JPH0526933A - Zero-phase current detection device - Google Patents

Zero-phase current detection device

Info

Publication number
JPH0526933A
JPH0526933A JP18429591A JP18429591A JPH0526933A JP H0526933 A JPH0526933 A JP H0526933A JP 18429591 A JP18429591 A JP 18429591A JP 18429591 A JP18429591 A JP 18429591A JP H0526933 A JPH0526933 A JP H0526933A
Authority
JP
Japan
Prior art keywords
phase
zero
current
voltage
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18429591A
Other languages
Japanese (ja)
Other versions
JP2616285B2 (en
Inventor
Masashi Nagao
雅司 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18429591A priority Critical patent/JP2616285B2/en
Publication of JPH0526933A publication Critical patent/JPH0526933A/en
Application granted granted Critical
Publication of JP2616285B2 publication Critical patent/JP2616285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an accurate zero-phase current for detecting rounding by eliminating an error due to zero-phase current by a tidal flow. CONSTITUTION:A positive-phase voltage 18 is created as a voltage source of reference vector which does not change normally and during a grounding accident. Then, a phase difference between the positive-phase voltage 18 and a zero-phase current 7 due to a tidal flow is authorized by a constant phase authorization element 21 and a compensation current 23 is output by a phase shift element 22. The zero-phase current for detecting grounding is output by subtracting the compensation current 23 from an apparent zero-phase current. In the case of an accident, the compensation current 23 is obtained by using an operation result immediately before the accident and its output continues.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力系統におけるデ
ィジタル形母線保護継電装置等において正確な零相電流
を検出するために使用される零相電流検出装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero-phase current detecting device used for accurately detecting a zero-phase current in a digital bus protection relay device in a power system.

【0002】[0002]

【従来の技術】図4はこの種従来のディジタル形母線保
護継電装置のシステムの概要図である。図において、1
は母線に流れる大電流を装置が入力できる程度の小電流
に変換するための計器用変流器、2は母線の高電圧を装
置が入力できる程度の低電圧に変換するための計器用変
圧器、3はディジタル形母線保護継電装置で、その3a
は装置に入力された電流、電圧のデータをディジタルリ
レーがアナログ量からディジタル量へ変換するのに適し
た値に変換するための入力変換器、4はディジタルリレ
ーユニットで、入力変換器3aから入力された電流、電
圧のデータをアナログ量からディジタル量へ変換するア
ナログ入力部4a、同じく入力された電圧データをアナ
ログ量からディジタル量へ変換し所定値以下になったと
き出力信号を送出する事故検出リレー4b、アナログ入
力部4aから得られたディジタル量の電流データを基に
差動量を演算し、差動リレーの動作判定を行うマイクロ
コンピュータ部4c、マイクロコンピュータ部4cの内
部にある地絡リレー4d、およびトリップ信号の出力等
入出力を行うディジタル入出力部4eから構成されてい
る。5は遮断器へトリップ信号を出力するトリップ出力
である。以上の装置構成により、母線保護継電装置は、
母線に地絡事故が発生するとその事故電流を地絡リレー
に取り込み演算し、トリップ指令を出力する。
2. Description of the Related Art FIG. 4 is a schematic diagram of a system of a conventional digital type bus bar protection relay device of this type. In the figure, 1
Is a current transformer for measuring a large current flowing through the bus to a small current that can be input by the device, and 2 is a transformer for measuring a high voltage of the bus, which is low enough for the device to input Reference numeral 3 is a digital type busbar protective relay device, which is 3a.
Is an input converter for converting the current and voltage data input to the device into a value suitable for a digital relay to convert from an analog amount to a digital amount, and 4 is a digital relay unit, which is input from the input converter 3a. An analog input section 4a for converting the converted current and voltage data from an analog amount to a digital amount, and an accident detection for converting the input voltage data from an analog amount to a digital amount and transmitting an output signal when the voltage value is below a predetermined value Microcomputer unit 4c for calculating the differential amount based on the digital amount of current data obtained from the relay 4b and the analog input unit 4a to judge the operation of the differential relay, and a ground fault relay inside the microcomputer unit 4c. 4d and a digital input / output unit 4e for inputting / outputting a trip signal and the like. A trip output 5 outputs a trip signal to the circuit breaker. With the above device configuration, the busbar protection relay device
When a ground fault occurs on the bus bar, the fault current is taken into the ground fault relay and calculated, and a trip command is output.

【0003】ところで、電気回路における三相回路は、
本来ならA相,B相,C相の各相電流が完全に平衝を保
って各相電流の和である零相電流が0であるのが理想で
ある。しかし電力系統等における実際の三相回路は、電
源電圧の大きさ、位相のアンバランスや各相の負荷の変
動、またケーブルの対地静電容量による充電電流のアン
バランス等により、僅かながら零相電流が生じる。母線
保護継電装置の地絡事故検出において、この常時潮流に
よる零相電流の存在が誤差として影響する。
By the way, a three-phase circuit in an electric circuit is
Ideally, the phase currents of the A-phase, B-phase, and C-phase are perfectly balanced, and the zero-phase current, which is the sum of the phase currents, is ideally zero. However, an actual three-phase circuit in a power system, etc. has a slight zero phase due to the magnitude of the power supply voltage, the phase imbalance, the fluctuation of the load of each phase, and the imbalance of the charging current due to the ground capacitance of the cable. An electric current is generated. The existence of zero-phase current due to this constant power flow affects the detection of a ground fault in the busbar protective relay device as an error.

【0004】図5は以上の状況を説明するものである。
即ち、図中、6は系統に発生した地絡事故で新たに流れ
る地絡事故電流、7は常時流れる上述した潮流による零
相電流で、両電流の和が見かけの地絡事故電流データ8
として地絡リレー4dの演算処理部9に取り込まれる訳
である。
FIG. 5 illustrates the above situation.
That is, in the figure, 6 is a ground fault current that newly flows due to a ground fault that has occurred in the system, 7 is a zero-phase current due to the above-mentioned tidal current that constantly flows, and the sum of both currents is apparent ground fault current data 8
Is taken into the arithmetic processing unit 9 of the ground fault relay 4d.

【0005】次に動作について図6の波形図を参照して
説明する。図6は地絡事故(A相1線地絡)発生前後の
各電圧、電流の変化を表したグラフで、10はA相,B
相,C相の各相電圧の波形、11は零相電圧の波形、1
2は潮流による常時零相電流の波形、13は地絡事故に
よる事故電流の波形、14は地絡リレー4dに取り込ま
れる見かけの地絡事故電流の波形で、波形12と波形1
3との和である。
Next, the operation will be described with reference to the waveform chart of FIG. FIG. 6 is a graph showing changes in each voltage and current before and after the occurrence of a ground fault accident (A-phase 1-line ground fault).
Waveform of each phase voltage of phase C and C, 11 is a waveform of zero phase voltage, 1
2 is a waveform of a constant zero-phase current due to a tidal current, 13 is a waveform of a fault current due to a ground fault accident, 14 is a waveform of an apparent ground fault current captured by a ground fault relay 4d, which is waveform 12 and waveform 1.
It is the sum of 3.

【0006】先ず、常時は地絡事故電流6(波形13)
は流れておらず潮流による零相電流7(波形12)のみ
が差動量として地絡リレーに入力されるが、この潮流に
よる零相電流の差動量は地絡事故が発生した場合の電流
によるそれと比べると極めて小さいので演算処理により
リレー不動作と判定される。そして次に、母線に地絡事
故が発生した場合、地絡事故電流6(波形13)が流れ
これに零相電流7(波形12)を加えた見かけの地絡事
故電流8(波形14)が地絡リレー4dに取り込まれ、
演算処理によりリレー動作と判定される。
First, normally, the ground fault accident current 6 (waveform 13)
Is not flowing and only the zero-phase current 7 (waveform 12) due to the tidal current is input to the ground fault relay as a differential amount. The differential amount of the zero-phase current due to this tidal current is the current when a ground fault accident occurs. Since it is extremely smaller than that of the above, it is determined that the relay is not operating by the arithmetic processing. Then, next, when a ground fault accident occurs on the bus bar, a ground fault fault current 6 (waveform 13) flows, and an apparent ground fault fault current 8 (waveform 14) obtained by adding a zero-phase current 7 (waveform 12) thereto. Taken into the ground fault relay 4d,
The relay operation is determined by the arithmetic processing.

【0007】[0007]

【発明が解決しようとする課題】従来の母線保護継電装
置は以上のように構成され、その地絡リレー検出部分に
は真の地絡事故電流と常時発生している潮流による零相
電流との和のデータが取り込まれているので、地絡事故
検出の面で潮流による零相電流が誤差となる。この結
果、特に、接地抵抗により地絡事故電流が低く設定され
ている場合には、上記誤差が相対的に大となり、時とし
て地絡リレーの誤動作や誤不動作を招く恐れがある。こ
の発明は以上のような問題点を解消するためになされた
もので、潮流による零相電流に基づく誤差を除去して正
確な地絡保護用の零相電流を検出することができる零相
電流検出装置を得ることを目的とする。
The conventional bus-barrier relay device is constructed as described above, and in the ground-fault relay detection portion thereof, there is a true ground-fault current and a zero-phase current due to the constantly occurring tidal current. Since the sum data of is taken in, the zero-phase current due to the tidal current becomes an error in terms of ground fault detection. As a result, in particular, when the ground fault current is set to be low by the grounding resistance, the above error becomes relatively large, and sometimes the ground fault relay may malfunction or malfunction. The present invention has been made to solve the above problems, and is capable of detecting an accurate zero-phase current for ground fault protection by removing an error based on the zero-phase current due to a power flow. The purpose is to obtain a detection device.

【0008】[0008]

【課題を解決するための手段】この発明に係る零相電流
検出装置は、系統の各相電流を検出しそれらの算出和か
ら見かけの零相電流を求める零相電流検出手段、上記系
統の各相電圧を検出し正相電圧を演算出力する正相電圧
演算手段、上記各相電圧から零相電圧を検出する零相電
圧検出手段、上記零相電圧が所定の値以下のとき上記正
相電圧の位相を上記見かけの零相電流の位相に変換しそ
の大きさを上記見かけの零相電流の大きさに変換演算し
て補償電流として出力し、上記零相電圧が上記所定の値
を越えたときは越える直前の上記変換条件を保持して出
力を継続する補償電流演算手段、および上記見かけの零
相電流から上記補償電流演算手段の出力を減算して地絡
検出用の零相電流として出力する減算手段を備えたもの
である。
A zero-phase current detecting device according to the present invention is a zero-phase current detecting means for detecting each phase current of a system and obtaining an apparent zero-phase current from the sum of the calculated currents. Positive phase voltage calculating means for detecting a phase voltage and calculating and outputting a positive phase voltage, zero phase voltage detecting means for detecting a zero phase voltage from each phase voltage, the positive phase voltage when the zero phase voltage is a predetermined value or less The phase of is converted into the phase of the apparent zero-phase current, the magnitude thereof is converted into the magnitude of the apparent zero-phase current, which is output as a compensation current, and the zero-phase voltage exceeds the predetermined value. In some cases, the output of the compensating current calculating means for maintaining the conversion condition immediately before exceeding and continuing the output, and the output of the compensating current calculating means from the apparent zero-phase current is output as a zero-phase current for ground fault detection. It is provided with a subtraction means for performing.

【0009】[0009]

【作用】常時および地絡事故中を通じて変化しない基準
ベクトルの電圧源として正相電圧を作成する。そして、
常時、即ち零相電圧が所定の値以下の時補償電流演算手
段により上記正相電圧から補償電流を作成し、減算手段
で見かけの零相電流から補償電流、即ち潮流による成分
を相殺して地絡検出用の零相電流として出力する。事故
時、即ち零相電圧が所定の値を越えると、補償電流演算
手段は直前の演算条件に基づき存続する正相電圧から補
償電流を作成し継続して出力する。従って、事故中も補
償電流による補正処理が実行され地絡検出用として正確
な零相電流が得られる。
Function: A positive phase voltage is created as a voltage source of a reference vector that does not change at all times and during a ground fault. And
At all times, that is, when the zero-phase voltage is below a predetermined value, the compensating current calculating means creates a compensating current from the positive-phase voltage, and the subtracting means cancels the compensating current, that is, the component due to the tidal current from the apparent zero-phase current. Output as zero-phase current for detecting the fault. At the time of an accident, that is, when the zero-phase voltage exceeds a predetermined value, the compensating current calculating means creates a compensating current from the existing positive-phase voltage based on the immediately preceding calculation condition and continuously outputs it. Therefore, even during an accident, the correction process using the compensation current is executed, and an accurate zero-phase current for ground fault detection can be obtained.

【0010】[0010]

【実施例】図1および図2はこの発明の一実施例による
零相電流検出装置を示すシステム構成図で、図1はその
内、後述する補償電流を作成する部分の構成図、図2は
上記補償電流を合成して地絡リレー4dに出力する部分
の構成図を示す。図において、15a,15b,15c
は、系統のそれぞれA,B,C相の各相電圧、16,1
6aはA相基準の正相電圧を求めるためいわゆる対称座
標法による位相補正の係数を乗算するもので、16は1
20゜、16aは240゜の位相補正を行う。17は補
正後の各相電圧を加算してA相基準の正相電圧18を求
める正相電圧演算手段としての加算器で、この正相電圧
18は以下の補償電流を求める一連のアルゴリズムにお
いて常時および事故中を通じて変化しない基準ベクトル
の電圧源として用いられる。
1 and 2 are system configuration diagrams showing a zero-phase current detecting device according to an embodiment of the present invention. FIG. 1 is a configuration diagram of a portion for producing a compensation current, which will be described later, and FIG. The block diagram of the part which synthesize | combines the said compensation current and outputs to the ground fault relay 4d is shown. In the figure, 15a, 15b, 15c
Are the phase voltages of the A, B, and C phases of the system, and 16 and 1, respectively.
6a is for multiplying a phase correction coefficient by a so-called symmetric coordinate method in order to obtain a positive phase voltage based on the A phase, and 16 is 1
20 ° and 16a perform phase correction of 240 °. Reference numeral 17 denotes an adder as a positive phase voltage calculating means for adding the corrected phase voltages to obtain a positive phase voltage 18 based on the A phase. The positive phase voltage 18 is always used in a series of algorithms for obtaining a compensation current described below. And used as a voltage source for a reference vector that does not change throughout the accident.

【0011】19は各相電圧を加算して零相電圧を検出
する零相電圧検出手段としての加算器,20は零相電圧
が所定の値を越えたとき“H”レベルの信号を出力する
零相電圧検出要素,21は正相電圧18と潮流による零
相電流7との位相差を検定する位相検定要素で、事故
中、即ち零相電圧検出要素20の出力が“H”レベルに
なるとその出力が潮流による零相電流7の入力をロック
し、この間は事故直前の位相差を継続して出力する。2
2は位相検定要素21で得られた位相差データを基に正
相電圧18を座標軸の回転公式により潮流による零相電
流7の位相へ変換し、更に、電圧分を除算して補償電流
23を求める位相シフト要素である。また、24は見か
けの零相電流(見かけの地絡事故電流データ)8から補
償電流23を減算して地絡検出用の零相電流(補償後の
地絡事故電流データ)25として出力する減算手段とし
ての減算器である。
Reference numeral 19 is an adder as a zero-phase voltage detecting means for detecting the zero-phase voltage by adding each phase voltage, and 20 is an "H" level signal when the zero-phase voltage exceeds a predetermined value. The zero-phase voltage detecting element 21 is a phase detecting element for detecting the phase difference between the positive-phase voltage 18 and the zero-phase current 7 due to the power flow. When an accident occurs, that is, when the output of the zero-phase voltage detecting element 20 becomes "H" level. The output locks the input of the zero-phase current 7 due to the tidal current, and the phase difference immediately before the accident is continuously output during this period. Two
2 converts the positive-phase voltage 18 into the phase of the zero-phase current 7 due to the tidal current based on the coordinate formula rotation formula based on the phase difference data obtained by the phase verification element 21, and further divides the voltage component to obtain the compensation current 23. This is the phase shift element to be sought. Further, 24 is a subtraction in which the compensation current 23 is subtracted from the apparent zero-phase current (apparent ground fault current data) 8 and output as a zero-phase current (ground fault fault current data after compensation) 25 for ground fault detection. It is a subtractor as a means.

【0012】次に動作について説明する。図1におい
て、A相,B相,C相の各相電圧をVA,VB,VCとす
ると、加算器17からはVA+aVB+a2C=V1とし
てA相基準の正相電圧V1が得られる。次に位相検定要
素21により位相検定を行う。このアルゴリズムを以下
に示す。ある時刻tとこれより90゜前の時刻(t−9
0゜)における正相電圧、潮流による零相電流をそれぞ
れV1(t),Iod(t),V1(t−90゜),I
od(t−90゜)とし、位相差をψとすれば下記が成立
する。 V1od cosψ=V1(t)・Iod(t)+V1(t−90゜)・Iod(t−9 0゜) V1od sinψ=V1(t)・Iod(t−90゜)−V1(t−90゜)・Iod (t) 上式を30゜毎に計算し、3サイクル程度の平均を求め
てその計算結果を位相シフト要素22へ出力する。
Next, the operation will be described. In FIG. 1, assuming that the A-phase, B-phase, and C-phase voltages are V A , V B , and V C , the adder 17 sets V A + aV B + a 2 V C = V 1 as a positive reference of the A phase. The phase voltage V 1 is obtained. Next, the phase verification is performed by the phase verification element 21. This algorithm is shown below. At a certain time t and 90 ° before this (t-9
The positive phase voltage at 0 °) and the zero phase current due to the power flow are V 1 (t), I od (t), V 1 (t-90 °) and I, respectively.
If od (t-90 °) and the phase difference is ψ, the following holds. V 1 I od cos ψ = V 1 (t) · I od (t) + V 1 (t−90 °) · I od (t−90 °) V 1 I od sin ψ = V 1 (t) · I od ( t-90 °) -V 1 (t-90 °) · I od (t) The above equation is calculated every 30 °, an average of about 3 cycles is calculated, and the calculation result is output to the phase shift element 22.

【0013】位相シフト要素22では位相検定要素21
の出力結果を基に正相電圧18を座標軸の回転方式によ
り潮流による零相電流7の位相へ変換し、更に電圧分を
除算して補償電流23を求める。そのアルゴリズムは下
式となる。 Iod *=(V1(t)・1od cosψ+V1(t−90゜)・1od sinψ) /|V12 但し、Iod * は求めるべき補償電流、また、1od co
および1od sinψには上述した平均値を用いる。
更に、常時の正相電圧V1と事故中の正相電圧V1とはそ
の大きさが多少異なるので、実際には、常時の値を|V
11|、事故中の値を|V12|とすると、例えば、 |V12=|V11|・|V12| として適用する。
In the phase shift element 22, the phase detection element 21
The positive-phase voltage 18 is converted into the phase of the zero-phase current 7 due to the tidal current based on the output result of (1) by the coordinate axis rotation method, and the voltage component is further divided to obtain the compensation current 23. The algorithm is as follows. I od * = (V 1 (t) · V 1 I od cos ψ + V 1 (t−90 °) · V 1 I od sin ψ) / | V 1 | 2 However, I od * is the compensation current to be obtained, and V 1 I od co
The average values described above are used for s ψ and V 1 I od sin ψ .
Furthermore, since the positive-phase voltages V 1 in always positive phase voltage V 1 and accident somewhat different in size, in practice, always of a value | V
11 |, and the value during an accident is | V 12 |, for example, | V 1 | 2 = | V 11 | · | V 12 |

【0014】このようにして補償電流23が求まると、
図2に示すように、見かけの零相電流8から補償電流2
3を減じて潮流による零相電流7を除去し、補償後の電
流を地絡検出用の零相電流として地絡リレー4dへ出力
する。
When the compensation current 23 is obtained in this way,
As shown in FIG. 2, from the apparent zero-phase current 8 to the compensation current 2
3 is subtracted to remove the zero-phase current 7 due to the power flow, and the compensated current is output to the ground fault relay 4d as a zero-phase current for ground fault detection.

【0015】ここで、地絡事故が発生すると、零相電圧
検出要素20が動作して潮流による零相電流7の位相検
定要素21への入力をロックする。この結果、位相検定
要素21は事故直前の演算結果を位相シフト要素22へ
出力し、これに応じて位相シフト要素22も事故直前の
零相電流のデータを使用して正相電圧V1から補償電流
23を求めて出力を継続する。
When a ground fault occurs, the zero-phase voltage detecting element 20 operates to lock the input of the zero-phase current 7 due to the tidal current to the phase detecting element 21. As a result, the phase verification element 21 outputs the calculation result immediately before the accident to the phase shift element 22, and accordingly, the phase shift element 22 also uses the zero phase current data immediately before the accident to compensate from the positive phase voltage V 1. The current 23 is obtained and the output is continued.

【0016】図3は以上の場合の各波形を示し、図中、
25は補償後の事故電流、23は補償電流、26は電流
誤差で、潮流による零相電流7による誤差が常時および
事故中を通じて十分補償されていることが判る。
FIG. 3 shows each waveform in the above case.
25 is a fault current after compensation, 23 is a compensation current, and 26 is a current error. It can be seen that the error due to the zero-phase current 7 due to the tidal current is sufficiently compensated at all times and throughout the fault.

【0017】なお、上記実施例では母線保護継電装置に
適用した場合について説明したが、この発明は電力系統
の他の地絡事故を検出する装置、例えば変圧器保護継電
装置、送電線保護継電装置等にも同様に適用することが
でき同等の効果を奏する。
In the above embodiment, the case where the invention is applied to the busbar protection relay device is explained. However, the present invention is a device for detecting another ground fault accident in the power system, for example, a transformer protection relay device, a transmission line protection. It can be similarly applied to a relay device and the like, and has the same effect.

【0018】[0018]

【発明の効果】この発明は以上のように構成されている
ので、常時、事故時を問わず潮流による零相電流による
誤差が除去され、地絡検出用の正確な零相電流が得ら
れ、信頼性の高い保護動作が確保される。
Since the present invention is configured as described above, an error due to a zero-phase current due to a tidal current is always removed regardless of an accident, and an accurate zero-phase current for ground fault detection is obtained. Reliable protection operation is ensured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による零相電流検出装置の
特に補償電流を求める部分の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a portion for particularly obtaining a compensation current of a zero-phase current detection device according to an embodiment of the present invention.

【図2】この発明の一実施例による零相電流検出装置の
特に補償電流を合成する部分の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a portion for synthesizing a compensation current in the zero-phase current detecting device according to the embodiment of the present invention.

【図3】この発明の一実施例による零相電流検出装置の
動作を説明するための波形図である。
FIG. 3 is a waveform diagram for explaining the operation of the zero-phase current detection device according to the embodiment of the present invention.

【図4】従来の零相電流検出装置の構成を示す図であ
る。
FIG. 4 is a diagram showing a configuration of a conventional zero-phase current detection device.

【図5】従来の装置における地絡リレーへの電流データ
取り込みの様子を示す図である。
FIG. 5 is a diagram showing how current data is taken into a ground fault relay in a conventional device.

【図6】従来の装置の動作を説明するための波形図であ
る。
FIG. 6 is a waveform diagram for explaining the operation of the conventional device.

【符号の説明】[Explanation of symbols]

15 各相電圧 17 正相電圧演算手段としての加算器 18 正相電圧 19 零相電圧検出手段としての加算器 20 零相電圧検出要素 21 位相検定要素 22 補償電流演算手段としての位相シフト要素 23 補償電流 24 減算手段としての減算器 25 地絡検出用の零相電流 15 Each phase voltage 17 Adder as positive phase voltage calculation means 18 Positive phase voltage 19 Adder as zero phase voltage detection means 20 Zero phase voltage detection element 21 Phase verification element 22 Phase shift element 23 as compensation current calculation means 23 Compensation Current 24 Subtractor as subtraction means 25 Zero-phase current for ground fault detection

Claims (1)

【特許請求の範囲】 【請求項1】 系統の各相電流を検出しそれらの算出和
から見かけの零相電流を求める零相電流検出手段、上記
系統の各相電圧を検出し正相電圧を演算出力する正相電
圧演算手段、上記各相電圧から零相電圧を検出する零相
電圧検出手段、上記零相電圧が所定の値以下のとき上記
正相電圧の位相を上記見かけの零相電流の位相に変換し
その大きさを上記見かけの零相電流の大きさに変換演算
して補償電流として出力し、上記零相電圧が上記所定の
値を越えたときは越える直前の上記変換条件を保持して
出力を継続する補償電流演算手段、および上記見かけの
零相電流から上記補償電流演算手段の出力を減算して地
絡検出用の零相電流として出力する減算手段を備えた零
相電流検出装置。
Claim: What is claimed is: 1. A zero-phase current detecting means for detecting each phase current of a system and obtaining an apparent zero-phase current from the calculated sum thereof. Positive phase voltage calculating means for calculating and outputting, zero phase voltage detecting means for detecting zero phase voltage from each phase voltage, phase of the positive phase voltage when the zero phase voltage is a predetermined value or less, the apparent zero phase current When the zero-phase voltage exceeds the predetermined value, the conversion condition immediately before the conversion is performed. Zero-phase current having compensation current calculation means for holding and continuing output, and subtraction means for subtracting the output of the compensation current calculation means from the apparent zero-phase current and outputting it as a zero-phase current for ground fault detection Detection device.
JP18429591A 1991-07-24 1991-07-24 Zero-phase current detector Expired - Fee Related JP2616285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18429591A JP2616285B2 (en) 1991-07-24 1991-07-24 Zero-phase current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18429591A JP2616285B2 (en) 1991-07-24 1991-07-24 Zero-phase current detector

Publications (2)

Publication Number Publication Date
JPH0526933A true JPH0526933A (en) 1993-02-05
JP2616285B2 JP2616285B2 (en) 1997-06-04

Family

ID=16150833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18429591A Expired - Fee Related JP2616285B2 (en) 1991-07-24 1991-07-24 Zero-phase current detector

Country Status (1)

Country Link
JP (1) JP2616285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10500918B2 (en) 2014-09-11 2019-12-10 Mitsubishi Electric Corporation Vehicle air-conditioning apparatus, and vehicle including same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10500918B2 (en) 2014-09-11 2019-12-10 Mitsubishi Electric Corporation Vehicle air-conditioning apparatus, and vehicle including same

Also Published As

Publication number Publication date
JP2616285B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP2565870B2 (en) Differential relay
JP3786372B2 (en) Digital current difference system
JPS6039312A (en) Protective relaying device
JPH0526933A (en) Zero-phase current detection device
JP2001028829A (en) Digital protection relay
JP6161527B2 (en) Transmission line protection relay
JP2778148B2 (en) Ground fault line selection relay for shared multi-line system
JP2723286B2 (en) Ground fault detector
JP2874316B2 (en) Distance relay
JP7250230B1 (en) Transformer protection relay and transformer protection method
JPH11191922A (en) Digital ground distance relaying device
JP2577424B2 (en) Current differential relay method
JP2017005868A (en) Distance relay device and transmission line protection method
JPH0365016A (en) Ground fault detector for distribution line
JP2011045215A (en) Ground fault distance protective relay device
JPH09215177A (en) Method for determining phase and calculating impedance when system power failure occurs
JP2577364B2 (en) 1-line ground fault detection relay system
JPH08126190A (en) Digital protection of electric system
JPH05137237A (en) Digital protective controller
JP2733397B2 (en) Undervoltage relay device with current compensation
JPH08126187A (en) Protection of digital protective relay
JPH0336920A (en) Ground protector for electrical rotary machine
JPS607453B2 (en) digital differential relay
JP2721166B2 (en) Ground fault distance relay method
JPS605130B2 (en) Current differential relay method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees