JPH05271141A - Production of hydroxybenzaldehyde - Google Patents

Production of hydroxybenzaldehyde

Info

Publication number
JPH05271141A
JPH05271141A JP4068066A JP6806692A JPH05271141A JP H05271141 A JPH05271141 A JP H05271141A JP 4068066 A JP4068066 A JP 4068066A JP 6806692 A JP6806692 A JP 6806692A JP H05271141 A JPH05271141 A JP H05271141A
Authority
JP
Japan
Prior art keywords
reaction
phenol
hydroxybenzaldehydes
yield
hydroxybenzaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068066A
Other languages
Japanese (ja)
Inventor
Fumio Toda
芙三夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4068066A priority Critical patent/JPH05271141A/en
Publication of JPH05271141A publication Critical patent/JPH05271141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To selectively obtain ortho-hydroxybenzaldehydes in high yield in a method for producing the hydroxybenzaldehydes from phenol or a phenol derivative by Reimer-Tiemann reaction. CONSTITUTION:In a method for producing hydroxybenzaldehydes by reacting phenol or a phenol derivative with a haloform in the presence of a base, the reaction is carried out in a substantial solid state to provide the objective ortho- hydroxybenzaldehydes in high selectivity and yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩基の存在下、フェノ
−ルまたはフェノ−ル誘導体にハロホルムを作用させる
ことによりヒドロキシベンズアルデヒド類を製造する方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing hydroxybenzaldehydes by reacting phenol or a phenol derivative with haloform in the presence of a base.

【0002】[0002]

【従来の技術】従来、フェノ−ルまたはフェノ−ル誘導
体を塩基の存在下、ハロホルムを作用させてヒドロキシ
ベンズアルデヒド類に変換する反応はライマ−・チ−マ
ン(Reimer−Tiemann)反応として良く知
られている。例えば、新実験化学講座(丸善)、第14
巻、699頁〜703頁には、いくつかの代表的なライ
マ−・チ−マン反応の例が示されている。この反応の典
型的な反応例は、水酸化ナトリウムなどの塩基の存在
下、フェノ−ルにクロロホルムを作用させてヒドロキシ
ベンズアルデヒドとするものである。この反応の如く液
体がかかわる多くの化学反応は、常識に従って、溶媒の
存在下に反応を行わせる。即ち、ライマ−・チ−マン反
応では一般に、水や水−メタノ−ル混合溶媒などが用い
られている。従来のライマ−・チ−マン反応で得られる
ヒドロキシベンズアルデヒド類は、o−体とp−体の二
種の異性体の混合物であり、o−体が主生成物である
が、その生成比は2:1〜6:1程度である。従って、
精製過程でo−体とp−体との分離操作が必要で、通常
水蒸気蒸留等の操作により分離している。また、溶媒に
より多少の差異はあるものの、ライマ−・チ−マン反応
の収率は平均50%程度であり必ずしも高収率ではな
い。即ち、ライマ−・チ−マン反応はヒドロキシベンズ
アルデヒド類の製造方法として、選択性および収率の両
者に於いて、産業上の利用に大きな限界があった。
2. Description of the Related Art Conventionally, the reaction of converting phenol or a phenol derivative into hydroxybenzaldehydes by the action of haloform in the presence of a base is well known as the Reimer-Tiemann reaction. ing. For example, New Experimental Chemistry Course (Maruzen), No. 14
Vol. 6, pp. 699-703, gives examples of some representative Reimer-Ciemann reactions. A typical example of this reaction is the reaction of chloroform with phenol in the presence of a base such as sodium hydroxide to give hydroxybenzaldehyde. Many chemical reactions involving liquids such as this reaction are carried out in the presence of a solvent according to common sense. That is, water or a water-methanol mixed solvent is generally used in the Lymer-Chimann reaction. The hydroxybenzaldehydes obtained by the conventional Lymer-Tiemann reaction are a mixture of two isomers of o-form and p-form, and the o-form is the main product, but the production ratio is It is about 2: 1 to 6: 1. Therefore,
It is necessary to separate the o-form and the p-form in the purification process, and they are usually separated by an operation such as steam distillation. Also, although there are some differences depending on the solvent, the yield of the Liemer-Chimann reaction is about 50% on average, and is not necessarily a high yield. That is, the Reimer-Tiemann reaction has a large limit in industrial use in terms of both selectivity and yield as a method for producing hydroxybenzaldehydes.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ライマ−・
チ−マン反応によりヒドロキシベンズアルデヒド類を製
造する方法に於いて、o−体を選択的に且つ高収率で得
ることを目的とする。
SUMMARY OF THE INVENTION The present invention is a
An object of the present invention is to obtain an o-form selectively and in a high yield in a method for producing hydroxybenzaldehydes by the Timmann reaction.

【0004】[0004]

【課題を解決するための手段】本発明者は、塩基の存在
下、フェノ−ルまたはフェノ−ル誘導体にハロホルムを
作用させてヒドロキシベンズアルデヒド類を製造する方
法に於いて、o−体を選択的に且つ高収率で得る方法に
ついて鋭意検討を重ねた結果、驚くべきことに、反応の
手段として従来は不可欠であると信じられてきた溶媒
を、全く用いることなく反応させると、o−ヒドロキシ
ベンズアルデヒド類が高選択的にしかも高収率で得られ
ることを見出し、本発明を成すに至った。
DISCLOSURE OF THE INVENTION The present inventors have proposed a method for producing hydroxybenzaldehydes by reacting haloform with phenol or a phenol derivative in the presence of a base to selectively produce an o-form. As a result of extensive studies on a method for obtaining a high yield, surprisingly, it was found that o-hydroxybenzaldehyde could be obtained by reacting a solvent which has been believed to be indispensable as a means of reaction without using any solvent. The inventors have found that the compounds are obtained with high selectivity and high yield, and have completed the present invention.

【0005】即ち本発明は、塩基の存在下、フェノ−ル
またはフェノ−ル誘導体にハロホルムを作用させてヒド
ロキシベンズアルデヒド類を製造する方法に於いて、実
質的に無溶媒で反応させることを特徴とするヒドロキシ
ベンズアルデヒド類の製造方法について提示するもので
ある。
That is, the present invention is a method for producing hydroxybenzaldehydes by reacting a phenol or a phenol derivative with haloform in the presence of a base, wherein the reaction is carried out substantially without solvent. The present invention provides a method for producing hydroxybenzaldehydes.

【0006】本発明について更に詳しく説明する。本発
明に用いられるフェノ−ル以外のフェノ−ル誘導体は、
少なくとも一つのo−位が空いたフェノ−ル化合物であ
れば、如何なるものでも用いることができる。即ちo
−,m−,またはp−クレゾ−ル等の、任意の位置にア
ルキル基等の任意の置換基を有するフェノ−ル誘導体で
も用いることができる。また、ホルミル化剤として、ク
ロロホルムの他にブロモホルムなどのハロホルムを用い
ることが可能である。しかし、得られる反応成績および
経済的な意味からクロロホルムの使用が最も好ましい。
The present invention will be described in more detail. A phenol derivative other than the phenol used in the present invention is
Any phenol compound having at least one vacant o-position can be used. That is o
A phenol derivative having an arbitrary substituent such as an alkyl group at any position, such as-, m-, or p-cresol can also be used. In addition to chloroform, haloforms such as bromoform can be used as the formylating agent. However, the use of chloroform is most preferable from the reaction results obtained and the economical meaning.

【0007】ライマ−・チ−マン反応に良く用いられる
代表的な塩基は、水酸化ナトリウムであるが、塩基とし
てはこの他に、水酸化カリウムなどのアルカリ金属の水
酸化物、またはマグネシウム、カルシウム、ストロンチ
ウムなど入手が容易なアルカリ土類金属の水酸化物でも
用いることができる。これらの内、どの塩基が有効であ
るかは、用いる原料フェノ−ル誘導体の種類、ハロホル
ムの種類およびその他の反応条件により異なる。しか
し、産業的な見地から、一般的には、水酸化ナトリウム
を用いて反応させるのが好ましい。反応に用いる塩基の
量は特に限定されないが、原料フェノ−ル誘導体に対し
て、水酸基換算で3当量以上であることが好ましく、さ
らに経済的な意味から、3〜10当量が最も好ましい。
A typical base that is often used in the Liemer-Chimann reaction is sodium hydroxide. In addition to this, alkali metal hydroxides such as potassium hydroxide, magnesium, and calcium are also available. It is also possible to use hydroxides of readily available alkaline earth metals such as strontium. Which of these bases is effective depends on the kind of the starting phenol derivative used, the kind of haloform and other reaction conditions. However, from an industrial standpoint, it is generally preferred to react with sodium hydroxide. The amount of the base used in the reaction is not particularly limited, but it is preferably 3 equivalents or more in terms of hydroxyl group with respect to the starting phenol derivative, and more preferably 3 to 10 equivalents from the economical point of view.

【0008】反応の方法は、まず原料であるフェノ−ル
またはフェノ−ル誘導体を任意の塩基と混合する。混合
方法は、小規模にはただ乳鉢上で両者を摺り潰すことに
より行うことができる。あるいは、大規模には混錬機な
どを用いて混合することが出来る。この過程で、塩基と
フェノ−ル化合物は少なくとも部分的に塩を生成し、固
体状態を形成する。次に、所望の反応温度に加熱する。
好ましい反応温度は、反応させる原料の種類、およびそ
の他の反応条件により必ずしも限定されないが、反応速
度を上げる為には、少なくとも0℃以上、好ましくは4
0℃以上が望ましい。
In the reaction method, first, the starting material phenol or phenol derivative is mixed with an arbitrary base. On a small scale, the mixing method can be carried out by simply crushing both in a mortar. Alternatively, on a large scale, they can be mixed using a kneader or the like. During this process, the base and the phenolic compound at least partially form a salt, forming a solid state. Then heat to the desired reaction temperature.
The preferable reaction temperature is not necessarily limited by the kind of the starting materials to be reacted and other reaction conditions, but in order to increase the reaction rate, it is at least 0 ° C. or higher, preferably 4 ° C. or higher.
0 ° C or higher is desirable.

【0009】所定の反応温度に達した後、ホルミル化剤
であるハロホルムを添加する。この時、特別に攪拌する
必要はなく、一定の間、所定の反応温度に維持するだけ
でも所望の反応を行わせることができる。用いるホルミ
ル化剤の量は少なくとも化学量論量以上の量が必要であ
るが、モル比が1以下でも反応は進行する。しかし、収
率が低くなり、従って高い収率を得る為には、ホルミル
化剤をフェノ−ル化合物に対して過剰に用いることが望
ましい。最適なモル比は、反応型式などにより必ずしも
限定されないが、2〜10モル比である。また、加熱に
より、気相へホルミル化剤を損失しないような対策を施
しておくことが望ましい。本反応は、反応型式および反
応条件により差異はあるものの、比較的速やかに完結
し、反応時間は長くても10時間程度である。本反応方
法の特徴は、原料であるフェノ−ル化合物、ハロホル
ム、および塩基以外に、反応の常套手段として用いられ
る反応溶媒を全く用いていないことである。しかも、フ
ェノ−ル化合物は塩基と塩を形成している為に、実質的
に固体状態を保持したまま反応が進行する。
After reaching a predetermined reaction temperature, haloform which is a formylating agent is added. At this time, it is not necessary to perform special stirring, and the desired reaction can be performed only by maintaining the reaction temperature at a predetermined value for a certain period. The amount of the formylating agent used is at least a stoichiometric amount or more, but the reaction proceeds even if the molar ratio is 1 or less. However, in order to obtain a low yield and thus a high yield, it is desirable to use the formylating agent in excess with respect to the phenol compound. The optimum molar ratio is not necessarily limited depending on the reaction type and the like, but is 2 to 10 molar ratio. Further, it is desirable to take measures so as not to lose the formylating agent to the gas phase by heating. Although this reaction varies depending on the reaction type and reaction conditions, it is completed relatively quickly, and the reaction time is about 10 hours at the longest. The feature of this reaction method is that no reaction solvent used as a conventional reaction means is used other than the starting material, the phenol compound, haloform, and the base. Moreover, since the phenol compound forms a salt with a base, the reaction proceeds while maintaining a substantially solid state.

【0010】反応終了後、酸の水溶液等で中和処理し、
有機相から常法に従って有機物を回収することにより、
極めて容易に目的物を得ることができる。以上、従来の
反応形式からは発想され得なかったこの様な本発明の手
段により、o−ヒドロキシベンズアルデヒド類を高収率
で、しかも極めて高い選択性で得ることができる。
After completion of the reaction, neutralization treatment is carried out with an aqueous solution of acid,
By recovering the organic matter from the organic phase according to a conventional method,
The target product can be obtained very easily. As described above, by such means of the present invention, which has not been conceived from the conventional reaction system, o-hydroxybenzaldehydes can be obtained in high yield and with extremely high selectivity.

【0011】[0011]

【実施例】以下、実施例により本発明の効果を更に詳し
く説明する。 実施例1 フェノ−ル0.74g(8ミリモル)および水酸化ナト
リウム1.26g(32ミリモル)を乳鉢に入れ、粉
砕、混合した後、試験管に移し、温浴にて40℃に加温
した。ここにクロロホルム1.88g(16ミリモル)
を滴下し、滴下終了後、室温に戻して0.5時間放置し
た。反応物に希塩酸および水を加えて塩を溶解させ、ジ
エチルエ−テルで有機物を抽出した。有機相を無水硫酸
マグネシウムにて乾燥した後、濃縮し、濃縮残渣をシリ
カゲルクロマトグラフィ−(溶出液:n−ヘキサン/酢
酸エチル=3/1)にて精製することにより、o−ヒド
ロキシベンズアルデヒドおよび未反応のフェノ−ルを得
た。o−ヒドロキシベンズアルデヒドの収量は0.77
gで収率は80%であり、回収された未反応フェノ−ル
の量は0.13gで18%であった。なお、抽出液のガ
スクロマトグラフィ−分析により、p−ヒドロキシベン
ズアルデヒドの生成が確認されたが、非常に微量であっ
たため単離には至らなかった。
EXAMPLES The effects of the present invention will be described in more detail below with reference to examples. Example 1 0.74 g (8 mmol) of phenol and 1.26 g (32 mmol) of sodium hydroxide were placed in a mortar, crushed and mixed, then transferred to a test tube and heated to 40 ° C. in a warm bath. 1.88 g (16 mmol) of chloroform here
Was dropped, and after the dropping was completed, the temperature was returned to room temperature and the mixture was left for 0.5 hour. Dilute hydrochloric acid and water were added to the reaction product to dissolve the salt, and the organic matter was extracted with diethyl ether. The organic phase was dried over anhydrous magnesium sulfate, concentrated, and the concentrated residue was purified by silica gel chromatography (eluent: n-hexane / ethyl acetate = 3/1) to give o-hydroxybenzaldehyde and unreacted. Of phenol was obtained. The yield of o-hydroxybenzaldehyde is 0.77.
The yield was 80% in g and the amount of unreacted phenol recovered was 18% in 0.13 g. Gas chromatographic analysis of the extract confirmed the formation of p-hydroxybenzaldehyde, but the amount was very small, and therefore it could not be isolated.

【0012】実施例2 フェノ−ル0.74g(8ミリモル)および水酸化カル
シウム2.34g(32ミリモル)を乳鉢に入れ、粉
砕、混合した後、試験管に移し、温浴にて60℃に加温
した。ここにクロロホルム0.94g(8ミリモル)を
滴下し、滴下終了後、室温に戻して0.5時間放置し
た。実施例1と同様の方法で後処理を行った結果、o−
ヒドロキシベンズアルデヒドの収量は0.72gで収率
は75%であり、回収された未反応フェノ−ルの量は
0.15gで21%であった。また、p−ヒドロキシベ
ンズアルデヒドは、非常に微量のため単離には至らなか
った。
Example 2 0.74 g (8 mmol) of phenol and 2.34 g (32 mmol) of calcium hydroxide were placed in a mortar, crushed and mixed, then transferred to a test tube and heated to 60 ° C. in a warm bath. Warmed. Chloroform (0.94 g, 8 mmol) was added dropwise thereto, and after the addition was completed, the temperature was returned to room temperature and the mixture was allowed to stand for 0.5 hours. As a result of performing the post-treatment in the same manner as in Example 1, o-
The yield of hydroxybenzaldehyde was 0.72 g and the yield was 75%, and the amount of unreacted phenol recovered was 0.15 g and 21%. In addition, p-hydroxybenzaldehyde was too small to be isolated.

【0013】実施例3 フェノ−ル0.74g(8ミリモル)および水酸化ナト
リウム1.26g(32ミリモル)を乳鉢に入れ、粉
砕、混合した後、試験管に移した。この試験管を氷水浴
で冷却しながら、ここにブロモホルム3.98g(16
ミリモル)を滴下し、滴下終了後0.5時間放置した。
実施例1と同様の方法で後処理を行った結果、o−ヒド
ロキシベンズアルデヒドの収量は0.50gで収率は5
2%であり、p−ヒドロキシベンズアルデヒドの収量は
0.12gで収率は12%であり、回収された未反応フ
ェノ−ルの量は0.26gで35%であった。以下に、
一般的な従来法に従って行った結果を比較例として示
す。
Example 3 0.74 g (8 mmol) of phenol and 1.26 g (32 mmol) of sodium hydroxide were placed in a mortar, pulverized and mixed, and then transferred to a test tube. While cooling the test tube with an ice-water bath, 3.98 g (16
(Mmol) and was left for 0.5 hour after the completion of the addition.
As a result of post-treatment performed in the same manner as in Example 1, the yield of o-hydroxybenzaldehyde was 0.50 g and the yield was 5
The yield of p-hydroxybenzaldehyde was 0.12 g, the yield was 12%, and the amount of unreacted phenol recovered was 0.26 g, which was 35%. less than,
The result of the conventional method is shown as a comparative example.

【0014】比較例1 還流冷却器および温度計を備え、磁気攪拌子を入れた3
00mlのフラスコに、水75ml、水酸化ナトリウム
24.0g(0.6モル)およびフェノ−ル12.5g
(133ミリモル)を入れ、加熱溶解させた。フラスコ
を温浴で65℃に保ちながら、これにクロロホルム4
5.0g(377ミリモル)をゆっくりと滴下した。滴
下終了後、1時間加熱還流させた。反応液から水蒸気蒸
留によってまずクロロホルムを除き、水相を酸性にした
後、さらに水蒸気蒸留を行った。留出液をジエチルエ−
テルで抽出し、抽出液を乾燥後濃縮して粗生成物を得
た。この粗生成物を蒸留することにより、o−ヒドロキ
シベンズアルデヒドを得た。また、水蒸気蒸留の残留物
をジエチルエ−テルで抽出し、抽出液を乾燥後濃縮する
ことにより、p−ヒドロキシベンズアルデヒドを得た。
o−ヒドロキシベンズアルデヒドの収量は5.5gで収
率は34%であり、p−ヒドロキシベンズアルデヒドの
収量は1.6gで収率は10%であった。実施例および
比較例から明らかなように、本発明の方法は、o−ヒド
ロキシベンズアルデヒド類の製造に於いて、高選択的で
あり、かつ高収率である点で、従来法より優れている。
Comparative Example 1 3 equipped with a reflux condenser and a thermometer and equipped with a magnetic stirrer
In a 00 ml flask, 75 ml of water, 24.0 g (0.6 mol) of sodium hydroxide and 12.5 g of phenol.
(133 mmol) was added, and the mixture was heated and dissolved. While keeping the flask at 65 ° C in a warm bath, add chloroform to it.
5.0 g (377 mmol) was slowly added dropwise. After completion of the dropping, the mixture was heated to reflux for 1 hour. Chloroform was first removed from the reaction solution by steam distillation, the aqueous phase was made acidic, and then steam distillation was further performed. Distill the distillate
It was extracted with tell, and the extract was dried and then concentrated to obtain a crude product. The crude product was distilled to obtain o-hydroxybenzaldehyde. The residue of steam distillation was extracted with diethyl ether, and the extract was dried and concentrated to give p-hydroxybenzaldehyde.
The yield of o-hydroxybenzaldehyde was 5.5 g and the yield was 34%, and the yield of p-hydroxybenzaldehyde was 1.6 g and the yield was 10%. As is clear from Examples and Comparative Examples, the method of the present invention is superior to the conventional method in that it is highly selective and has a high yield in the production of o-hydroxybenzaldehydes.

【0015】[0015]

【発明の効果】本発明により、フェノ−ルまたはフェノ
−ル誘導体のライマ−・チ−マン反応で、高選択的かつ
高収率にo−ヒドロキシベンズアルデヒド類を製造する
ことがはじめて可能となった。さらに本発明の方法は、
実質的に無溶媒で反応を行うという特徴を有しており、
産業的見地から非常に有用である。
Industrial Applicability According to the present invention, it becomes possible for the first time to produce o-hydroxybenzaldehydes in a highly selective and high yield by the Reimer-Chimann reaction of a phenol or a phenol derivative. .. Further, the method of the present invention comprises
It has the characteristic of carrying out the reaction substantially without solvent,
Very useful from an industrial point of view.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩基の存在下、フェノ−ルまたはフェノ
−ル誘導体にハロホルムを作用させてヒドロキシベンズ
アルデヒド類を製造する方法に於いて、実質的に無溶媒
で反応させることを特徴とするヒドロキシベンズアルデ
ヒド類の製造方法。
1. A method for producing hydroxybenzaldehydes by allowing haloform to act on phenol or a phenol derivative in the presence of a base, wherein the reaction is carried out substantially without solvent. Manufacturing method.
【請求項2】 塩基がアルカリ金属の水酸化物またはア
ルカリ土類金属の水酸化物である特許請求の範囲第1項
記載の方法。
2. The method according to claim 1, wherein the base is an alkali metal hydroxide or an alkaline earth metal hydroxide.
【請求項3】 ハロホルムがクロロホルムまたはブロモ
ホルムである特許請求の範囲第1項および第2項記載の
方法。
3. A method according to claims 1 and 2 wherein the haloform is chloroform or bromoform.
JP4068066A 1992-03-26 1992-03-26 Production of hydroxybenzaldehyde Pending JPH05271141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068066A JPH05271141A (en) 1992-03-26 1992-03-26 Production of hydroxybenzaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068066A JPH05271141A (en) 1992-03-26 1992-03-26 Production of hydroxybenzaldehyde

Publications (1)

Publication Number Publication Date
JPH05271141A true JPH05271141A (en) 1993-10-19

Family

ID=13363035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068066A Pending JPH05271141A (en) 1992-03-26 1992-03-26 Production of hydroxybenzaldehyde

Country Status (1)

Country Link
JP (1) JPH05271141A (en)

Similar Documents

Publication Publication Date Title
Ladd et al. Improved synthesis of fluoroveratroles and fluorophenethylamines via organolithium reagents
JPH05112586A (en) Production of n-acylaminomethylphosphonic acid
JPH0585986A (en) Process for producing 5-(2,4-difluorophenyl)salicylic acid
JPH08277240A (en) Production of alpha-chloroalkyl aryl ketone
JPH05271141A (en) Production of hydroxybenzaldehyde
JPS6185350A (en) Manufacture of 2,4-dichloro-5-fluorobenzoic acid
US4186270A (en) Process for making 2-(4-isobutylphenyl)propionic acid and related compounds
JP3663427B2 (en) Process for producing cyanofluorophenol
JPH0223535B2 (en)
JPH0461864B2 (en)
JPH05140034A (en) Production of o-alkoxybenzoic acid
JPS59222430A (en) Fluorocyclopropane derivative
JPS59110649A (en) Manufacture of alpha-vinylpropionic acid ester
JPS5811414B2 (en) Method for producing substituted acetophenone
JP2589564B2 (en) Preparation of styrene derivatives
JPH021823B2 (en)
JPH01117839A (en) Production of 2-halobenzaldehyde or/and 4-halobenzaldehyde
JPS609016B2 (en) Synthesis method of styrene derivatives having formyl group
JP3513726B2 (en) Method for producing disubstituted-1,3-indandione derivative
JPH07252183A (en) Production of phenol derivative
CA1269994A (en) Method for producing cyclopropanecarboxylic acid derivatives
JPH04279547A (en) Production of dialkoxybenzoin compound
JPH0344349A (en) Production of p-or m-hydroxybenzaldehyde
JPH0761945A (en) Production of 2-(substituted phenyl)-2-propen-1-ol
JP2004143179A (en) Method for production of 1,3-di-halo-substituted benzene derivative