embodiment is that in FIG. As shown, the coal gasification gas 8 at the inlet of the dry desulfurization device 26
In order to control the temperature of the water at a constant level, a three-way valve 41 is provided in the middle of a pipe 40 that feeds water from the water supply pump 32 to the economizer 39.
And a bypass pipe 47 for bypassing water to the steam drum 28 are connected to the three-way valve 41, and a temperature is provided in the middle of the duct 25 connecting the coal gasification gas outlet pipe 24 of the crude gas cooler 17 and the dry desulfurization device 26. The controller 42 is connected to the valve opening command signal 43 obtained by the temperature controller 42.
Is provided to the three-way valve 41.

【0016】本実施例においては、石炭ガス化炉1で発
生した石炭ガス化ガス8は、粗ガスクーラ9,17にお
いて蒸発器12,20内の流体を加熱すると共に、粗ガ
スクーラ17において節炭器39内の流体を加熱し、石
炭ガス化ガス出口管24からダクト25へ送出され、乾
式脱硫装置26へ送給される。この際、温度調節器42
は、ダクト25を流れる石炭ガス化ガス8の温度を検出
すると共に予め設定された設定温度との偏差温度を求
め、該偏差温度に基づく弁開度指令信号43を三方弁4
1へ与え、弁開度指令信号43に従って三方弁41の開
度が調整される。このため給水ポンプ32により管路4
0を通って送られてきた水46は、三方弁41で二方向
へ分れ、所定流量の水46が管路40から節炭器39へ
送給され、節炭器39で加熱されて管路44からスチー
ムドラム28へ送給される。このため、ダクト25内を
流れる石炭ガス化ガス8は予め設定された温度(約40
0℃〜450℃)に制御され、乾式脱硫装置26へ導入
される。又三方弁41から蒸発器39へ流入しなかった
残りの水46は、三方弁41からバイパス管路47を通
っスチームドラム28へバイパスされる。尚、スチーム
ドラム28から管路29へ流出した水45の流れは、図
3に示す従来の装置の場合と同様であるので、説明は省
略する。
In the present embodiment, the coal gasification gas 8 generated in the coal gasification furnace 1 heats the fluid in the evaporators 12 and 20 in the crude gas coolers 9 and 17, and the coal gas economizer in the crude gas cooler 17. The fluid in 39 is heated, sent out from the coal gasification gas outlet pipe 24 to the duct 25, and sent to the dry desulfurization device 26. At this time, the temperature controller 42
Detects the temperature of the coal gasification gas 8 flowing through the duct 25, obtains a deviation temperature from a preset temperature, and outputs a valve opening command signal 43 based on the deviation temperature to the three-way valve 4
1, and the opening degree of the three-way valve 41 is adjusted according to the valve opening degree command signal 43. Therefore, the water supply pump 32 is used to
The water 46 sent through 0 is divided into two directions by the three-way valve 41, and a predetermined flow rate of water 46 is sent from the pipe 40 to the economizer 39, heated by the economizer 39, and piped. It is fed from the path 44 to the steam drum 28. Therefore, the coal gasification gas 8 flowing in the duct 25 has a preset temperature (about 40
The temperature is controlled to 0 ° C. to 450 ° C. and introduced into the dry desulfurization device 26. The remaining water 46 that did not flow from the three-way valve 41 into the evaporator 39 is bypassed from the three-way valve 41 to the steam drum 28 through the bypass line 47. The flow of the water 45 flowing out from the steam drum 28 to the conduit 29 is the same as in the case of the conventional device shown in FIG.

【0017】図2は、図1の節炭器入口部A及び節炭器
出口部Bにおける水や蒸気の温度と石炭ガス化ガス入口
管部X及び温度調節器接続部Yにおける石炭ガス化ガス
8の温度の関係を表すグラフであり、グラフ中、実線は
全負荷時の又点線は部分負荷時の温度を示し、実線イ、
点線ハは、節炭器39へ導入され送出される水46や蒸
気の温度を示し、実線ロ、点線ニは、石炭ガス化ガス8
の温度を示している。このグラフから、全負荷時には水
の流量Q1を多くし、部分負荷時には水の流量Q2を少な
くすることにより、温度調節器接続部Yにおける石炭ガ
ス化ガス8の温度即ちダクト25を流れて乾式脱硫装置
26へ送給される石炭ガス化ガス8の温度Tを所定の温
度に制御することができる。
FIG. 2 shows the temperature of water and steam at the economizer inlet portion A and the economizer outlet portion B of FIG. 1 and the coal gasification gas at the coal gasification gas inlet pipe portion X and the temperature controller connection portion Y. 8 is a graph showing the relationship of temperature, in which the solid line shows the temperature at full load and the dotted line shows the temperature at partial load.
The dotted line C shows the temperature of the water 46 and steam introduced into the economizer 39 and delivered, and the solid line B and the dotted line D show the coal gasification gas 8
Shows the temperature of. From this graph, by increasing the water flow rate Q 1 at full load and decreasing the water flow rate Q 2 at partial load, the temperature of the coal gasification gas 8 in the temperature controller connection Y, that is, the duct 25, flows. The temperature T of the coal gasification gas 8 fed to the dry desulfurization device 26 can be controlled to a predetermined temperature.

【0018】尚、図1の節炭器39の収熱量は、Q=U
AΔTLMで表される。ここで、Uは節炭器39の熱伝達
率、Aは節炭器39の伝熱面積、ΔTLMは石炭ガス化ガ
ス8の石炭ガス化ガス入口管部Xと温度調節器接続部Y
における温度差と、水46や蒸気の節炭器入口部Aと節
炭器出口部Bにおける温度差の対数平均である。
The heat collection amount of the economizer 39 of FIG. 1 is Q = U
It is represented by AΔT LM . Here, U is the heat transfer coefficient of the economizer 39, A is the heat transfer area of the economizer 39, ΔT LM is the coal gasification gas inlet pipe X of the coal gasification gas 8 and the temperature controller connection Y.
Is a logarithmic average of the temperature difference between the inlet and outlet ports A and B of the economizer and the water 46 or steam.

【0019】尚、本発明の実施例においては、石炭ガス
化ガスと水の流れを対向流とする場合について説明した
が、並行流としても実施できること、粗ガスクーラは2
基設ける場合について説明したが1基以上何基設けても
良いこと、第二段の粗ガスクーラに蒸発器と共に節炭器
を収納する場合について説明したが、第一段の粗ガスク
ーラに蒸発器と共に節炭器を収納するようにしても良い
こと、粗ガスクーラに収納する熱交換器は蒸発器や節炭
器に限るものではないこと、水の流量を調整する弁は三
方弁に限らず種々の弁を使用することができること、そ
の他、本発明の要旨を逸脱しない範囲内において種々変
更を加え得ることは勿論である。
In the embodiment of the present invention, the case where the flows of coal gasification gas and water are made to be the counter flows has been described, but it is also possible to make them to be the parallel flows, and the crude gas cooler is 2
Although the case of providing the base has been described, one or more units may be provided, and the case of storing the economizer together with the evaporator in the second stage crude gas cooler has been described. It may be possible to store a economizer, the heat exchanger to be accommodated in the crude gas cooler is not limited to the evaporator or economizer, and the valve for adjusting the water flow rate is not limited to the three-way valve. Needless to say, the valve can be used and other various changes can be made without departing from the scope of the present invention.

【0020】[0020]

【発明の効果】以上、説明したように本発明の粗ガスク
ーラ出口の粗ガス温度制御装置によれば、石炭ガス化複
合発電設備の熱効率が向上すると共に乾式脱硫装置にお
ける脱硫効率も向上する、等種々の優れた効果を奏し得
る。
As described above, according to the crude gas temperature control device for the crude gas cooler outlet of the present invention, the thermal efficiency of the integrated coal gasification combined cycle facility is improved and the desulfurization efficiency of the dry desulfurization device is also improved. Various excellent effects can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粗ガスクーラ出口の粗ガス温度制御装
置が適用される石炭ガス化複合発電設備の一実施例のフ
ロー系統図である。
FIG. 1 is a flow system diagram of one embodiment of an integrated coal gasification combined cycle power generation facility to which a crude gas temperature control device at a crude gas cooler outlet of the present invention is applied.

【図2】本発明の粗ガスクーラ出口の粗ガス温度制御装
置により石炭ガス化ガスの温度を制御した場合の石炭ガ
ス化ガスの温度と水や蒸気の温度との関係を表すグラフ
である。
FIG. 2 is a graph showing the relationship between the temperature of coal gasification gas and the temperature of water or steam when the temperature of coal gasification gas is controlled by the crude gas temperature control device at the crude gas cooler outlet of the present invention.

【図3】通常の石炭ガス化複合発電設備のフロー系統図
である。
FIG. 3 is a flow system diagram of an ordinary integrated coal gasification combined cycle facility.

【符号の説明】[Explanation of symbols]

8 石炭ガス化ガス(粗ガス) 17 粗ガスクーラ 19 クーラ本体 20 蒸発器(熱交換器) 24 石炭ガス化ガス出口管(出口) 26 乾式脱硫装置 31 管路 39 節炭器 40 管路 41 三方弁(制御弁) 42 温度調節器 43 弁開度指令信号 45 水(被加熱流体) 46 水(被加熱流体) 47 バイパス管路 8 Coal gasification gas (crude gas) 17 Crude gas cooler 19 Cooler body 20 Evaporator (heat exchanger) 24 Coal gasification gas outlet pipe (outlet) 26 Dry desulfurization equipment 31 Pipeline 39 Coal saver 40 Pipeline 41 Three-way valve (Control valve) 42 Temperature controller 43 Valve opening command signal 45 Water (fluid to be heated) 46 Water (fluid to be heated) 47 Bypass pipeline

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クーラ本体内に夫々異なる管路から被加
熱流体が導入される複数組の熱交換器が収納され且つク
ーラ本体内へ導入された粗ガスにより前記各熱交換器内
の被加熱流体を加熱し得るようにした粗ガスクーラの出
口と該粗ガスクーラからの粗ガスを脱硫する乾式脱硫装
置との間に、検出した粗ガスの温度と設定した粗ガスの
温度とから偏差温度を求め、該偏差温度に対応した弁開
度指令信号を出力する温度調節器を設け、前記複数組の
熱交換器のうち何れかの熱交換器へ被加熱流体を送給す
る管路に、前記温度調節器からの弁開度指令信号により
開度を調節される制御弁を設けたことを特徴とする粗ガ
スクーラ出口の粗ガス温度制御装置。
1. A plurality of sets of heat exchangers, into which fluids to be heated are introduced from different pipes, are housed in the cooler body, and heated in each of the heat exchangers by the crude gas introduced into the cooler body. Between the outlet of the crude gas cooler capable of heating the fluid and the dry desulfurization device for desulfurizing the crude gas from the crude gas cooler, the deviation temperature is obtained from the detected temperature of the crude gas and the temperature of the set crude gas. , A temperature controller that outputs a valve opening command signal corresponding to the deviation temperature is provided, and the temperature is provided in a conduit for supplying a fluid to be heated to any one of the plurality of heat exchangers. A crude gas temperature control device at a crude gas cooler outlet, comprising a control valve whose opening is adjusted by a valve opening command signal from a regulator.
JP4100572A 1992-03-26 1992-03-26 Temperature control device for crude gas at crude gas cooler exit Pending JPH05271670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100572A JPH05271670A (en) 1992-03-26 1992-03-26 Temperature control device for crude gas at crude gas cooler exit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100572A JPH05271670A (en) 1992-03-26 1992-03-26 Temperature control device for crude gas at crude gas cooler exit

Publications (1)

Publication Number Publication Date
JPH05271670A true JPH05271670A (en) 1993-10-19

Family

ID=14277623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100572A Pending JPH05271670A (en) 1992-03-26 1992-03-26 Temperature control device for crude gas at crude gas cooler exit

Country Status (1)

Country Link
JP (1) JPH05271670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263475A (en) * 2006-03-29 2007-10-11 Ihi Corp Gas cooler
JP2019019205A (en) * 2017-07-14 2019-02-07 三菱日立パワーシステムズ株式会社 Gasification furnace installation and gasification combined power generating installation using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263475A (en) * 2006-03-29 2007-10-11 Ihi Corp Gas cooler
JP2019019205A (en) * 2017-07-14 2019-02-07 三菱日立パワーシステムズ株式会社 Gasification furnace installation and gasification combined power generating installation using the same

Similar Documents

Publication Publication Date Title
US5085271A (en) Heat accumulation system and method of operating the same
CN103038584A (en) Air conditioning device
JPH03170701A (en) Once-through boiler
JP6913044B2 (en) Compressed air storage power generator
US5573058A (en) Air-conditioning installation for room spaces
JP5141101B2 (en) Steam generation system
US4136643A (en) Waste heat steam generator
CN103608548A (en) Rankine cycle
GB2099558A (en) Heat recovery steam generator
US4055299A (en) Energy source for large heating systems
CN206439808U (en) A kind of direct current cooker starts recovery system
CN103842624A (en) Gasification reactor
US4226364A (en) Single conduit air conditioning system
JPH05271670A (en) Temperature control device for crude gas at crude gas cooler exit
US4279574A (en) Energy recovery system
CN114653321A (en) Temperature control system utilizing primary energy for heat exchange
CN1214440A (en) Double effect absorption cold or hot water generating machine
EP0443620A2 (en) Heat pump
JPS628606B2 (en)
LU101051B1 (en) Compact and portable air conditioner
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JPS63275897A (en) Low temperature utilizing method for liquified natural gas
US3212476A (en) Method of and apparatus for cooling industrial furnace installations
EP4086534A1 (en) System for storing thermal energy and method for operating the system
JP2001165398A (en) Method of preventing blocking-up of piping in hydrate generation plant and device thereof