JPH0527122B2 - - Google Patents

Info

Publication number
JPH0527122B2
JPH0527122B2 JP59149298A JP14929884A JPH0527122B2 JP H0527122 B2 JPH0527122 B2 JP H0527122B2 JP 59149298 A JP59149298 A JP 59149298A JP 14929884 A JP14929884 A JP 14929884A JP H0527122 B2 JPH0527122 B2 JP H0527122B2
Authority
JP
Japan
Prior art keywords
signal
furnace
temperature
heat treatment
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59149298A
Other languages
Japanese (ja)
Other versions
JPS6129903A (en
Inventor
Shigeru Nakano
Toshihiko Shibata
Kazuo Hiroi
Kojiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Corp
Original Assignee
Toshiba Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Steel Corp filed Critical Toshiba Corp
Priority to JP14929884A priority Critical patent/JPS6129903A/en
Publication of JPS6129903A publication Critical patent/JPS6129903A/en
Publication of JPH0527122B2 publication Critical patent/JPH0527122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、例えば連続熱処理炉等の材料通炉容
量の変化に対応して出側材料温度の制御性を改善
する熱処理炉の走行材料温度制御装置に関する。 〔発明の技術的背景〕 金属工業分野で使用される熱処理炉において
は、加熱炉または冷却炉の出側材料温度を均一に
保つことが製品の品質を高める上で不可欠な要件
である。ところで、この種の連続熱処理炉の出側
材料温度制御においては、材料の通炉速度、材料
の幅および厚さによつて決定される通炉容量(稀
に材質も関係有り)が一定であれば、フイードバ
ツク制御系を用いるだけでも、ある程度均一な出
側材料温度を得ることが可能である。しかし、近
年、この分野では製品の多様化が進んでおり、連
続処理炉においても、材料の幅および厚さの異な
るものをつなぎ合せて連続的に通炉する場合が多
くなり、またそれに伴なう通炉容量に見合う材料
速度の変更も多くなつてきており、フイードバツ
ク制御系だけでは均一な出側材料温度を得ること
ができなくなつている。 第1図は、従来技術である連続熱処理炉の出側
材料温度制御装置のブロツク構成図であり、ここ
では特に鋼板加熱炉の場合について示している。
即ち、鋼板1は加熱炉2内に配置された複数のロ
ール3,…を経て連続的に走行され、その走行途
中においてバーナ等の加熱部4によつて熱処理を
受けた後、炉出口側より出力される。熱処理され
た鋼板1の温度は、炉内出側近傍に設置された温
度検出器5によつて検出され、温度調節計6に送
られる。この温度調節計6は検出温度と設定温度
SVとを比較調節演算して温度調節出力信号を得
た後、加算部7へ供給している。 一方、この装置には予め鋼板1の板幅信号Wと
板厚信号tとが供給されており、この両信号W,
tは乗算部8によつて乗算された後、切替回路9
を経てメモリ部10へ送られる。切替回路9は、
材料変化部検出器11から鋼管1の変化部イが通
過した旨の信号を受けるとオンし乗算部8からの
乗算出力をメモリ部10へ格納する。このメモリ
部10に格納された信号(W×t)は鋼板1の通
炉速度検出器12からの通炉速度信号vおよび係
数Kとともに乗算部13に入力され、ここで各信
号W,t,v,Kの乗算が行なわれる。さらに、
この乗算部13によつて得られた乗算信号はフイ
ードフオワードモデル14を経由して外乱補償信
号として取出された後、前記加算部7に供給す
る。この加算部7は、外乱補償信号と温度調節計
6からの温度調節出力信号とを加算演算し、この
加算値をもつて燃焼制御系の設定信号とし、燃料
流量調節計15と比率設定部16による比率演算
を行なつて空気流量調節計17にそれぞれ供給し
ている。これらの調節計15,17は設定信号と
各流量検出器18,19によつて検出された燃料
流量、空気流量とを比較し、各偏差がそれぞれ零
となるように燃料流量調節弁20および空気流量
調節弁21の開度を制御することにより、加熱部
4へ所望量の燃料および空気を供給し、炉出側の
鋼板温度を所定の温度となるように制御してい
る。 〔背景技術の問題点〕 ところで、連続熱処理炉の材料通炉速度、材料
の幅、材料の厚さで決まる材料の通炉容量の変動
は、炉出側材料温度制御の外乱として現われ、出
側材料温度を大きく変動させるため、材料の品質
に大きな影響を与えていた。しかも、ライン速度
が高速化すればするほど、温度変化の品質に与え
る影響が益々拡大してくる。このため、材料の通
炉容量が変動したときには出側材料温度の変動は
できるだけ小さく抑える必要がある。つまり、
過渡的な変動を限界近くまで小さくすること、
各通炉容量帯(負荷帯)における制御の安定性を
図ることが必要である。 しかし、従来の装置では、特定の1点の通炉容
量の場合だけ上記2つの要件を満足し、他の通炉
容量の場合には上記要件は満足しない。即ち、従
来装置はフイードフオワードを組合せながらフイ
ードバツク制御系のゲイン修正を全く行なつてい
ないので、調整によつて得た通炉容量の特定点の
1点ではよいが、通炉容量が増減したときには増
減分だけ最適点からずれてしまい、過渡制御特性
および各負荷帯の制御性も低下するという致命的
な欠陥がある。今後、ラインスピードの高速化、
板幅および板厚の多様化が進む傾向にあり、その
過渡制御特性等が益々悪化し、その十分な対策に
苦慮していた。 〔発明の目的〕 本発明は以上のような点に着目してなされたも
ので、材料の通炉容量の変化に対応してフイード
フオワード制御系の制御量を最適な値に変更し、
よつて過渡制御特性を改善し、フイードバツク制
御系のゲインを適切な値に補正する熱処理炉の走
行材料温度制御装置を提供することにある。 〔発明の概要〕 この発明は、熱処理炉内を走行する材料に対し
てフイードバツク制御系を用いて熱処理を行な
い、炉出側の材料温度を所定温度に制御するもの
において、少なくとも材料の通炉速度、材料の幅
および厚さの変化に伴なつて設定入力される材料
の幅および厚さの乗算信号を材料変化部検出タイ
ミングによつて取込むとともに、この取込んだ信
号に材料の通炉速度を掛け合せて前記フイードバ
ツク制御系のゲイン補正用外乱補償信号を求めて
1次温度調節計の温度調節出力信号に乗算してゲ
イン補正を行う一方、またこの外乱補償信号に、
設定温度から炉入側材料温度を減算した信号を乗
算し、得られた信号をフイードフオワードモデル
を通して静・動特性補償信号を得、これをフイー
ドバツク制御系の2次調節計の設定信号算出のた
めに使用する熱処理炉の走行材料温度制御装置で
ある。 〔発明の実施例〕 第2図は本発明の基本的な構成を示す図であ
る。同図は第1図と同様に鋼板加熱炉に適用した
具体例であつて、板幅および板厚のうち何れか1
つまたは両方を異にする変化部イを持つた材料例
えば鋼板31が加熱炉32の炉入口近傍に差しか
かつた状態を示している。この鋼板31の先端側
つまり小さい板幅および厚さを有する鋼板先端側
は、図示する如く加熱炉32内部に配置された複
数のロール33,…を経由して例えば蛇行状に走
行され、その走行途中において加熱部34にて熱
処理された後、炉出口側より出力せられるように
なつている。35は炉入口側近傍に設置された鋼
板31の板幅、板厚等の変化部イの通過を検出す
る変化部検出器、36は例えば炉内入口近傍に設
置される回転体例えばロール33に設けられ、鋼
板31の通炉速度検出器、37は炉内出口近傍に
設置された鋼板31の温度を検出する温度検出器
である。 この変化部検出器35は、鋼板31の変化部イ
を検出するとフイードフオワード制御系の制御量
変更タイミング信号として切替回路38へ導入し
てオン制御する。このフイードフオワード制御系
は、鋼板31の変化に伴なつて設定入力される鋼
板31の板幅信号Wと板厚信号tとを乗算する乗
算部39と、切替回路38のオン時に乗算部39
からの乗算信号を記憶するメモリ部40と、この
メモリ部40の乗算信号(W×t)、速度検出器
36からの通炉速度および係数Kを乗算してフイ
ードバツク制御系のゲイン補正用外乱補償信号を
得る乗算部41と、この外乱補償信号から静特性
および動特性補償信号を得るフイードフオワード
モデル42とから構成されている。前記フイード
バツク制御系は、設定温度SVと炉内出側温度検
出器37からの検出温度とを比較調節演算によつ
て温度調節出力信号を得る1次調節計としての温
度調節計43と、この調節計43の出力と外乱補
償信号とを乗算してゲイン補正付温度調節出力信
号を取り出すゲイン補正演算部44と、この演算
出力と静特性および動特性補償信号とを加算して
2次調節計の設定信号を得る信号変換部45と、
この設定信号を用いて加熱部34の燃焼制御を行
ない燃焼制御系46とよりなつている。この燃焼
制御系46は、燃料流量検出器461および空気
流量検出器462の各流量信号と信号変換部45
からの設定信号とを2次調節計としての流量調節
計463,464で比較調節演算して流量調節出
力信号を得、これを各調節弁465,466に加
えて加熱部34に供給する燃料量および空気量を
制御する機能をもつている。467は比率設定部
である。 次に、第3図は第2図のフイードフオワードモ
デル42および信号変換部45の詳細図である。
即ち、これらの構成は、前回外乱補償信号と今回
外乱補償信号との差分をもつて静特性補償信号を
得る差分演算部51、加算部52、速度形−位置
形信号変換部53、外乱補償信号から不完全微分
した信号を得る不完全微分部54、方向性を持た
せる折線部55および加算部56よりなつてい
る。 従つて、この第3図の構成においては、乗算部
41からの外乱補償信号Doを差分演算部51に
導入して前回と今回の差分から静特性補償信号を
求め、この補償信号とゲイン補正付温度調節出力
信号とを加算部52で加算し、さらに加算部52
からの速度形信号を後続の位置形信号変換部53
により速度形−位置形信号に変換する。また、外
乱補償信号Doは不完全微分部54に導入され、
ここで不完全微分した信号を取出している。不完
全微分した信号とは零を中心とした信号をいい、
具体的には補償信号Doが一定のときには不完全
微分出力は零、通炉容量の上界時には不完全微分
出力は零よりも大きくなり、下降時には零よりも
小さくなる。このようにして得た不完全微分出力
は折線部55に入力し、ここで折線の設定により
方向性を持たせた信号を作成し、この信号と位置
形信号変換部53の出力とを加算部56にて加算
して燃焼制御系46の設定信号を得ている。 次に、第2図および第3図のような構成を有す
る装置の動作を説明する。即ち、加熱炉32にて
熱処理を行なう鋼板31に幅および厚さの何れか
1つまたは両方につき変化部イがあると、変化部
検出器35はその鋼板31の変化部イを検出して
切替回路38をオン制御する。この切替回路38
がオンすると、鋼板31の変化に伴なつて設定入
力されかつ乗算部39にて乗算された板幅信号W
と板厚信号tとの乗算信号が切替回路38を経て
メモリ部40に格納される。そして、このメモリ
部40に格納された信号(W×t)は速度検出器
36からの通炉速度と係数Kとともに乗算部41
で乗算されて外乱補償信号Doとして取出され、
これがフイードバツク制御系の1次調節計である
温度調節計43の温度調節出力信号にゲイン補正
信号として与えられる。従つて、ゲイン補正演算
部44からはゲイン補正付温度調節出力信号が出
力されることになる。 さらに、乗算部41によつて得られた外乱補償
信号は第3図で具体的に述べるフイードフオワー
ドモデル42および信号変換部45に導入され、
ここで静特性補償信号と動特性補償信号とが求め
られ、さらに速度形信号を位置形信号に変換さ
れ、2次調節計である流量調節計463と464
の設定信号として求められる。従つて、各流量調
節計463,464はそれぞれ燃料検出流量と空
気検出流量とを取り込み、設定信号と比較調節演
算を行なうことによつて最終的な流量調節出力信
号を得、この信号に基づいて各弁465,466
の開度を調節して所望量の燃料および空気を加熱
部34に送り込み、炉出側の材料温度を所定の温
度となるよう熱処理を行なう。 次に、本発明の一実施例について第4図を参照
して説明する。この装置の基本的構成は、第2図
および第3図と同じであるので、ここでは同一部
分には同一符号を付してその詳しい説明は省略
し、以下、特に異なる部分について述べる。即
ち、この装置においては第2図の装置に、炉入側
の鋼板温度を検出する炉入側材料温度検出器61
と、温度調節計43の設定温度から材料温度検出
器61の検出温度を減算する減算部62と、この
減算出力と外乱補償信号とを乗算してフイードフ
オワードモデル42への入力信号を得る乗算部6
3とを新たに設けたものである。 次に、第1および第2の発明に係る装置に関し
て数式を用いて具体的に説明する。今、連続熱処
理炉の材料温度制御系の諸元を下記のように定め
るものとする。
[Technical Field of the Invention] The present invention relates to a running material temperature control device for a heat treatment furnace that improves the controllability of the exit side material temperature in response to changes in the material passing capacity of a continuous heat treatment furnace, for example. [Technical Background of the Invention] In a heat treatment furnace used in the metal industry field, it is essential to maintain a uniform temperature of the material at the exit side of the heating or cooling furnace in order to improve the quality of the product. By the way, in controlling the material temperature at the exit side of this type of continuous heat treatment furnace, the passing capacity determined by the passing speed of the material, the width and thickness of the material (in rare cases, the quality of the material is also involved) is constant. For example, it is possible to obtain a somewhat uniform outlet material temperature simply by using a feedback control system. However, in recent years, products in this field have become more diverse, and in continuous processing furnaces, materials of different widths and thicknesses are often connected and passed through the furnace continuously. There are many changes in the material speed to match the through-furnace capacity, and it is no longer possible to obtain a uniform outlet material temperature using only the feedback control system. FIG. 1 is a block diagram of a conventional conventional continuous heat treatment furnace exit side material temperature control device, and here specifically shows the case of a steel plate heating furnace.
That is, the steel plate 1 is continuously run through a plurality of rolls 3 arranged in a heating furnace 2, and after being heat-treated by a heating section 4 such as a burner during the run, it is heated from the furnace outlet side. Output. The temperature of the heat-treated steel sheet 1 is detected by a temperature detector 5 installed near the exit side of the furnace and sent to a temperature controller 6. This temperature controller 6 has a detection temperature and a set temperature.
After performing a comparison adjustment operation with SV to obtain a temperature adjustment output signal, it is supplied to the addition section 7. On the other hand, the width signal W and the thickness signal t of the steel plate 1 are supplied to this device in advance, and these two signals W,
After t is multiplied by the multiplier 8, the switching circuit 9
The data is sent to the memory section 10 via the. The switching circuit 9 is
When it receives a signal from the material change part detector 11 indicating that the change part A of the steel pipe 1 has passed, it turns on and stores the multiplication output from the multiplication part 8 in the memory part 10. The signal (W×t) stored in the memory unit 10 is inputted to the multiplication unit 13 together with the passing speed signal v from the passing speed detector 12 of the steel plate 1 and the coefficient K, where each signal W, t, Multiplication of v and K is performed. moreover,
The multiplied signal obtained by the multiplier 13 is extracted as a disturbance compensation signal via the feed forward model 14 and then supplied to the adder 7. This adder 7 adds the disturbance compensation signal and the temperature adjustment output signal from the temperature controller 6, uses this added value as a setting signal for the combustion control system, and uses the added value as a setting signal for the fuel flow controller 15 and the ratio setting unit 16. A ratio calculation is performed using the following formula, and each air is supplied to the air flow rate controller 17. These controllers 15 and 17 compare the setting signal with the fuel flow rate and air flow rate detected by each flow rate detector 18 and 19, and adjust the fuel flow rate control valve 20 and air flow rate so that each deviation becomes zero. By controlling the opening degree of the flow control valve 21, desired amounts of fuel and air are supplied to the heating section 4, and the temperature of the steel plate on the exit side of the furnace is controlled to a predetermined temperature. [Problems in the Background Art] By the way, fluctuations in the material passing capacity, which is determined by the material passing speed, material width, and material thickness, of a continuous heat treatment furnace appear as disturbances in the material temperature control on the exit side. This greatly affected the quality of the material because it caused the material temperature to fluctuate greatly. Moreover, as the line speed increases, the influence of temperature changes on quality becomes even greater. For this reason, when the furnace passing capacity of the material changes, it is necessary to suppress the fluctuation in the temperature of the material on the outlet side as small as possible. In other words,
reducing transient fluctuations to near the limit;
It is necessary to ensure control stability in each furnace capacity band (load band). However, in the conventional apparatus, the above two requirements are satisfied only in the case of the furnace passing capacity at one specific point, and the above requirements are not satisfied in the case of other furnace passing capacities. In other words, the conventional equipment does not perform any gain correction of the feedback control system while combining feedback, so although it is sufficient to adjust the specific point of the passing capacity obtained by adjustment, the passing capacity may increase or decrease. When this happens, it deviates from the optimum point by the amount of increase or decrease, and there is a fatal flaw in that the transient control characteristics and controllability in each load band also deteriorate. In the future, line speed will increase,
As plate widths and plate thicknesses tend to become more diverse, their transient control characteristics are becoming increasingly worse, and it has been difficult to find adequate countermeasures. [Object of the Invention] The present invention has been made with attention to the above-mentioned points, and it changes the control amount of the feed forward control system to an optimal value in response to changes in the furnace passing capacity of the material, and
Therefore, it is an object of the present invention to provide a running material temperature control device for a heat treatment furnace that improves transient control characteristics and corrects the gain of a feedback control system to an appropriate value. [Summary of the Invention] The present invention heat-treats a material running in a heat treatment furnace using a feedback control system, and controls the temperature of the material on the exit side of the furnace to a predetermined temperature. , the multiplication signal of the width and thickness of the material, which is set and input as the width and thickness of the material changes, is taken in by the material change part detection timing, and the furnace speed of the material is added to this taken signal. A disturbance compensation signal for gain correction of the feedback control system is obtained by multiplying by
Multiply the signal obtained by subtracting the furnace entry side material temperature from the set temperature, pass the obtained signal through a feed forward model to obtain a static/dynamic characteristic compensation signal, and use this to calculate the setting signal for the secondary controller of the feedback control system. This is a running material temperature control device for heat treatment furnaces used for [Embodiments of the Invention] FIG. 2 is a diagram showing the basic configuration of the present invention. This figure shows a specific example applied to a steel plate heating furnace, similar to Fig. 1, in which either one of the plate width and plate thickness is
A material, for example, a steel plate 31 having one or both of the different changed portions A, is shown approaching the vicinity of the furnace inlet of the heating furnace 32. The tip side of the steel plate 31, that is, the tip side of the steel plate having a small plate width and thickness, is run, for example, in a meandering manner via a plurality of rolls 33, etc. arranged inside a heating furnace 32 as shown in the figure. After being heat-treated in the heating section 34 during the process, it is outputted from the furnace outlet side. Reference numeral 35 denotes a change part detector for detecting the passing of a change part A in plate width, plate thickness, etc. of the steel plate 31 installed near the furnace inlet side, and 36 refers to a rotating body such as the roll 33 installed near the furnace inlet. A furnace passage speed detector 37 for the steel plate 31 is provided, and a temperature detector 37 detects the temperature of the steel plate 31 installed near the outlet in the furnace. When the changing portion detector 35 detects the changing portion A of the steel plate 31, the changing portion detector 35 inputs it to the switching circuit 38 as a control amount change timing signal for the feedforward control system and performs ON control. This feed forward control system includes a multiplier 39 that multiplies the width signal W of the steel plate 31 and the plate thickness signal t, which are set and input as the steel plate 31 changes, and a multiplier when the switching circuit 38 is turned on. 39
A memory section 40 stores the multiplication signal from the memory section 40, and the multiplication signal (W x t) of the memory section 40 is multiplied by the furnace speed and coefficient K from the speed detector 36 to perform disturbance compensation for gain correction of the feedback control system. It consists of a multiplier 41 that obtains a signal, and a feedforward model 42 that obtains a static characteristic and dynamic characteristic compensation signal from this disturbance compensation signal. The feedback control system includes a temperature controller 43 as a primary controller that obtains a temperature adjustment output signal by comparing the set temperature SV and the detected temperature from the furnace outlet temperature detector 37 and performing adjustment calculations; A gain correction calculation unit 44 multiplies the outputs of 43 in total by a disturbance compensation signal to obtain a temperature control output signal with gain correction, and a gain correction calculation unit 44 that multiplies the outputs of 43 in total and a disturbance compensation signal to extract a temperature control output signal with gain correction. a signal converter 45 that obtains a setting signal;
This setting signal is used to control the combustion of the heating section 34, and is comprised of a combustion control system 46. This combustion control system 46 connects each flow rate signal of a fuel flow rate detector 461 and an air flow rate detector 462 to a signal conversion section 45.
The flow rate controllers 463 and 464 as secondary controllers perform comparison adjustment calculations with the setting signal from the controller to obtain a flow rate adjustment output signal, which is added to each control valve 465 and 466 to determine the amount of fuel to be supplied to the heating section 34. It also has the function of controlling the amount of air. 467 is a ratio setting section. Next, FIG. 3 is a detailed diagram of the feedforward model 42 and signal converter 45 of FIG. 2.
That is, these configurations include a difference calculation section 51 that obtains a static characteristic compensation signal by using the difference between the previous disturbance compensation signal and the current disturbance compensation signal, an addition section 52, a velocity type-position type signal conversion section 53, and a disturbance compensation signal. It consists of an incomplete differentiation section 54 that obtains a signal that is incompletely differentiated from the signal, a broken line section 55 that provides directionality, and an addition section 56. Therefore, in the configuration shown in FIG. 3, the disturbance compensation signal D o from the multiplication section 41 is introduced into the difference calculation section 51, a static characteristic compensation signal is obtained from the difference between the previous time and this time, and this compensation signal is combined with the gain correction. The adder 52 adds the temperature control output signal and the adder 52 .
The velocity type signal from the subsequent position type signal converter 53
is converted into a velocity-position signal. Further, the disturbance compensation signal D o is introduced into the incomplete differentiator 54,
Here, the imperfectly differentiated signal is extracted. An incompletely differentiated signal is a signal centered at zero,
Specifically, when the compensation signal D o is constant, the incompletely differentiated output is zero, when the furnace capacity is at its upper limit, the incompletely differentiated output is greater than zero, and when it falls, it is less than zero. The incomplete differential output obtained in this way is input to the broken line section 55, where a signal with directionality is created by setting the broken line, and this signal and the output of the position signal conversion section 53 are added to the addition section. 56, the setting signal for the combustion control system 46 is obtained. Next, the operation of the apparatus having the configuration shown in FIGS. 2 and 3 will be explained. That is, if the steel plate 31 to be heat treated in the heating furnace 32 has a changed part A in either one or both of the width and thickness, the changed part detector 35 detects the changed part A of the steel plate 31 and switches. The circuit 38 is turned on. This switching circuit 38
When turned on, the plate width signal W that is set and input as the steel plate 31 changes and is multiplied by the multiplier 39
A multiplied signal of the thickness signal t and the plate thickness signal t is stored in the memory section 40 via the switching circuit 38. The signal (W×t) stored in the memory unit 40 is sent to the multiplier 41 along with the furnace passing speed and coefficient K from the speed detector 36.
multiplied by and extracted as the disturbance compensation signal D o ,
This is given as a gain correction signal to the temperature control output signal of the temperature controller 43, which is the primary controller of the feedback control system. Therefore, the gain correction calculation section 44 outputs a temperature adjustment output signal with gain correction. Further, the disturbance compensation signal obtained by the multiplication section 41 is introduced into a feedforward model 42 and a signal conversion section 45, which will be specifically described in FIG.
Here, a static characteristic compensation signal and a dynamic characteristic compensation signal are obtained, and the speed type signal is further converted into a position type signal.
is determined as the setting signal. Therefore, each of the flow rate controllers 463 and 464 takes in the detected fuel flow rate and the detected air flow rate, and obtains a final flow rate adjustment output signal by comparing and adjusting the set signal with the detected flow rate, and based on this signal. Each valve 465,466
A desired amount of fuel and air is fed into the heating section 34 by adjusting the opening degree of the opening, and heat treatment is performed so that the temperature of the material on the exit side of the furnace reaches a predetermined temperature. Next, one embodiment of the present invention will be described with reference to FIG. Since the basic configuration of this device is the same as that shown in FIGS. 2 and 3, the same parts are given the same reference numerals and a detailed explanation thereof will be omitted, and the different parts will be described below. That is, in this device, a furnace entry side material temperature detector 61 is added to the device shown in FIG.
, a subtraction unit 62 that subtracts the temperature detected by the material temperature detector 61 from the set temperature of the temperature controller 43, and an input signal to the feed forward model 42 is obtained by multiplying this subtraction output by a disturbance compensation signal. Multiplication section 6
3 has been newly established. Next, the apparatuses according to the first and second inventions will be specifically explained using mathematical formulas. Now, the specifications of the material temperature control system of the continuous heat treatment furnace are determined as follows.

【表】 而して、炉出口側温度T0を所定の値に保つに
は、プロセス要求量すなわち温度調節出力信号
MVとしては、基本的には(1)式をもつて表わせ
る。 MV∝D×W×V×(Ts−Ti+Tc) =K・d・w・v・(ts−ti+tc) ……(1) 但し、Tc(℃)、tc(%)は炉出側材料の温度調
節出力信号、Kは比例定数である。 なお、(1)式は静的関係のみを表わしているの
で、これを動的関係も入れて表わすと、 MV=d・w・v・Gf・(ts−ti+tc) ……(2) =d・w・v・Gf・(ts−ti) +d・w・v・Gf・tc ……(3) となる。Gfはフイードフオワードモデル42を
示す。そこで、(3)式に基づく材料温度制御系の伝
達関数ブロツク線図は第5図をもつて表わすこと
ができる。このブロツク線図において(ts−ti)=
一定の場合には第1の発明に相応し、以下、該発
明に関する作用を数式にて説明する。今、炉出側
材料温度tp、燃料流量ffおよび炉出側材料の温度
調節出力信号tcは、 tp=−d・w・v・(ts−ti)・Gd+ff・Gp ……(4) ff=d・w・v・{(ts−ti)・Gf+tc・Gf
……(5) tc=(ts−tp)・Gc1 ……(6) をもつて表わせる。上式においてGpは炉プロセ
スの燃焼制御系設定信号→炉出側材料温度間伝達
関数、Gdは材料の幅w、厚さd、通炉速度v間
伝達関数、Gc1は温度調節計43の伝達関数であ
る。第5図においてGc2は燃料流量調節計463
の伝達関数、Gc3は空気流量調節計464の伝達
関数である。 従つて、(4)式ないし(6)式から炉出側材料温度tp
は、 tp=1/1+Gf・Gp・d・w・v・Gc1{Gf・Gp・ d・w・v・Gc1・ts+(ts−ti)・d・w・
v・(Gf・Gp−Gd)} ……(7) の式によつて導き出せる。この式から設定温度
ts、炉入側材料温度ti、材料の幅wおよび厚さd、
通炉速度vの何れかが変化した場合でも炉出側材
料温度tpを一定値に保つためには、 (ts−ti)・d・w・v・ (Gf・Gp−Gd)=0 ……(8) が成立すればよいことになる。故に、 Gf=Gd/Gp ……(9) が求まる。ここで、Gf,Gp,Gdは実験的に求め
ることができる。一般的には、無駄時間と時定数
を持つ1次遅れとの複合で表わすことができるの
で、 Gp=Kp/1+Tp・se-Lp
[Table] Therefore, in order to maintain the furnace outlet side temperature T 0 at a predetermined value, the process requirement, that is, the temperature control output signal
MV can basically be expressed using equation (1). MV∝D×W×V×(T s −T i +T c ) =K・d・w・v・(t s −t i +t c )……(1) However, T c (℃), t c (%) is the temperature control output signal of the material on the exit side of the furnace, and K is the proportionality constant. Note that equation (1) expresses only static relationships, so if we include dynamic relationships as well, we get MV=d・w・v・G f・(t s −t i +t c )... (2) = d・w・v・G f・(t s −t i ) +d・w・v・G f・t c ……(3). G f indicates the feed forward model 42. Therefore, the transfer function block diagram of the material temperature control system based on equation (3) can be expressed as shown in FIG. In this block diagram, (t s − t i )=
Certain cases correspond to the first invention, and the effects related to the invention will be explained below using mathematical formulas. Now, the temperature of the material on the exit side of the furnace t p , the fuel flow rate f f and the temperature control output signal t c of the material on the exit side of the furnace are as follows: t p = -d・w・v・(t s −t i )・G d +f f・G p ...(4) f f =d・w・v・{(t s −t i )・G f +t c・G f }
...(5) t c = (t s − t p )・G c1 ...(6) It can be expressed as. In the above equation, G p is the transfer function between the combustion control system setting signal of the furnace process and the temperature of the material on the exit side of the furnace, G d is the transfer function between the material width w, thickness d, and furnace passing speed v, and G c1 is the temperature controller 43 transfer function. In Fig. 5, G c2 is the fuel flow controller 463
G c3 is the transfer function of the air flow controller 464. Therefore, from equations (4) to (6), the temperature of the material on the exit side of the furnace t p
is, t p = 1/1 + G f・G p・d・w・v・G c1 {G f・G p・d・w・v・G c1・t s +(t s −t i )・d・w・
v・(G f・G p −G d )} ... can be derived by the equation (7). From this formula, set temperature
t s , temperature of the material on the furnace entry side t i , width w and thickness d of the material,
In order to keep the furnace exit side material temperature t p at a constant value even if any of the furnace passage speeds v changes, (t s −t i )・d・w・v・(G f・G p −G d )=0...(8) should hold true. Therefore, G f = G d / G p (9) can be found. Here, G f , G p , and G d can be determined experimentally. In general, it can be expressed as a composite of dead time and a first-order delay with a time constant, so G p = K p /1 + T p・se -Lp

Claims (1)

【特許請求の範囲】 1 熱処理炉内を走行する材料に、1次調節計と
しての温度調節計および2次調節計としての燃焼
制御系よりなるフイードバツク制御系を用いて熱
処理を行なうことにより、前記熱処理炉出側の材
料温度を所定の温度に制御する熱処理炉の走行材
料温度制御装置において、 前記炉入側に設置される変化部検出器から発生
する材料の変化部通過検出信号を受けて、少なく
とも前記材料の通炉速度v、材料の幅wおよび厚
さdによつて決定される通炉容量のうち前記材料
の幅および厚さの変化に対応して入力される幅信
号wと厚さ信号dとの乗算信号に材料の通炉速度
vを掛け合せることにより重量流量に比例する信
号w,d,vであるゲイン補正用外乱補償信号を
得る外乱補償信号取得手段と、 この外乱補償信号取得手段によつて得られた重
量流量に比例する信号w,d,vを、炉出側検出
温度と設定温度との差に基づいて1次調節計から
出力される温度調節出力信号に乗算して熱量変化
を伴つたフイードバツク制御出力を得るゲイン補
正演算手段と、 前記外乱補償信号取得手段によつて得られた重
量流量に比例する信号w,d,vに、前記設定温
度tsと炉入側材料の検出温度tiの差の信号ts−ti
乗算して熱量に比例する信号{w,d,v,ts
ti}を乗算し、これをフイードフオワードモデル
に入れてフイードフオワードの特性補償信号を得
る手段と、 この手段によつて得られたフイードフオワード
の特性補償信号と前記フイードバツク制御出力と
を用いて前記2次調節計の設定信号を得る手段と を備えたことを特徴とする熱処理炉の走行材料温
度制御装置。
[Scope of Claims] 1. By performing heat treatment on the material traveling in the heat treatment furnace using a feedback control system consisting of a temperature controller as a primary controller and a combustion control system as a secondary controller, In a running material temperature control device for a heat treatment furnace that controls the temperature of the material on the exit side of the heat treatment furnace to a predetermined temperature, upon receiving a detection signal for passing the material through a changing portion generated from a changing portion detector installed on the furnace entry side, Width signal w and thickness input corresponding to changes in the width and thickness of the material among the furnace passing capacity determined by at least the furnace passing speed v of the material, the width w and the thickness d of the material Disturbance compensation signal acquisition means for obtaining a gain correction disturbance compensation signal which is a signal w, d, v proportional to the weight flow rate by multiplying the signal multiplied by the signal d by the furnace passing speed v of the material; Signals w, d, v proportional to the weight flow rate obtained by the acquisition means are multiplied by the temperature adjustment output signal output from the primary controller based on the difference between the detected temperature on the furnace exit side and the set temperature. a gain correction calculation means for obtaining a feedback control output with a change in calorific value; and signals w, d, v proportional to the weight flow rate obtained by the disturbance compensation signal acquisition means, and A signal proportional to the amount of heat is obtained by multiplying the signal t s − t i of the difference in the detected temperature t i of the side materials {w, d, v, t s
t i } and enters this into a feedforward model to obtain a feedforward characteristic compensation signal; and a feedforward characteristic compensation signal obtained by this means and the feedback control. A running material temperature control device for a heat treatment furnace, comprising means for obtaining a setting signal for the secondary controller using the output.
JP14929884A 1984-07-20 1984-07-20 Material temperature controller of heat processing furnace Granted JPS6129903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14929884A JPS6129903A (en) 1984-07-20 1984-07-20 Material temperature controller of heat processing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14929884A JPS6129903A (en) 1984-07-20 1984-07-20 Material temperature controller of heat processing furnace

Publications (2)

Publication Number Publication Date
JPS6129903A JPS6129903A (en) 1986-02-12
JPH0527122B2 true JPH0527122B2 (en) 1993-04-20

Family

ID=15472103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14929884A Granted JPS6129903A (en) 1984-07-20 1984-07-20 Material temperature controller of heat processing furnace

Country Status (1)

Country Link
JP (1) JPS6129903A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX368253B (en) * 2016-01-28 2019-09-26 Jfe Steel Corp Steel sheet temperature control device and temperature control method.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433813A (en) * 1977-08-22 1979-03-12 Nippon Steel Corp Combustion control device in incandescence furnace
JPS5440711A (en) * 1977-06-30 1979-03-30 Mead Corp Method of composite substance for coating radiationnhardened microcapsule
JPS5765576A (en) * 1980-10-09 1982-04-21 Fuji Electric Co Ltd Temperature control of tunnel kiln
JPS57111702A (en) * 1980-12-29 1982-07-12 Yokogawa Hokushin Electric Corp Process control device
JPS5846403A (en) * 1981-09-14 1983-03-17 Toshiba Corp Feed-forward controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440711A (en) * 1977-06-30 1979-03-30 Mead Corp Method of composite substance for coating radiationnhardened microcapsule
JPS5433813A (en) * 1977-08-22 1979-03-12 Nippon Steel Corp Combustion control device in incandescence furnace
JPS5765576A (en) * 1980-10-09 1982-04-21 Fuji Electric Co Ltd Temperature control of tunnel kiln
JPS57111702A (en) * 1980-12-29 1982-07-12 Yokogawa Hokushin Electric Corp Process control device
JPS5846403A (en) * 1981-09-14 1983-03-17 Toshiba Corp Feed-forward controller

Also Published As

Publication number Publication date
JPS6129903A (en) 1986-02-12

Similar Documents

Publication Publication Date Title
US4507946A (en) Method and system for controlling an interstand tension in a continuous rolling mill
JPH0527122B2 (en)
Edwards Design of entry strip thickness controls for tandem cold mills
JPS6129904A (en) Material temperature controller of thermal processing furnace
JPS6268616A (en) Plate width control method
JP2744404B2 (en) Rolling machine tension control device
Hwang et al. Design of a robust thickness controller for a single-stand cold rolling mill
JPH0649546A (en) Strip temperature control method for continuous heat treatment furnace
JPH048122B2 (en)
JPS5846403A (en) Feed-forward controller
JPH0565883B2 (en)
JP2564430B2 (en) Tension looper angle controller between stands of continuous rolling mill
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JP2581374B2 (en) Induction heating device
JP2503327B2 (en) Tension looper angle controller between stands of continuous rolling mill
JPH0687011A (en) Method for rolling thick plate
JP2804396B2 (en) Steel sheet tension control method
JPH0585621B2 (en)
JPH1157829A (en) Control means for hot continuous rolling mill
JPH02303610A (en) Device for preventing generation of camber of rolled stock
JPH04235268A (en) Production of alloying galvannealed steel sheet
JP3161653B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JP2001314914A (en) Heating process for roughly rolled sheet
JPS6213526A (en) Method for controlling temperature of induction heating furnace
JPS62289307A (en) Sheet width controlling method in rolling mill