JPH05270988A - Formation of titanium-sapphire single crystal film - Google Patents

Formation of titanium-sapphire single crystal film

Info

Publication number
JPH05270988A
JPH05270988A JP4068589A JP6858992A JPH05270988A JP H05270988 A JPH05270988 A JP H05270988A JP 4068589 A JP4068589 A JP 4068589A JP 6858992 A JP6858992 A JP 6858992A JP H05270988 A JPH05270988 A JP H05270988A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
titanium
thin film
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068589A
Other languages
Japanese (ja)
Inventor
Akihiro Murata
明弘 村田
Yasuharu Nakagawa
康晴 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4068589A priority Critical patent/JPH05270988A/en
Publication of JPH05270988A publication Critical patent/JPH05270988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a process for forming a titanium-sapphire single crystal film useful for the relatively low-cost production of a device such as waveguide- type solid laser or waveguide-type light-amplifier which uses exclusively one surface of the substrate. CONSTITUTION:The objective process is composed of a step for forming a Ti thin film 11 on a surface of a sapphire (Al2O3) substrate 10 and a step to partially heating and melting the surface of the substrate 10 having the Ti thin film 11 in a reducing atmosphere and recrystallizing the molten part while moving the heating position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,チタン・サファイア単
結晶膜の形成方法に関し,更に詳しくは,光導波路デバ
イスに用いて好適な単結晶膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a titanium-sapphire single crystal film, and more particularly to a method for forming a single crystal film suitable for use in an optical waveguide device.

【0002】[0002]

【従来の技術】チタン・サファイア単結晶は広い蛍光ス
ペクトル(λ=700〜1100nm)を有しているた
め光ICや光センサ等の基本素子として使用される。図
3はJournal of TOSOH Research Vol.33 No.2(1989)に
記載されたチタン・サファイア単結晶の製造装置であ
る。図において,1はサファイア(Al2 3)の種結
晶,2はキセノンアークランプ,3は多結晶からなるチ
タン・サファイア(Ti:Al2 3 )の原料ロッドで
ある。
2. Description of the Related Art A titanium-sapphire single crystal has a broad fluorescence spectrum (λ = 700 to 1100 nm) and is therefore used as a basic element of an optical IC or an optical sensor. FIG. 3 shows an apparatus for producing a titanium-sapphire single crystal described in Journal of TOSOH Research Vol.33 No.2 (1989). In the figure, 1 is a sapphire (Al 2 O 3 ) seed crystal, 2 is a xenon arc lamp, and 3 is a polycrystalline titanium-sapphire (Ti: Al 2 O 3 ) raw material rod.

【0003】4は原料ロッドの溶融部,5は集光ミラー
ハウス,7は石英チューブ,8はモニター用レンズ,9
はモニター用スクリーンである。図において,原料ロッ
ド3の先端に取りつけられた種結晶1を集光ランプによ
り帯状に溶融し,その溶融部を原料ロッドの軸方向に移
動させることことによりAl2 3の単結晶ロッドを得
ることができる。この場合,多結晶中のTiは石英チュ
ーブ内をAr+H2等の還元性雰囲気にすることでAl
2 3中でTi3+イオンとして取り込まれ,650〜1
100nmの広い蛍光スペトルを有する可変波長用レー
ザ結晶を得ることができる。
Reference numeral 4 is a molten portion of the raw material rod, 5 is a converging mirror house, 7 is a quartz tube, 8 is a monitor lens, and 9 is a monitor lens.
Is a monitor screen. In the figure, the seed crystal 1 attached to the tip of the raw material rod 3 is melted in a band shape by a condenser lamp, and the molten portion is moved in the axial direction of the raw material rod to obtain an Al 2 O 3 single crystal rod. be able to. In this case, the Ti in the polycrystal is Al when the quartz tube is made into a reducing atmosphere such as Ar + H 2.
Incorporated as Ti 3+ ions in 2 O 3 , 650-1
A laser crystal for variable wavelength having a broad fluorescence spectrum of 100 nm can be obtained.

【0004】[0004]

【発明が解決しようとする課題】上記従来の製造方法に
おいては大型の単結晶を得ることが可能である。しかし
ながら,装置が大掛りとなりAl2 3の融点が 206
0℃と高いので加熱には大きなパワーを要するという問
題がある。本発明は上記従来技術の問題を解決するため
になされたもので,例えば導波路型固体レーザや導波路
型光増幅器等の基板表面のみを利用するデバイスを,比
較的安価に作製することが可能なチタン・サファイア単
結晶膜の形成方法を提供することを目的とする。
With the above-mentioned conventional manufacturing method, it is possible to obtain a large single crystal. However, the equipment is large and the melting point of Al 2 O 3 is 206
Since it is as high as 0 ° C., there is a problem that a large amount of power is required for heating. The present invention has been made to solve the above-mentioned problems of the prior art. For example, a device such as a waveguide type solid-state laser or a waveguide type optical amplifier that uses only the substrate surface can be manufactured at a relatively low cost. An object of the present invention is to provide a method for forming a titanium / sapphire single crystal film.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する為
に,本発明は,サファイア(Al2 3)基板の表面に
Ti薄膜を形成する工程と,前記Ti薄膜を形成した基
板の表面を還元性雰囲気中で部分的に加熱・溶融し,そ
の加熱位置を移動させながら前記溶融部分を再結晶させ
る工程を含むことを特徴とするものである。
In order to solve the above problems, the present invention provides a step of forming a Ti thin film on the surface of a sapphire (Al 2 O 3 ) substrate, and a step of forming the Ti thin film on the surface of the substrate. The method is characterized by including a step of partially heating and melting in a reducing atmosphere and recrystallizing the molten part while moving the heating position.

【0006】[0006]

【作用】Al2 3 基板にTi薄膜を形成し,その基板
を還元性雰囲気中で加熱すると,表面のTi薄膜はAl
2 3基板中にTi3+イオンとして取り込まれる。
[Function] When a Ti thin film is formed on an Al 2 O 3 substrate and the substrate is heated in a reducing atmosphere, the Ti thin film on the surface becomes Al.
It is taken into the 2 O 3 substrate as Ti 3+ ions.

【0007】[0007]

【実施例】図1(a),(b)は本発明のチタン・サフ
ァイア単結晶膜の概略製造工程を示す断面図である。工
程に従って説明する。 工程(a) 単結晶Al2 3基板10の表面にスパッタリングや真
空蒸着装置を用いて厚さ0.03μm程度のTi薄膜1
1を形成する(このTi薄膜11の厚さはドープする濃
度や溶融する深さにより決定する)。
1 (a) and 1 (b) are sectional views showing a schematic manufacturing process of a titanium / sapphire single crystal film of the present invention. It demonstrates according to a process. Step (a) A Ti thin film 1 having a thickness of about 0.03 μm is formed on the surface of the single crystal Al 2 O 3 substrate 10 by using a sputtering or vacuum deposition apparatus.
1 (the thickness of the Ti thin film 11 is determined by the doping concentration and the melting depth).

【0008】工程(b) 上記基板10をArガス98%:H2ガス2%〜Arガ
ス96%:H2ガス4%程度に混合した還元性雰囲気中
に配置し,Ti薄膜11を含む基板表面を部分的に加熱
する。図3は本発明者等が行った上記工程(b)の斜視
図を示すもので,基板10としては幅(a)2.5m
m,長さ(b)25mm,厚さ0.2〜0.5mm程度
の市販のものを使用し,加熱源としてはスポット径3m
m程度のCO2レーザ光を使用した(CO2レーザの発振
波長は10μm付近でAl2 3に良く吸収される)。
Step (b) The substrate 10 is placed in a reducing atmosphere in which Ar gas 98%: H 2 gas 2% to Ar gas 96%: H 2 gas 4% is mixed, and a substrate containing a Ti thin film 11 is placed. Partially heat the surface. FIG. 3 is a perspective view of the above step (b) performed by the present inventors. The substrate 10 has a width (a) of 2.5 m.
m, length (b) 25 mm, thickness 0.2 to 0.5 mm, a commercially available one, with a spot diameter of 3 m as a heating source
A CO 2 laser beam with a wavelength of about m was used (the oscillation wavelength of the CO 2 laser is well absorbed by Al 2 O 3 around 10 μm).

【0009】そして基板10の端部付近にレーザを当て
パワーを7W程度から20W程度まで4分程度で徐々に
上昇させた(温度を急上昇させると基板内で熱膨張の差
が生じて基板が破壊する)。表面が溶融した時点で毎分
15μm程度の速さで基板の他端まで移動させた。この
ように加熱部を徐々に移動することにより溶融部が移動
し,通過した部分は冷却して再結晶が行われる。この場
合Ti薄膜は酸化雰囲気では再結晶時に酸化されてTi
4+イオンとしてAl2 3中にドープされるが,還元性
雰囲気中では酸化が十分に進まずTi3+イオンとしてA
2 3中にドープされTi:Al23単結晶膜20が形
成される。
Then, a laser was applied to the vicinity of the edge of the substrate 10 to gradually increase the power from about 7 W to about 20 W in about 4 minutes (when the temperature is rapidly increased, a difference in thermal expansion occurs in the substrate and the substrate is destroyed. To). When the surface was melted, it was moved to the other end of the substrate at a speed of about 15 μm per minute. By gradually moving the heating part in this way, the melting part moves, and the passed part is cooled and recrystallized. In this case, the Ti thin film is oxidized during recrystallization in an oxidizing atmosphere and
Al 2 O 3 is doped as 4+ ions, but oxidation does not proceed sufficiently in a reducing atmosphere and Ti 3+ ions are added as A
A Ti: Al 2 O 3 single crystal film 20 doped in 1 2 O 3 is formed.

【0010】また,再結晶時には基板10の表面方位に
ならってエピタキシャル成長するので,基板表面にはT
3+イオンがドープされたAl2 3単結晶を得ること
ができる(ここでは表面内にC軸を有する基板を使用す
る)。上記により作製したTi:Al2 3単結晶の厚
さは50〜100μm程度であり,この薄膜は従来の方
法により作製されたバルク状のTi:Al2 3単結晶
と同様の蛍光スペクトル特性であった。次に、図3,図
4を参照して本発明により作製したチタン・サファイア
単結晶膜を用いた光導波路の形成方法について概略工程
に従って説明する。
Further, during recrystallization, epitaxial growth follows the surface orientation of the substrate 10, so that T
It is possible to obtain Al 2 O 3 single crystals doped with i 3+ ions (here a substrate with a C-axis in the surface is used). The thickness of the Ti: Al 2 O 3 single crystal produced as described above is about 50 to 100 μm, and this thin film has the same fluorescence spectrum characteristics as the bulk Ti: Al 2 O 3 single crystal produced by the conventional method. Met. Next, with reference to FIGS. 3 and 4, a method of forming an optical waveguide using the titanium-sapphire single crystal film produced according to the present invention will be described according to schematic steps.

【0011】工程1(a図参照) 表面にC軸を有するAl2 3単結晶基板12を別に用
意し,上述により作製したチタンサファイアの薄膜部分
20を直接接合により接合する。接合に際しては各接合
面を光学研磨により滑らかに加工し,硫酸過水で洗浄し
て十分に汚れを落とした後表面のC軸を直交させて密着
させる。この密着させた各基板を1300℃の電気炉内
で5000Pa(0.5kgf/cm2)程度で加圧し
ながら60分間熱処理する(この場合、加熱温度が低い
(1100℃程度)と接合が不完全となり、高い(16
00℃程度)と面方位による膨張係数の違いにより破損
する恐れがある)。
Step 1 (see FIG. 1A) An Al 2 O 3 single crystal substrate 12 having a C axis on the surface is prepared separately, and the titanium sapphire thin film portion 20 produced as described above is joined by direct joining. At the time of joining, each joining surface is processed smoothly by optical polishing, washed with sulfuric acid / hydrogen peroxide to sufficiently remove stains, and then the C axes of the surfaces are made orthogonal to each other for close contact. The adhered substrates are heat-treated for 60 minutes in an electric furnace at 1300 ° C. while applying pressure of about 5000 Pa (0.5 kgf / cm 2 ). In this case, if the heating temperature is low (about 1100 ° C.), the bonding is incomplete. Next, high (16
There is a risk of damage due to the difference in expansion coefficient depending on the plane orientation).

【0012】工程2(b図参照) 接合した2枚の板のうち基板10側を研磨して5μm程
度の厚さ(t)に形成しチタンサファイアの薄膜部分2
0を露出させる。この研磨は例えばラップ盤で6μm程
度のダイアモンド砥粒を用いて粗削りを行い、次に1μ
m程度のダイアモンド砥粒を用いて所望の厚さに鏡面仕
上げを行うが、最終的に光導波路の壁面となるため散乱
損失の原因にならないように十分滑らかに加工する。
Step 2 (see FIG. 2B) Of the two bonded plates, the substrate 10 side is polished to form a thickness (t) of about 5 μm, and a thin film portion 2 of titanium sapphire is formed.
Expose 0. For this polishing, for example, rough grinding is performed with a lapping machine using diamond abrasive grains of about 6 μm, and then 1 μm
Mirror-finishing is performed to a desired thickness using diamond abrasive grains of about m, but since the final wall surface of the optical waveguide is used, it is processed sufficiently smoothly so as not to cause scattering loss.

【0013】工程3(c図参照) 次に、薄膜部分20上にフォトリソグラフィによりマス
クをパターニングした後、RIE(リアクティブ・イオ
ンエッチング)にてエッチングを行う。マスク幅は5μ
m程度とする。マスク材としては始めにTiを0.03
μm程度形成し、その上に0.5μm程度のPtを形成
する。次に、RIE装置の電力を0.48W/cm2
反応ガスとしてCCl4(四塩化炭素)を用い、装置内
の圧力を120mtorr程度として3μm(t1)程
度のエッチングを行う(この条件では0.03μm/分
程度のエッチングとなる)。 工程4(d図参照) 次にスパッタリングにより薄膜部分20上にSiO2
13を2μm程度の厚さに形成し,入射面および出射面
に公知の方法によりミラーコーティングを施す。
Step 3 (see FIG. 3c) Next, after patterning a mask on the thin film portion 20 by photolithography, etching is performed by RIE (reactive ion etching). Mask width is 5μ
It is about m. As a mask material, Ti is initially 0.03
Then, Pt having a thickness of about 0.5 μm is formed thereon. Next, the power of the RIE device is 0.48 W / cm 2 ,
CCl 4 (carbon tetrachloride) is used as a reaction gas, and the pressure in the apparatus is set to about 120 mtorr, and etching is performed to about 3 μm (t 1 ) (under these conditions, etching is about 0.03 μm / min). Step 4 (see FIG. D) Next, the SiO 2 film 13 is formed on the thin film portion 20 to have a thickness of about 2 μm by sputtering, and the entrance surface and the exit surface are mirror-coated by a known method.

【0014】図4は上記の方法により作製した光導波路
の斜視図である。図に示すようにAl2 3単結晶基板
12およびSiO2膜13はクラッド層として機能し,
チタンサファイアの薄膜部分20は光導波路として機能
する。そして,光導波路に入射端面からポンピング光を
入射するとレーザ媒質として機能する導波路内で発振光
が発生し,その発振光が増幅されて出射端面から出射す
る。なお,本実施例においては基板寸法レーザビーム径
等具体的数値をあげて説明したが,上記実施例に限るも
のではない。また,加熱手段としてはキセノンランプ等
を用いたランプ加熱,抵抗加熱,高周波誘導加熱および
これらの併用加熱等を用いることも可能である。
FIG. 4 is a perspective view of an optical waveguide manufactured by the above method. As shown in the figure, the Al 2 O 3 single crystal substrate 12 and the SiO 2 film 13 function as a clad layer,
The titanium sapphire thin film portion 20 functions as an optical waveguide. Then, when pumping light is incident on the optical waveguide from the incident end face, oscillation light is generated in the waveguide functioning as a laser medium, and the oscillation light is amplified and emitted from the emission end face. It should be noted that in the present embodiment, the substrate dimensions, the laser beam diameter, and other specific numerical values have been described, but the present invention is not limited to the above embodiments. Further, as the heating means, it is possible to use lamp heating using a xenon lamp or the like, resistance heating, high frequency induction heating, and combined heating thereof.

【0015】[0015]

【発明の効果】以上詳細に説明したように本発明によれ
ば,サファイア(Al2 3)基板の表面にTi薄膜を
形成する工程と,その基板の表面を還元性雰囲気中で部
分的に加熱・溶融し,その加熱位置を移動させながら前
記溶融部分を再結晶させるので, 1) 基板として市販のサファイアを用いることがで
き,部分的な加熱方法なので加熱のパワーが小さくてす
み,比較的安価に作製することが可能である。 2) るつぼ等の入れものを使用しないため,Ti以外
の他のレーザ媒質としては有害な不純物が混入しないた
め,レーザ媒質として優れた性能を有する結晶を作製す
ることができる。 3) 本質的に4価のイオンとしてドープされず,全て
がレーザ媒質として有用な3価のTiイオンとなる。 4) 従来困難であった高濃度のTiドープがTi薄膜
の厚さを制御することにより比較的容易に行える。 等の特徴がある。
As described above in detail, according to the present invention, the step of forming a Ti thin film on the surface of a sapphire (Al 2 O 3 ) substrate and the surface of the substrate are partially exposed in a reducing atmosphere. It is heated and melted, and the molten part is recrystallized while moving the heating position. 1) Commercially available sapphire can be used as the substrate, and the heating power is small because it is a partial heating method. It can be manufactured at low cost. 2) Since a container such as a crucible is not used, impurities that are harmful to the laser medium other than Ti are not mixed, so that a crystal having excellent performance as a laser medium can be manufactured. 3) Essentially not doped as tetravalent ions, all become trivalent Ti ions useful as a laser medium. 4) High-concentration Ti doping, which was difficult in the past, can be performed relatively easily by controlling the thickness of the Ti thin film. There are features such as.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のチタン・サファイア単結晶膜の形成方
法概略製造工程(a)および(b)を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a schematic manufacturing process (a) and (b) of a method for forming a titanium-sapphire single crystal film of the present invention.

【図2】本発明の加熱工程を示す斜視図である。FIG. 2 is a perspective view showing a heating process of the present invention.

【図3】本発明により作製したチタン・サファイア単結
晶膜を用いた光導波路の形成方法を示す概略工程図であ
る。
FIG. 3 is a schematic process diagram showing a method for forming an optical waveguide using a titanium / sapphire single crystal film produced by the present invention.

【図4】光導波路の斜視図である。FIG. 4 is a perspective view of an optical waveguide.

【図5】従来例を示す図である。FIG. 5 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

10 Al2 3基板 11 Ti薄膜 20 TiAl2 3単結晶10 Al 2 O 3 substrate 11 Ti thin film 20 TiAl 2 O 3 single crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 サファイア(Al2 3)基板の表面に
Ti薄膜を形成する工程と,前記Ti薄膜を形成した基
板の表面を還元性雰囲気中で部分的に加熱・溶融し,そ
の加熱位置を移動させながら前記溶融部分を再結晶させ
る工程を含むことを特徴とするチタン・サファイア単結
晶膜の形成方法。
1. A step of forming a Ti thin film on the surface of a sapphire (Al 2 O 3 ) substrate, and partially heating and melting the surface of the substrate on which the Ti thin film is formed in a reducing atmosphere, and the heating position. A method for forming a titanium-sapphire single crystal film, comprising the step of recrystallizing the molten portion while moving the film.
JP4068589A 1992-03-26 1992-03-26 Formation of titanium-sapphire single crystal film Pending JPH05270988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068589A JPH05270988A (en) 1992-03-26 1992-03-26 Formation of titanium-sapphire single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068589A JPH05270988A (en) 1992-03-26 1992-03-26 Formation of titanium-sapphire single crystal film

Publications (1)

Publication Number Publication Date
JPH05270988A true JPH05270988A (en) 1993-10-19

Family

ID=13378137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068589A Pending JPH05270988A (en) 1992-03-26 1992-03-26 Formation of titanium-sapphire single crystal film

Country Status (1)

Country Link
JP (1) JPH05270988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044602A1 (en) * 1997-03-27 1998-10-08 Btg International Limited Optical apparatus
JP2017197411A (en) * 2016-04-28 2017-11-02 日本電信電話株式会社 Method for manufacturing single crystal fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044602A1 (en) * 1997-03-27 1998-10-08 Btg International Limited Optical apparatus
JP2017197411A (en) * 2016-04-28 2017-11-02 日本電信電話株式会社 Method for manufacturing single crystal fiber

Similar Documents

Publication Publication Date Title
US10274673B2 (en) Method and apparatus for producing crystalline cladding and crystalline core optical fibers
JP3145885B2 (en) Method for increasing the energy extraction coefficient of polymorphic crystals
US10054735B2 (en) Method and apparatus for producing crystalline cladding and crystalline core optical fibers
JPH08240821A (en) Plane waveguide and its production
JP2007249092A (en) Wavelength conversion optical element, method for manufacturing wavelength conversion optical element, wavelength converter, ultraviolet laser irradiation device and laser machining system
WO1991004360A1 (en) Thin film of lithium niobate single crystal and production thereof
JP2006053522A (en) Glass light guide
JPH05270988A (en) Formation of titanium-sapphire single crystal film
JPH09310170A (en) Silicon carbide thin coating structural body and its production
JP3876666B2 (en) Optical device and manufacturing method thereof
CN112051694A (en) Wavelength conversion device
JPH02153849A (en) Composite consisting of glass-containing substance and glass-free substance, and method for forming said composite
JPH06305888A (en) Thin-film waveguide crystal and its production
JPH06260378A (en) Manufacture of semiconductor substrate
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element
JPH0792514A (en) Wavelength conversion solid-state laser element
JPH0585897A (en) Method for forming lithium niobate single crystal into single domain
JPH0437697A (en) Thin film of lithium niobate single crystal
RU1570550C (en) Method of manufacturing silicon structures on dielectric
JPH0794820A (en) Single-crystal thin film and solid laser element
JPH05896A (en) Thin lithium niobate single crystal film
JPH0412095A (en) Production of thin film of lithium niobate single crystal
JPH0717798A (en) Heat treatment of yttrium vanadate single crystal
JP2849221B2 (en) Optical device having channel type waveguide and method of manufacturing the same
JP3131741B2 (en) Method for producing lithium niobate single crystal thin film