JPH05268725A - Surge absorbing element - Google Patents

Surge absorbing element

Info

Publication number
JPH05268725A
JPH05268725A JP9166792A JP9166792A JPH05268725A JP H05268725 A JPH05268725 A JP H05268725A JP 9166792 A JP9166792 A JP 9166792A JP 9166792 A JP9166792 A JP 9166792A JP H05268725 A JPH05268725 A JP H05268725A
Authority
JP
Japan
Prior art keywords
surge absorbing
absorbing element
electrodes
insulating member
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9166792A
Other languages
Japanese (ja)
Inventor
Fujio Ikeda
富士男 池田
Masatoshi Abe
政利 阿部
Takaaki Ito
隆明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9166792A priority Critical patent/JPH05268725A/en
Publication of JPH05268725A publication Critical patent/JPH05268725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To form a gap without using complicated laser machining necessary for skill and to manufacture a surge absorbing element simply, efficiently and compactly. CONSTITUTION:A surge absorbing element is constituted of an insulating member 11, a pair of ceramic element bodies 12 and 13 contacted with both surfaces opposed to the insulating member 11 and wrapped with conductive films 12a and 13a, a pair of electrodes 16 and 17 contacted with the outsides of the ceramic element bodies 12 and 13 and welded with lead wires 14 and 15 to the outsides of them, and an insulating pipe body 18 wrapping the insulating member 11 and the ceramic element bodies 12 and 13 and filling with inert gas to adhere to the peripheral surfaces of the electrodes 16 and 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器に侵入する過
渡的な異常電圧や雷サージ等のサージから電子部品を保
護するためのサージ吸収素子に関する。更に詳しくは相
対向する一対の電極が絶縁性管体に気密に封入されるギ
ャップ型サージ吸収素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surge absorbing element for protecting electronic parts from surges such as transient abnormal voltage and lightning surge that enter electronic equipment. More specifically, it relates to a gap type surge absorbing element in which a pair of electrodes facing each other is hermetically sealed in an insulating tube.

【0002】[0002]

【従来の技術】この種のサージ吸収素子は、電子部品の
一対の入力線路にこの電子部品に並列に接続され、電子
部品の使用電圧より高い電圧で動作するように構成され
る。即ち、サージ吸収素子はその放電開始電圧より低い
電圧では抵抗値の高い抵抗体であるが、印加電圧がその
放電開始電圧以上のときには数10Ω以下の抵抗値の低
い抵抗体になる。電子部品に雷サージ等のサージ電圧が
瞬間的に印加されると、サージ吸収素子が放電し、サー
ジ電圧を吸収する。これによりサージ電圧は電子部品に
印加されず、サージ電圧による電子機器の故障や誤動作
が回避される。
2. Description of the Related Art This type of surge absorbing element is connected to a pair of input lines of an electronic component in parallel with the electronic component, and is configured to operate at a voltage higher than the operating voltage of the electronic component. That is, the surge absorbing element is a resistor having a high resistance value at a voltage lower than the discharge starting voltage, but becomes a resistor having a low resistance value of several tens Ω or less when the applied voltage is equal to or higher than the discharge starting voltage. When a surge voltage such as a lightning surge is momentarily applied to an electronic component, the surge absorbing element discharges and absorbs the surge voltage. As a result, the surge voltage is not applied to the electronic component, and the failure or malfunction of the electronic device due to the surge voltage is avoided.

【0003】従来のギャップ型サージ吸収素子のうち、
マイクロギャップ式放電管は、図4に示すように、外周
面が導電性皮膜1aで被覆された円柱状のセラミック素
体1を有する。このセラミック素体1の両端にはキャッ
プ電極2,3が冠着される。キャップ電極2,3が冠着
されたセラミック素体1の中央部分の外周面には数10
μmのマイクロギャップ1bが形成される。キャップ電
極2,3の端面には外面にリード線4,5をそれぞれ溶
着した封止電極6,7が当接される。サージ吸収素子9
は、キャップ電極2,3付きのセラミック素体1と、リ
ード線4,5付きの封止電極6,7を図示するように互
いに接触した状態でガラス管8内に収容し、この状態で
ガラス管8内に不活性ガスを満たし、ガラス管8を電極
6,7に封着することにより作られる。
Among the conventional gap type surge absorbers,
As shown in FIG. 4, the micro gap type discharge tube has a cylindrical ceramic body 1 whose outer peripheral surface is coated with a conductive film 1a. Cap electrodes 2 and 3 are attached to both ends of the ceramic body 1. There are several tens on the outer peripheral surface of the central portion of the ceramic body 1 to which the cap electrodes 2 and 3 are attached.
A microgap 1b of μm is formed. Sealing electrodes 6 and 7 having lead wires 4 and 5 welded to the outer surfaces thereof are in contact with the end surfaces of the cap electrodes 2 and 3, respectively. Surge absorbing element 9
Holds the ceramic body 1 with the cap electrodes 2 and 3 and the sealing electrodes 6 and 7 with the lead wires 4 and 5 in contact with each other in the glass tube 8 as shown in FIG. It is made by filling the tube 8 with an inert gas and sealing the glass tube 8 to the electrodes 6 and 7.

【0004】[0004]

【発明が解決しようとする課題】上記従来のサージ吸収
素子では、レーザビームで導電性皮膜をトリミングする
ことによりセラミック素体の外周面にマイクロギャップ
を形成している。このレーザ加工装置の加工条件の設定
は複雑であるため、レーザビームによるマイクロギャッ
プの形成には時間がかかる不具合があった。またレーザ
ビームで形成されたマイクロギャップの大きさはばらつ
きを生じ易いため、この加工には熟練した技術を要し、
サージ吸収素子を簡便に製造することができない欠点が
あった。更に封止電極と導電性皮膜との電気的接続を良
好にするために、セラミック素体の両端にキャップ電極
を冠着する必要がある。このキャップ電極を冠着のため
にセラミック素体を長くし、また上記レーザ加工のため
にセラミック素体の太さを大きくしなければならない問
題点があった。
In the conventional surge absorbing element described above, a microgap is formed on the outer peripheral surface of the ceramic body by trimming the conductive film with a laser beam. Since the setting of the processing conditions of this laser processing apparatus is complicated, there is a problem that it takes time to form the microgap by the laser beam. In addition, since the size of the microgap formed by the laser beam tends to vary, this processing requires a skilled technique,
There is a drawback that the surge absorbing element cannot be manufactured easily. Furthermore, in order to improve the electrical connection between the sealing electrode and the conductive film, it is necessary to cap both ends of the ceramic body with cap electrodes. There has been a problem that the ceramic element body must be lengthened to cover the cap electrode and the thickness of the ceramic element body must be increased for the laser processing.

【0005】本発明の目的は、複雑で熟練を要するレー
ザ加工によらずにギャップを形成し、簡便に効率よく製
造し得るサージ吸収素子を提供することにある。また本
発明の別の目的は、短小に製造し得るサージ吸収素子を
提供することにある。
An object of the present invention is to provide a surge absorbing element which can be simply and efficiently manufactured by forming a gap without using complicated and skillful laser processing. Another object of the present invention is to provide a surge absorbing element that can be manufactured in a short size.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成を図1及び図2に基づいて説明する。
本発明のサージ吸収素子19は、絶縁性部材11と、こ
の絶縁性部材11の相対向する両面にそれぞれ当接され
導電性皮膜12a,13aでそれぞれ被包された一対の
セラミック素体12,13と、これらのセラミック素体
12,13の各外面にそれぞれ当接され各外面にリード
線14,15が溶着された一対の電極16,17と、絶
縁性部材11とセラミック素体12,13とを包みかつ
不活性ガスを満たして電極16,17の外周に封着され
た絶縁性管体18とを備えたものである。
In order to achieve the above object, the structure of the present invention will be described with reference to FIGS. 1 and 2.
The surge absorbing element 19 of the present invention includes an insulating member 11 and a pair of ceramic element bodies 12, 13 abutted on opposite surfaces of the insulating member 11 and covered with conductive films 12a, 13a, respectively. And a pair of electrodes 16 and 17 that are in contact with the outer surfaces of the ceramic bodies 12 and 13 and have lead wires 14 and 15 welded to the outer surfaces, the insulating member 11 and the ceramic bodies 12 and 13. And an insulating tube 18 that is filled with an inert gas and is sealed to the outer circumferences of the electrodes 16 and 17.

【0007】絶縁性部材11としては、アルミナ、ムラ
イト、ステアタイト、フォルステライト又はベリリアの
ような体積固有抵抗率が1014Ωcm以上の絶縁性の高
いセラミックスが好ましい。絶縁性部材11の厚さはサ
ージ耐量と応答電圧等に応じて決められるが、サージ吸
収素子のアーク放電をより生じ易くするためには、この
絶縁性部材11の厚さは薄いことが好ましい。また絶縁
性部材の両面は互いに平行であることが導電性皮膜12
a,13a間のアーク放電が皮膜端縁に均一に行われる
ため好ましい。セラミック素体12,13は絶縁性材料
であれば特に制限されないが、絶縁性部材11と同一の
材質でもよい。セラミック素体12,13を被包してそ
の表面に形成される導電性皮膜12a,13aとして
は、チタン、ニッケル、酸化錫又は窒化チタンのような
導電性に優れた金属薄膜が好ましい。この皮膜はスパッ
タリング、真空蒸着等により素体12,13全体を包ん
で形成される。電極16,17は絶縁性管体18の封着
時に管体にクラック等が入らないように、絶縁性管体1
8と熱膨張係数が近い材質のものを選定する。絶縁性管
体がホウケイ酸ガラス、鉛ガラス等からなるガラス管の
場合には、ガラス管の熱膨張係数が整合するジュメット
線(Dumet wire)又はアンバー(Invar)が好ましい。
電極16,17は絶縁性管体18が封止する前にリード
線14,15を各外面に溶着しておく。また絶縁性管体
18内にはアルゴンガスのような希ガス又は窒素ガスが
封入される。
The insulating member 11 is preferably made of highly insulating ceramic having a volume resistivity of 10 14 Ωcm or more, such as alumina, mullite, steatite, forsterite or beryllia. The thickness of the insulating member 11 is determined in accordance with the surge withstand capability, the response voltage, etc., but it is preferable that the thickness of the insulating member 11 is thin in order to more easily cause arc discharge of the surge absorbing element. In addition, it is necessary that both surfaces of the insulating member be parallel to each other.
It is preferable that arc discharge between a and 13a is uniformly generated at the edge of the coating. The ceramic bodies 12 and 13 are not particularly limited as long as they are insulating materials, but may be the same material as the insulating member 11. As the conductive coatings 12a and 13a that are formed on the surfaces of the ceramic bodies 12 and 13 by encapsulating them, metal thin films having excellent conductivity such as titanium, nickel, tin oxide or titanium nitride are preferable. This film is formed by wrapping the entire element bodies 12 and 13 by sputtering, vacuum deposition or the like. The electrodes 16 and 17 are made of insulating tube 1 so that cracks or the like do not enter the tube when the insulating tube 18 is sealed.
Select a material whose thermal expansion coefficient is close to that of No. 8. When the insulating tube is a glass tube made of borosilicate glass, lead glass, or the like, Dumet wire or Invar with which the thermal expansion coefficient of the glass tube matches is preferable.
For the electrodes 16 and 17, the lead wires 14 and 15 are welded to the respective outer surfaces before the insulating tube 18 is sealed. A rare gas such as argon gas or nitrogen gas is enclosed in the insulating tube body 18.

【0008】本発明のサージ吸収素子は次の方法により
製造される。先ず、リード線14を溶着した一方の電極
16を絶縁性管体18の端部に挿入し、絶縁性管体18
の別の端部が上方にくるように絶縁性管体18を鉛直方
向に立てる。次いで、導電性皮膜12aの付いたセラミ
ック素体12、絶縁性部材11及び導電性皮膜13aの
付いたセラミック素体13をこの順序で絶縁性管体18
内に落とし込む。次に、これらの上にリード線15を溶
着した他方の電極17を絶縁性管体18に挿入する。絶
縁性部材11とセラミック素体12,13を電極16及
び17で挾持した状態で絶縁性管体18の内部を真空引
きして空気を抜き、代わりに不活性ガスを導入する。こ
の状態でカーボンヒータ(図示せず)により絶縁性管体
18及び電極16,17を加熱すると、絶縁性管体18
が電極16,17に封着される。
The surge absorbing element of the present invention is manufactured by the following method. First, the one electrode 16 to which the lead wire 14 is welded is inserted into the end portion of the insulating tubular body 18,
The insulative tube 18 is erected vertically so that the other end of the is up. Then, the ceramic body 12 having the conductive coating 12a, the insulating member 11 and the ceramic body 13 having the conductive coating 13a are arranged in this order on the insulating tube 18
Drop it in. Next, the other electrode 17 having the lead wire 15 welded thereon is inserted into the insulating tubular body 18. While the insulating member 11 and the ceramic bodies 12 and 13 are held between the electrodes 16 and 17, the inside of the insulating tube body 18 is evacuated to remove air, and an inert gas is introduced instead. In this state, when the insulating tubular body 18 and the electrodes 16 and 17 are heated by the carbon heater (not shown), the insulating tubular body 18 is heated.
Are sealed to the electrodes 16 and 17.

【0009】[0009]

【作用】セラミック素体12,13の絶縁性部材11の
接触面と反対側の外面についても導電性皮膜12a,1
3aで被覆されているため、従来のキャップ電極を設け
なくても電極16,17と電気的に良好に接続される。
電極16,17にサージ電圧が印加されると、絶縁性部
材11によって形成されたギャップを介して皮膜12a
と13aの間でアーク放電する。絶縁性部材11がセラ
ミック素体12,13より小径であれば、皮膜12a,
13a同士が対向するため、放電遅れなく容易にアーク
放電が行われる。
The conductive coatings 12a, 1 are formed on the outer surfaces of the ceramic bodies 12, 13 opposite to the contact surface of the insulating member 11.
Since it is covered with 3a, it can be electrically well connected to the electrodes 16 and 17 without providing a conventional cap electrode.
When a surge voltage is applied to the electrodes 16 and 17, the film 12 a is passed through the gap formed by the insulating member 11.
Arc discharges between and 13a. If the insulating member 11 has a smaller diameter than the ceramic bodies 12 and 13, the film 12a,
Since 13a face each other, arc discharge can be easily performed without delay in discharge.

【0010】[0010]

【実施例】次に本発明の実施例を比較例とともに説明す
る。本発明はこの実施例に限定されるものではない。 <実施例>図1及び図2に示すように、厚さ約0.05
mm、直径約1.0mmのアルミナからなるディスク状
の絶縁性部材11の相対向する両面に、チタンからなる
導電性皮膜12a,13aでそれぞれ被包された一対の
セラミック素体12,13がそれぞれ当接される。皮膜
12a,13aはスパッタリングにより形成される。セ
ラミック素体12,13はそれぞれ円柱状をなし、長さ
約0.5mmで直径約1.3mmであって、ムライトか
らなる。各外面にリード線14,15が溶着された一対
の電極16,17がセラミック素体12,13の各外面
にそれぞれ当接される。電極16,17は直径約1.5
mmのジュメット線を長さ約2mmに輪切りにしたもの
である。鉛ガラスからなるガラス管18の中で絶縁性部
材11とセラミック素体12,13が電極16,17で
挾持され、この状態でアルゴンガスで満たして絶縁性管
体18が電極16,17の外周に封着される。ガラス管
18は外径が約2.6mm、長さが約5.0mmであ
る。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. The invention is not limited to this example. <Example> As shown in FIGS. 1 and 2, the thickness is about 0.05.
mm and a diameter of about 1.0 mm, a pair of ceramic bodies 12 and 13 respectively covered with conductive coatings 12a and 13a made of titanium are formed on opposite surfaces of a disk-shaped insulating member 11 made of alumina. Abut. The films 12a and 13a are formed by sputtering. Each of the ceramic bodies 12 and 13 has a cylindrical shape, a length of about 0.5 mm, a diameter of about 1.3 mm, and is made of mullite. A pair of electrodes 16, 17 having lead wires 14, 15 welded to their respective outer surfaces are brought into contact with the respective outer surfaces of the ceramic bodies 12, 13. The electrodes 16 and 17 have a diameter of about 1.5.
mm dumet wire is sliced into a length of about 2 mm. Insulating member 11 and ceramic bodies 12 and 13 are sandwiched between electrodes 16 and 17 in a glass tube 18 made of lead glass. In this state, insulating tube 18 is filled with argon gas and insulating tube 18 is wrapped around electrodes 16 and 17. Is sealed to. The glass tube 18 has an outer diameter of about 2.6 mm and a length of about 5.0 mm.

【0011】<比較例>図4に示される前述したサージ
吸収素子9を比較例とした。ここでセラミック素体1は
長さ約3mm、直径約1mmであって、実施例のセラミ
ック素体12,13と同一のムライトからなる。この表
面には実施例と同一材質で同一厚さの導電性皮膜1aが
形成され、その中央部分の外周面には幅約50μmのマ
イクロギャップ1bが形成される。キャップ電極2,3
の端面には長さ約2mm、直径約1.5mmであって、
実施例と同一材質の封止電極6,7が当接される。キャ
ップ電極2,3付きのセラミック素体1と、リード線
4,5付きの封止電極6,7がガラス管8内に収容さ
れ、ガラス管8が内部にアルゴンガスを満たして電極
6,7に封着される。ガラス管8は外径が約2.6m
m、長さが約7.0mmである。
<Comparative Example> The aforementioned surge absorbing element 9 shown in FIG. 4 was used as a comparative example. Here, the ceramic body 1 has a length of about 3 mm and a diameter of about 1 mm, and is made of the same mullite as the ceramic bodies 12 and 13 of the embodiment. A conductive film 1a made of the same material and having the same thickness as that of the embodiment is formed on this surface, and a microgap 1b having a width of about 50 μm is formed on the outer peripheral surface of the central portion thereof. Cap electrodes 2 and 3
Is about 2 mm long and about 1.5 mm in diameter,
Sealing electrodes 6 and 7 made of the same material as in the embodiment are brought into contact with each other. The ceramic body 1 with the cap electrodes 2 and 3 and the sealing electrodes 6 and 7 with the lead wires 4 and 5 are housed in a glass tube 8, and the glass tube 8 is filled with argon gas to form the electrodes 6 and 7. Is sealed to. The outer diameter of the glass tube 8 is about 2.6 m.
m, and the length is about 7.0 mm.

【0012】実施例及び比較例のサージ吸収素子につい
て静電気寿命試験と、疑似サージ応答試験を行った。 <静電気寿命試験>図3に示される回路の出力端子21
及び22にサージ吸収素子のリード線を接続して静電気
寿命試験を行った。図3において23は10kVの直流
電源、24は静電容量1000pFのコンデンサ、25
は250Ωの抵抗体、26は充放電用切換スイッチであ
る。スイッチ26を図の実線に示すように接点aに切換
えコンデンサ24に10kVの電圧を印加してコンデン
サ24を充電した後、スイッチ26を図の破線に示すよ
うに接点bに切換えてコンデンサ24を放電させてサー
ジ吸収素子に静電気を印加した。実施例及び比較例のサ
ージ吸収素子に2000回ずつ繰返し上記静電気を印加
して、各サージ吸収素子の試験前後の放電開始電圧、絶
縁抵抗、静電容量をそれぞれ測定した。その結果、試験
前の実施例と比較例のサージ吸収素子はともに放電開始
電圧が200Vであって、絶縁抵抗値が1011Ω以上で
静電容量は0.5pFであった。試験後に測定したとこ
ろ、実施例と比較例のサージ吸収素子はともに放電開始
電圧が200Vであって、絶縁抵抗値が1011Ω以上で
静電容量は0.5pFであり、各値に変化がなかった。
An electrostatic life test and a pseudo surge response test were conducted on the surge absorbers of the examples and comparative examples. <Electrostatic life test> Output terminal 21 of the circuit shown in FIG.
A static absorption life test was conducted by connecting the lead wires of the surge absorbing element to # 22 and # 22. In FIG. 3, 23 is a 10 kV DC power source, 24 is a capacitor having an electrostatic capacity of 1000 pF, and 25
Is a 250Ω resistor, and 26 is a charge / discharge changeover switch. The switch 26 is switched to the contact a as shown by the solid line in the figure, and a voltage of 10 kV is applied to the capacitor 24 to charge the capacitor 24. Then, the switch 26 is switched to the contact b as shown by the broken line in the figure to discharge the capacitor 24. Then, static electricity was applied to the surge absorbing element. The above static electricity was repeatedly applied 2000 times to the surge absorbing elements of the examples and comparative examples, and the discharge starting voltage, insulation resistance, and capacitance of each surge absorbing element before and after the test were measured. As a result, both the surge absorbing elements of the example and the comparative example before the test had a discharge starting voltage of 200 V, an insulation resistance value of 10 11 Ω or more, and a capacitance of 0.5 pF. When measured after the test, the surge absorption elements of Examples and Comparative Examples both had a discharge starting voltage of 200 V, an insulation resistance value of 10 11 Ω or more, and an electrostatic capacitance of 0.5 pF, and there was a change in each value. There wasn't.

【0013】<疑似サージ応答試験>実施例と比較例の
サージ吸収素子に(1.2×50)μsec−10kV
の電圧サージを100回ずつ繰返し印加し、その動作電
圧を測定した。実施例と比較例のサージ吸収素子はいず
れも直流放電開始電圧が200Vに設計されたものを用
いた。比較例のサージ吸収素子が平均400Vで放電を
開始し、その標準偏差が50であったのに対して、実施
例のサージ吸収素子も同様に平均400Vで放電を開始
し、その標準偏差が50であった。以上のことから、実
施例のサージ吸収素子は比較例のサージ吸収素子と比較
して耐久性及びサージ吸収特性において劣らないことが
判った。
<Pseudo Surge Response Test> (1.2 × 50) μsec−10 kV for the surge absorbing elements of the example and the comparative example.
Was repeatedly applied 100 times, and the operating voltage was measured. The surge absorbing elements of the examples and the comparative examples were designed to have a DC discharge inception voltage of 200V. The surge absorbing element of the comparative example started discharging at an average of 400 V and its standard deviation was 50, whereas the surge absorbing element of the example similarly started discharging at an average of 400 V and its standard deviation was 50. Met. From the above, it was found that the surge absorbing element of the example is not inferior in durability and surge absorbing characteristics to the surge absorbing element of the comparative example.

【0014】[0014]

【発明の効果】以上述べたように、本発明のサージ吸収
素子は、従来のレーザ加工によらずにギャップを形成す
るため、ギャップのばらつきに起因した不良品の発生率
が低く、簡便に効率よく製造することができ、しかも従
来のサージ吸収素子と同等の電気的特性を有する。また
従来のキャップ電極を用いないため、長さと太さが小さ
くでき、サージ吸収素子の実装スペースをより小さくす
ることができる。
As described above, in the surge absorbing element of the present invention, since the gap is formed without the conventional laser processing, the rate of defective products due to the variation of the gap is low, and the efficiency is simplified. It can be manufactured well and has electrical characteristics equivalent to those of conventional surge absorbing elements. Further, since the conventional cap electrode is not used, the length and the thickness can be reduced, and the mounting space for the surge absorbing element can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のサージ吸収素子の断面図。FIG. 1 is a sectional view of a surge absorber according to an embodiment of the present invention.

【図2】その分解斜視図。FIG. 2 is an exploded perspective view thereof.

【図3】実施例及び比較例の静電気寿命試験回路。FIG. 3 is an electrostatic life test circuit of Examples and Comparative Examples.

【図4】従来例のサージ吸収素子の断面図。FIG. 4 is a cross-sectional view of a conventional surge absorber.

【符号の説明】[Explanation of symbols]

11 絶縁性部材 12,13 セラミック素体 12a,13a 導電性皮膜 14,15 リード線 16,17 電極 18 絶縁性管体 19 サージ吸収素子 11 Insulating member 12,13 Ceramic element body 12a, 13a Conductive film 14,15 Lead wire 16,17 Electrode 18 Insulating tube body 19 Surge absorbing element

フロントページの続き (72)発明者 伊藤 隆明 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内Front page continuation (72) Inventor Takaaki Ito 2270 Yokose, Yokose-cho, Chichibu-gun, Saitama Sanryo Materials Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性部材(11)と、 前記絶縁性部材(11)の相対向する両面にそれぞれ当接さ
れ導電性皮膜(12a,13a)でそれぞれ被包された一対のセ
ラミック素体(12,13)と、 前記一対のセラミック素体(12,13)の各外面にそれぞれ
当接され各外面にリード線(14,15)が溶着された一対の
電極(16,17)と、 前記絶縁性部材(11)と前記セラミック素体(12,13)とを
包みかつ不活性ガスを満たして前記電極(16,17)の外周
に封着された絶縁性管体(18)とを備えたサージ吸収素
子。
1. An insulating member (11), and a pair of ceramic bodies (1) abutted on opposite surfaces of the insulating member (11) and respectively covered with conductive films (12a, 13a). 12, 13), and a pair of electrodes (16, 17) in which lead wires (14, 15) are welded to the outer surfaces of the pair of ceramic element bodies (12, 13), respectively, and abutted on the outer surfaces, An insulating tube body (18) that encloses the insulating member (11) and the ceramic body (12, 13) and is filled with an inert gas and sealed to the outer periphery of the electrode (16, 17). Surge absorber.
【請求項2】 絶縁性部材(11)がアルミナ、ムライト、
ステアタイト、フォルステライト又はベリリアである請
求項1記載のサージ吸収素子。
2. The insulating member (11) is made of alumina, mullite,
The surge absorbing element according to claim 1, which is steatite, forsterite or beryllia.
【請求項3】 導電性皮膜(12a,13a)がチタン、ニッケ
ル、酸化錫又は窒化チタンである請求項1記載のサージ
吸収素子。
3. The surge absorbing element according to claim 1, wherein the conductive film (12a, 13a) is titanium, nickel, tin oxide or titanium nitride.
【請求項4】 絶縁性管体(18)がガラス管である請求項
1記載のサージ吸収素子。
4. The surge absorbing element according to claim 1, wherein the insulating tube body (18) is a glass tube.
【請求項5】 電極(16,17)がジュメット線又はアンバ
ーである請求項4記載のサージ吸収素子。
5. The surge absorbing element according to claim 4, wherein the electrodes (16, 17) are Dumet wires or amber.
【請求項6】 不活性ガスが希ガス又は窒素ガスである
請求項1記載のサージ吸収素子。
6. The surge absorbing element according to claim 1, wherein the inert gas is a rare gas or a nitrogen gas.
JP9166792A 1992-03-17 1992-03-17 Surge absorbing element Pending JPH05268725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9166792A JPH05268725A (en) 1992-03-17 1992-03-17 Surge absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9166792A JPH05268725A (en) 1992-03-17 1992-03-17 Surge absorbing element

Publications (1)

Publication Number Publication Date
JPH05268725A true JPH05268725A (en) 1993-10-15

Family

ID=14032838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9166792A Pending JPH05268725A (en) 1992-03-17 1992-03-17 Surge absorbing element

Country Status (1)

Country Link
JP (1) JPH05268725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576922A (en) * 1994-05-18 1996-11-19 Iriso Electronics Co., Ltd. Surge absorbing structure, surge absorbing element, connector and circuit device using these structure and element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232881A (en) * 1986-03-31 1987-10-13 ロ−ム株式会社 Surge absorber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232881A (en) * 1986-03-31 1987-10-13 ロ−ム株式会社 Surge absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576922A (en) * 1994-05-18 1996-11-19 Iriso Electronics Co., Ltd. Surge absorbing structure, surge absorbing element, connector and circuit device using these structure and element

Similar Documents

Publication Publication Date Title
US10685805B2 (en) Gas discharge tube assemblies
US5559663A (en) Surge absorber
JPH05268725A (en) Surge absorbing element
JPH0661018A (en) Surge absorbing element
US4546402A (en) Hermetically sealed gas tube surge arrester
JP3303025B2 (en) Chip type micro gap type surge absorber
JP3431047B2 (en) Surge absorber for power supply
JP3265874B2 (en) surge absorber
JPH06140210A (en) Surge absorbing element
JP3134912B2 (en) surge absorber
KR200405295Y1 (en) Chip Typed Surge Arrester
JP2707570B2 (en) Micro gap surge absorber
JP3536592B2 (en) Discharge tube type surge absorber
GB2203286A (en) Surge arrester
JP3265827B2 (en) Chip type micro gap type surge absorber
JP3428610B2 (en) Micro gap type surge absorber
JP4239422B2 (en) surge absorber
JPH05283141A (en) Gap type surge absorber
JP2615221B2 (en) Gas input / discharge arrester
JP3745242B2 (en) Discharge type surge absorber
JPH0878134A (en) Serge absorber and its manufacture
JPH1022042A (en) Electronic part sealing body
KR20060041945A (en) A surge protector device and its fabrication method
JP2000003775A (en) Chip type surge absorber and manufacture thereof
JPH0878133A (en) Serge absorber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961119