JPH05268575A - Inter-field interpolation picture element generating method and circuit - Google Patents

Inter-field interpolation picture element generating method and circuit

Info

Publication number
JPH05268575A
JPH05268575A JP4058505A JP5850592A JPH05268575A JP H05268575 A JPH05268575 A JP H05268575A JP 4058505 A JP4058505 A JP 4058505A JP 5850592 A JP5850592 A JP 5850592A JP H05268575 A JPH05268575 A JP H05268575A
Authority
JP
Japan
Prior art keywords
luminance signal
still image
circuit
signal
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4058505A
Other languages
Japanese (ja)
Other versions
JP2766419B2 (en
Inventor
Masahiro Yoshida
昌弘 吉田
Yukio Otobe
幸男 乙部
Hidenaga Takahashi
秀長 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4058505A priority Critical patent/JP2766419B2/en
Publication of JPH05268575A publication Critical patent/JPH05268575A/en
Application granted granted Critical
Publication of JP2766419B2 publication Critical patent/JP2766419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Television Signal Processing For Recording (AREA)
  • Television Systems (AREA)

Abstract

PURPOSE:To improve the resolution in the vertical direction with simple configu ration with respect to the inter-field interpolation picture element generating method and its circuit in which an inter-field interpolation picture element is generated from a still picture luminance signal subjected to inter-frame interpo lation and a signal resulting from delaying the still picture luminance signal by one field in the still picture luminance signal reproduction processing in a MUSE decoder. CONSTITUTION:A 2nd still picture luminance signal SB resulting from delaying a 1st still picture luminance signal SA subjected to inter-frame interpolation by one line is delayed by one line and an average value between the 2nd still picture luminance signal SB and a signal delaying the signal SB by one line is calculated by an arithmetic operation circuit 35, a difference between the 1st still picture luminance signal and the average value is calculated to eliminate the high frequency component included in the difference and the sum of the average value and the difference with the high frequency component eliminated therefrom is calculated by an adder circuit 39 to generate an inter-field interpolation picture element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MUSEデコーダでの
静止画輝度信号再生処理において、フレーム間内挿され
た静止画輝度信号とこの信号を1フィールド遅延させた
信号とからフィールド間内挿画素を生成するフィールド
間内挿画素生成方法及びその回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inter-field interpolated pixel from a still picture luminance signal interpolated between frames and a signal obtained by delaying this signal by one field in a still picture luminance signal reproduction process in a MUSE decoder. The invention relates to an interfield interpolation pixel generation method and a circuit thereof.

【0002】[0002]

【従来の技術】MUSEデコーダでの静止画輝度信号再
生処理においては、図6に示すようなフィールド間内挿
画素生成回路(2次元フィルタ)が用いられる。
2. Description of the Related Art In a still picture luminance signal reproduction process in a MUSE decoder, an interfield interpolation pixel generation circuit (two-dimensional filter) as shown in FIG. 6 is used.

【0003】静止画輝度信号SAは、不図示のフレーム
間内挿回路で得られた現在のフィールドの信号であり、
再生画像を構成する4フィールドの静止画輝度信号のう
ち、現在のフィールドの静止画輝度信号と1フレーム前
(2フィールド前)の静止画輝度信号とを内挿したもの
である。一方、静止画輝度信号SBは、この静止画輝度
信号SAを1フィールド遅延回路で遅延させた信号であ
る。
The still picture luminance signal SA is a signal of the current field obtained by an inter-frame interpolation circuit (not shown),
Among the still image luminance signals of four fields forming the reproduced image, the still image luminance signal of the current field and the still image luminance signal of one frame before (two fields before) are interpolated. On the other hand, the still image brightness signal SB is a signal obtained by delaying the still image brightness signal SA with a 1-field delay circuit.

【0004】静止画輝度信号SAは、1ライン遅延回路
11及びフィルタ12を介し静止画輝度信号SA3とし
て加算器10に供給され、1ライン遅延回路11、13
及びフィルタ14を介し静止画輝度信号SA2として加
算器10に供給され、1ライン遅延回路11、13、1
5及びフィルタ16を介し静止画輝度信号SA1として
加算器10に供給される。
The still image brightness signal SA is supplied to the adder 10 as a still image brightness signal SA3 via the 1-line delay circuit 11 and the filter 12, and is supplied to the 1-line delay circuits 11 and 13.
And is supplied to the adder 10 as the still image luminance signal SA2 via the filter 14 and the 1-line delay circuits 11, 13, 1
It is supplied to the adder 10 as a still image luminance signal SA1 via the filter 5 and the filter 16.

【0005】静止画輝度信号SBは、フィルタ20を介
し静止画輝度信号SB4として加算器10に供給され、
1ライン遅延回路21及びフィルタ22を介し静止画輝
度信号SB3として加算器10に供給され、1ライン遅
延回路21、23及びフィルタ24を介し静止画輝度信
号SB2として加算器10に供給され、1ライン遅延回
路21、23、25及びフィルタ26を介し静止画輝度
信号SB1として加算器10に供給される。
The still image brightness signal SB is supplied to the adder 10 as a still image brightness signal SB4 via the filter 20,
It is supplied to the adder 10 as a still image brightness signal SB3 via the 1-line delay circuit 21 and the filter 22, and is supplied to the adder 10 as a still image brightness signal SB2 via the 1-line delay circuits 21 and 23 and the filter 24 to be supplied to 1 line. It is supplied to the adder 10 as a still image brightness signal SB1 via the delay circuits 21, 23, 25 and the filter 26.

【0006】加算器10は、これら静止画輝度信号SA
1〜SA3及びSB1〜SB4を加算し、図7に示す内
挿画素PMの静止画輝度信号として出力する。図中、画
素PA11〜PA16は静止画輝度信号SA1の画素で
あり、画素PB11〜PB16は静止画輝度信号SB1
の画素である。また、図中の直線は、この直線上の画素
の輝度信号値に定数を乗じて加算することにより内挿画
素PMの静止画輝度信号を作成することを表している。
この定数は、フィルタ12、14、16、20、22、
24及び26により乗じられる。
The adder 10 receives the still picture luminance signal SA.
1 to SA3 and SB1 to SB4 are added and output as a still image luminance signal of the interpolated pixel PM shown in FIG. In the figure, pixels PA11 to PA16 are pixels of the still image brightness signal SA1, and pixels PB11 to PB16 are still image brightness signals SB1.
Pixels. The straight line in the figure indicates that the still image brightness signal of the interpolated pixel PM is created by multiplying the brightness signal value of the pixel on this line by a constant and adding the result.
The constants are the filters 12, 14, 16, 20, 22,
Multiplied by 24 and 26.

【0007】しかし、図6の回路は大規模となり、か
つ、クロック周波数48.6MHzで高速処理しなけれ
ばならないので、コスト高となると共に消費電力が大き
くなる。
However, the circuit shown in FIG. 6 is large in scale and needs to be processed at high speed with a clock frequency of 48.6 MHz, resulting in high cost and high power consumption.

【0008】このような問題を解決するために、図8に
示すようなフィールド間内挿回路が用いられている。
In order to solve such a problem, an inter-field interpolation circuit as shown in FIG. 8 is used.

【0009】32.4MHzの静止画輝度信号SAは、
32/48MHzクロックレート変換回路30に供給さ
れて48.6Hzの静止画輝度信号にされた後、合成回
路31に供給される。一方、静止画輝度信号SAを1フ
ィールド遅延させた静止画輝度信号SBは、32/48
MHzクロックレート変換回路32に供給されて48.
6Hzの静止画輝度信号SBにされた後、垂直フィルタ
33に供給される。
The still image luminance signal SA of 32.4 MHz is
It is supplied to the 32/48 MHz clock rate conversion circuit 30 and converted into a still image luminance signal of 48.6 Hz, and then supplied to the synthesis circuit 31. On the other hand, the still image brightness signal SB obtained by delaying the still image brightness signal SA by one field is 32/48.
48. MHz supplied to the MHz clock rate conversion circuit 32.
After being converted into a still image brightness signal SB of 6 Hz, it is supplied to the vertical filter 33.

【0010】この垂直フィルタ33は、図6の回路を簡
略化したフィールド間内挿画素生成回路であり、1ライ
ン遅延回路34と平均値演算回路35とからなる。平均
値演算回路35は、32/48MHzクロックレート変
換回路32からの静止画輝度信号と、これを1ライン遅
延回路34で1ライン遅延させた静止画輝度信号との平
均値を演算し、その結果を合成回路31に供給する。
The vertical filter 33 is an inter-field interpolation pixel generation circuit which is a simplified circuit of the circuit of FIG. 6, and comprises a 1-line delay circuit 34 and an average value calculation circuit 35. The average value calculation circuit 35 calculates the average value of the still image brightness signal from the 32/48 MHz clock rate conversion circuit 32 and the still image brightness signal obtained by delaying the still image brightness signal by 1 line by the 1 line delay circuit 34, and the result is obtained. Is supplied to the synthesis circuit 31.

【0011】合成回路31は、32/48MHzクロッ
クレート変換回路30の出力と平均値演算回路35の出
力とを輝度サンプリング位相信号SSに同期して合成し
フィールド間内挿された静止画輝度信号SCを出力す
る。
The synthesizing circuit 31 synthesizes the output of the 32/48 MHz clock rate converting circuit 30 and the output of the average value calculating circuit 35 in synchronization with the luminance sampling phase signal SS and interpolates a still picture luminance signal SC. Is output.

【0012】上記構成において、垂直フィルタ33は、
図9に示す如く、静止画輝度信号SB1の画素PB11
の信号値(SB11)と1ライン前の静止画輝度信号S
B2の画素PB21の信号値(SB21)との平均値を
演算し、これを内挿画素PC11の信号値として出力す
る。合成回路31は、静止画輝度信号SAの画素PA1
1の信号値を出力し、次に、内挿画素PC11の信号値
を出力する。次に垂直フィルタ33は、静止画輝度信号
SB1の画素PB12の信号値と1ライン前の静止画輝
度信号SB2の画素PB22の信号値との平均値を演算
し、これを内挿画素PC12の信号値として出力する。
合成回路31は、静止画輝度信号SAの画素PA12の
信号値を出力し、次に、内挿画素PC12の信号値を出
力する。以下同様の処理が行われる。
In the above structure, the vertical filter 33 is
As shown in FIG. 9, the pixel PB11 of the still image brightness signal SB1
Signal value (SB11) and the still image brightness signal S one line before
The average value with the signal value (SB21) of the pixel PB21 of B2 is calculated, and this is output as the signal value of the interpolation pixel PC11. The synthesizing circuit 31 uses the pixel PA1 of the still image luminance signal SA
The signal value of 1 is output, and then the signal value of the interpolation pixel PC11 is output. Next, the vertical filter 33 calculates the average value of the signal value of the pixel PB12 of the still image luminance signal SB1 and the signal value of the pixel PB22 of the still image luminance signal SB2 one line before, and calculates this as the signal of the interpolation pixel PC12. Output as a value.
The synthesizing circuit 31 outputs the signal value of the pixel PA12 of the still image luminance signal SA, and then outputs the signal value of the interpolated pixel PC12. The same processing is performed thereafter.

【0013】しかし、単に静止画輝度信号SBを垂直フ
ィルタ33に通したものを静止画輝度信号SAに内挿す
るだけなので、垂直方向の解像度が劣化する。
However, since the still picture luminance signal SB passed through the vertical filter 33 is simply interpolated into the still picture luminance signal SA, the vertical resolution deteriorates.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、この
ような問題点に鑑み、簡単な構成で垂直方向の解像度を
向上させることができるフィールド間内挿画素生成方法
及びその回路を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an inter-field interpolated pixel generation method and circuit capable of improving the vertical resolution with a simple structure. Especially.

【0015】[0015]

【課題を解決するための手段及びその作用】本発明に係
るフィールド間内挿画素生成方法及びその回路を、実施
例図中の対応する構成要素の符号を引用して説明する。
Means for Solving the Problem and Its Action The interfield interpolated pixel generating method and its circuit according to the present invention will be described with reference to the reference numerals of the corresponding constituent elements in the embodiments.

【0016】このフィールド間内挿画素生成方法は、フ
レーム間内挿された第1静止画輝度信号SAと第1静止
画輝度信号SAを1フィールド遅延させた第2静止画輝
度信号SBとからフィールド間内挿画素を生成するもの
であり、第2静止画輝度信号SBを1ライン遅延させ、
第2静止画輝度信号SBと第2静止画輝度信号SBを1
ライン遅延させたものとの平均値を演算し、第1静止画
輝度信号SAと該平均値との差を演算し、該差の高周波
成分を除去し、該平均値と該差の高周波成分を除去した
ものとの和を演算して、該フィールド間内挿画素を生成
する。
In this interfield interpolation pixel generation method, a field is generated from a first still picture luminance signal SA interpolated between frames and a second still picture luminance signal SB obtained by delaying the first still picture luminance signal SA by one field. For generating interpolated pixels, delaying the second still image luminance signal SB by one line,
The second still image brightness signal SB and the second still image brightness signal SB are set to 1
The average value with the line-delayed one is calculated, the difference between the first still image luminance signal SA and the average value is calculated, the high frequency component of the difference is removed, and the average value and the high frequency component of the difference are calculated. The interpolated pixel is generated by calculating the sum with the removed one.

【0017】本発明に係るフィールド間内挿画素生成回
路は上記方法を実施するためのものであり、例えば図1
に示す如く、第2静止画輝度信号SBを1ライン遅延さ
せる1ライン遅延回路34と、1ライン遅延回路34の
入力値と出力値との平均値を演算する平均値演算回路3
5と、第1静止画輝度信号SAと該平均値との差を演算
する減算回路37と、該差の高周波成分の通過を制限す
る高周波成分低減手段38と、該平均値演算回路の出力
と高周波成分低減手段38の出力との和を演算する加算
回路39とを備えている。
The interfield interpolated pixel generation circuit according to the present invention is for implementing the above method, for example, as shown in FIG.
As shown in FIG. 1, a 1-line delay circuit 34 that delays the second still image brightness signal SB by 1 line, and an average value calculation circuit 3 that calculates an average value of the input value and the output value of the 1-line delay circuit 34.
5, a subtraction circuit 37 for calculating a difference between the first still image luminance signal SA and the average value, a high frequency component reducing means 38 for restricting passage of a high frequency component of the difference, and an output of the average value calculation circuit. An adding circuit 39 for calculating the sum with the output of the high frequency component reducing means 38 is provided.

【0018】1ライン遅延回路34と平均値演算回路3
5とからなる垂直フィルタ33には、図4(A)に示す
ような周波数スペクトルの第2静止画輝度信号SBが供
給される。垂直フィルタ33の出力の周波数スペクトル
は、図4(B)に示す如くなり、垂直方向の解像度が第
2静止画輝度信号SBのそれに比し劣化する。第1静止
画輝度信号SAの周波数スペクトルは図4(A)とほぼ
同一であるので、減算回路37の出力の周波数スペクト
ルは、図4(C)に示す如く、図4(A)の周波数スペ
クトルから図4(B)の周波数スペクトルを差し引いた
ものになる。すなわち、垂直フィルタ33の出力に含ま
れていない垂直方向解像度劣化部分の信号が、減算回路
37から得られる。減算回路37の出力が高周波成分低
減手段38を通ると、図4(D)に示す如くなり、画質
劣化の原因となる図4(C)中の折り返し部分が取り除
かれる。加算回路39の出力は、図4(E)に示す如
く、図4(B)と図4(D)とを合成した周波数スペク
トルとなる。
1-line delay circuit 34 and average value calculation circuit 3
The vertical filter 33 composed of 5 is supplied with the second still image luminance signal SB having a frequency spectrum as shown in FIG. The frequency spectrum of the output of the vertical filter 33 is as shown in FIG. 4B, and the resolution in the vertical direction is deteriorated as compared with that of the second still image luminance signal SB. Since the frequency spectrum of the first still image luminance signal SA is almost the same as that of FIG. 4A, the frequency spectrum of the output of the subtraction circuit 37 is the frequency spectrum of FIG. 4A as shown in FIG. 4C. From which the frequency spectrum of FIG. 4 (B) is subtracted. That is, the signal of the vertical resolution deterioration portion which is not included in the output of the vertical filter 33 is obtained from the subtraction circuit 37. When the output of the subtraction circuit 37 passes through the high frequency component reducing means 38, the result is as shown in FIG. 4 (D), and the folded portion in FIG. 4 (C) that causes the image quality deterioration is removed. As shown in FIG. 4E, the output of the adder circuit 39 becomes a frequency spectrum obtained by combining FIG. 4B and FIG. 4D.

【0019】このようにして、垂直フィルタ33の出力
の周波数スペクトルに含まれていない解像度劣化部分
に、第1静止画輝度信号SAの周波数スペクトルに含ま
れている垂直方向の解像度の良い部分を置いた信号が加
算回路39から得られ、簡単な構成で垂直方向の解像度
を向上させることができる。
In this way, the portion having good vertical resolution contained in the frequency spectrum of the first still picture luminance signal SA is placed in the resolution deterioration portion not included in the frequency spectrum of the output of the vertical filter 33. The obtained signal is obtained from the adding circuit 39, and the resolution in the vertical direction can be improved with a simple configuration.

【0020】本発明に係るフィールド間内挿画素生成方
法の第1態様では、上記高周波成分の除去は、上記差を
ローパスフィルタに通して行う。
In the first aspect of the interfield interpolation pixel generation method according to the present invention, the high frequency component is removed by passing the difference through a low pass filter.

【0021】本発明に係るフィールド間内挿画素生成方
法の第2態様では、上記高周波成分の除去は、ノンリニ
アエッジ信号SNの値に応じて上記差を低減させること
により行う。
In the second aspect of the interfield interpolation pixel generation method according to the present invention, the high frequency component is removed by reducing the difference in accordance with the value of the non-linear edge signal SN.

【0022】ノンリニアエッジ信号SNは、ノンリニア
エンファシスの程度を示す信号であり、この値が大きい
程その時点の信号が高域周波数であることを示してい
て、S/Nが他の部分に比べて悪くなっている。そこで
例えば、ノンリニアエッジ信号SNの値が所定値以上の
場合、上記差に1より小さい定数又はノンリニアエッジ
信号SNの逆数に比例した値を乗じて入力信号を低減さ
せ、ノンリニアエッジ信号SNの値が該所定値以下の場
合には、該差をそのままにすることにより、高周波成分
を除去することができる。
The non-linear edge signal SN is a signal indicating the degree of non-linear emphasis. The larger this value is, the higher the frequency of the signal at that time is, and the S / N is higher than that of other parts. It's getting worse. Therefore, for example, when the value of the non-linear edge signal SN is equal to or larger than a predetermined value, the input signal is reduced by multiplying the difference by a constant smaller than 1 or a value proportional to the reciprocal of the non-linear edge signal SN. When the difference is equal to or less than the predetermined value, the high frequency component can be removed by keeping the difference as it is.

【0023】本発明に係るフィールド間内挿画素生成回
路の第1態様では、高周波成分低減手段は、上記差の高
周波成分の通過を制限するローパスフィルタ38であ
る。
In the first aspect of the inter-field interpolation pixel generation circuit according to the present invention, the high frequency component reducing means is a low pass filter 38 for limiting the passage of the high frequency component of the difference.

【0024】この場合、構成が簡単となる。In this case, the structure is simple.

【0025】本発明に係るフィールド間内挿画素生成回
路の第2態様では、高周波成分低減手段は、ノンリニア
エッジ信号SNの値に応じて上記差を低減させることに
より該差の高周波成分の通過を制限する高周波域低減回
路40である。
In the second aspect of the inter-field interpolation pixel generating circuit according to the present invention, the high frequency component reducing means reduces the difference according to the value of the non-linear edge signal SN to pass the high frequency component of the difference. It is a high frequency band reduction circuit 40 for limiting.

【0026】本発明に係るフィールド間内挿画素生成回
路の第3態様では、高周波成分低減手段は、上記ローパ
スフィルタ38と上記高周波域低減回路40とを備えて
いる。
In the third aspect of the inter-field interpolation pixel generating circuit according to the present invention, the high frequency component reducing means includes the low pass filter 38 and the high frequency region reducing circuit 40.

【0027】この構成の場合、ローパスフィルタ38の
特性が悪いために折り返し部分である高域周波数部分を
充分に取り除くことができない場合であっても、これを
高周波域低減回路40で取り除くことができる。
In the case of this configuration, even if the high frequency portion which is the folded portion cannot be sufficiently removed due to the poor characteristics of the low pass filter 38, this can be removed by the high frequency reduction circuit 40. ..

【0028】[0028]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0029】図2は、静止画輝度信号再生回路の概略構
成を示す。また、図3は、MUSEエンコーダにより4
フィールドに分割された画像の各フィールドの画素配列
を示す。
FIG. 2 shows a schematic structure of a still picture luminance signal reproducing circuit. In addition, FIG.
The pixel array of each field of the image divided into fields is shown.

【0030】16.2MHzの静止画輝度信号SXが1
フレーム遅延回路1に供給されて静止画輝度信号SYと
され、静止画輝度信号SX及びSYがフレーム間内挿回
路2に供給されて、フレーム間内挿された32.4MH
zの静止画輝度信号SAが作成される。例えば静止画輝
度信号SXを図3中の第1フィールドの画素の信号とす
ると、静止画輝度信号SYは第3フィールドの画素の信
号であり、静止画輝度信号SAは第1フィールドの画素
と第3フィールドの画素をこの順に配列した信号であ
る。
The still image luminance signal SX of 16.2 MHz is 1
The still image luminance signal SY is supplied to the frame delay circuit 1 and the still image luminance signals SX and SY are supplied to the inter-frame interpolation circuit 2 and inter-frame interpolated 32.4 MHz.
A still image luminance signal SA of z is created. For example, if the still image luminance signal SX is the signal of the pixel of the first field in FIG. 3, the still image luminance signal SY is the signal of the pixel of the third field, and the still image luminance signal SA is the pixel of the first field and the pixel of the first field. This is a signal in which pixels of three fields are arranged in this order.

【0031】図2において、静止画輝度信号SAが1フ
ィールド遅延回路3に供給されて静止画輝度信号SBと
され、静止画輝度信号SA及びSBがフィールド間内挿
回路4に供給されて、フィールド間内挿された静止画輝
度信号SCが作成される。静止画輝度信号SBは、図3
の第3フィールドの画素と第4フィールドの画素とをこ
の順に配列した信号であり、静止画輝度信号SCは、静
止画輝度信号SAと静止画輝度信号SBとで図3中の×
印の欠落した画素を内挿した48.6MHzの信号であ
る。
In FIG. 2, the still image luminance signal SA is supplied to the 1-field delay circuit 3 to be a still image luminance signal SB, and the still image luminance signals SA and SB are supplied to the inter-field interpolation circuit 4 to generate a field. The interpolated still image luminance signal SC is created. The still image brightness signal SB is shown in FIG.
3 is a signal in which the pixels of the third field and the pixels of the fourth field are arranged in this order, and the still image luminance signal SC is a still image luminance signal SA and a still image luminance signal SB in FIG.
This is a 48.6 MHz signal in which the pixels with missing marks are interpolated.

【0032】[第1実施例]本発明の第1実施例では、
図2のフィールド間内挿回路4を図1に示す如く構成し
ている。図8と同一構成要素には、同一符号を付してそ
の説明を省略する。
[First Embodiment] In the first embodiment of the present invention,
The inter-field interpolation circuit 4 of FIG. 2 is constructed as shown in FIG. The same components as those in FIG. 8 are designated by the same reference numerals and the description thereof will be omitted.

【0033】このフィールド間内挿画素生成回路では、
図8の32/48MHzクロックレート変換回路32と
垂直フィルタ33とを逆順に接続し、かつ、32/48
MHzクロックレート変換回路32と垂直フィルタ33
との間に擬似2次元フィルタ36を接続し、この擬似2
次元フィルタ36に静止画輝度信号SAを供給してい
る。他の点は図8と同一である。
In this inter-field interpolation pixel generation circuit,
The 32/48 MHz clock rate conversion circuit 32 and the vertical filter 33 of FIG. 8 are connected in reverse order, and the 32/48
MHz clock rate conversion circuit 32 and vertical filter 33
A pseudo two-dimensional filter 36 is connected between the
The still image luminance signal SA is supplied to the dimensional filter 36. The other points are the same as in FIG.

【0034】擬似2次元フィルタ36は、静止画輝度信
号SAと垂直フィルタ33の出力との差を演算する減算
回路37と、減算回路37の出力が供給されるローパス
フィルタ38と、ローパスフィルタ38の出力と垂直フ
ィルタ33の出力との和を演算する加算回路39とから
なり、加算回路39の出力は32/48MHzクロック
レート変換回路32を介し合成回路31に供給される。
The pseudo two-dimensional filter 36 includes a subtraction circuit 37 for calculating the difference between the still image luminance signal SA and the output of the vertical filter 33, a low-pass filter 38 to which the output of the subtraction circuit 37 is supplied, and a low-pass filter 38. The addition circuit 39 is configured to calculate the sum of the output and the output of the vertical filter 33. The output of the addition circuit 39 is supplied to the synthesis circuit 31 via the 32/48 MHz clock rate conversion circuit 32.

【0035】次に、上記の如く構成された本第1実施例
の動作を、図4(A)〜(E)に示す周波数スペクトル
に基づいて説明する。図4において、横軸は水平方向周
波数(MHz)であり、縦軸は垂直方向周波数をTV本
の単位で表したものである。この周波数スペクトルは、
輝度信号の伝送可能領域と折り返しスペクトルを示して
いる。
Next, the operation of the first embodiment constructed as described above will be explained based on the frequency spectrum shown in FIGS. 4 (A) to 4 (E). In FIG. 4, the horizontal axis represents the horizontal frequency (MHz), and the vertical axis represents the vertical frequency in units of TV lines. This frequency spectrum is
The transmittable area of the luminance signal and the folded spectrum are shown.

【0036】垂直フィルタ33には、図4(A)に示す
ような周波数スペクトルの静止画輝度信号SBが供給さ
れる。垂直フィルタ33の出力の周波数スペクトルは、
図4(B)に示す如くなり、垂直方向の解像度が静止画
輝度信号SBのそれに比し劣化する。静止画輝度信号S
Aの周波数スペクトルは図4(A)とほぼ同一であるの
で、減算回路37の出力の周波数スペクトルは、図4
(C)に示す如く、図4(A)の周波数スペクトルから
図4(B)の周波数スペクトルを差し引いたものにな
る。すなわち、垂直フィルタ33の出力に含まれていな
い垂直方向解像度劣化部分の信号が、減算回路37から
得られる。減算回路37の出力がローパスフィルタ38
を通ると、図4(D)に示す如くなり、画質劣化の原因
となる図4(C)中の折り返し部分が取り除かれる。加
算回路39の出力は、図4(E)に示す如く、図4
(B)と図4(D)とを合成した周波数スペクトルとな
る。
The vertical filter 33 is supplied with a still picture luminance signal SB having a frequency spectrum as shown in FIG. The frequency spectrum of the output of the vertical filter 33 is
As shown in FIG. 4B, the resolution in the vertical direction deteriorates as compared with that of the still image luminance signal SB. Still image brightness signal S
Since the frequency spectrum of A is almost the same as that of FIG. 4A, the frequency spectrum of the output of the subtraction circuit 37 is as shown in FIG.
As shown in FIG. 4C, the frequency spectrum shown in FIG. 4A is obtained by subtracting the frequency spectrum shown in FIG. That is, the signal of the vertical resolution deterioration portion which is not included in the output of the vertical filter 33 is obtained from the subtraction circuit 37. The output of the subtraction circuit 37 is the low-pass filter 38.
As shown in FIG. 4 (D), the folded portion in FIG. 4 (C), which causes image quality deterioration, is removed. The output of the adder circuit 39 is, as shown in FIG.
The frequency spectrum is a combination of (B) and FIG. 4 (D).

【0037】このようにして、垂直フィルタ33の出力
の周波数スペクトルに含まれていない解像度劣化部分
に、静止画輝度信号SAの周波数スペクトルに含まれて
いる垂直方向の解像度の良い部分を置いた信号が擬似2
次元フィルタ36から得られる。
In this way, a signal in which the portion with good vertical resolution contained in the frequency spectrum of the still image luminance signal SA is placed in the resolution-degraded portion not included in the frequency spectrum of the output of the vertical filter 33. Is pseudo 2
Obtained from the dimensional filter 36.

【0038】静止画輝度信号SA及び擬似2次元フィル
タ36の出力はそれぞれ32/48MHzクロックレー
ト変換回路30及び32に供給されて48.6Hzの静
止画輝度信号に変換される。32/48MHzクロック
レート変換回路30及び32はいずれも、サンプリング
周波数変換回路であって、ローパスフィルタに通した信
号を48.6Hzでサンプリングしたものを出力する。
32/48MHzクロックレート変換回路30及び32
の出力は、合成回路31に供給され、フィールド間内挿
された、垂直方向の解像度が従来よりも向上した静止画
輝度信号SCが得られる。
The still picture luminance signal SA and the output of the pseudo two-dimensional filter 36 are supplied to the 32/48 MHz clock rate conversion circuits 30 and 32, respectively, and converted into a still picture luminance signal of 48.6 Hz. Each of the 32/48 MHz clock rate conversion circuits 30 and 32 is a sampling frequency conversion circuit, and outputs a signal that has been passed through a low-pass filter and sampled at 48.6 Hz.
32/48 MHz clock rate conversion circuits 30 and 32
The output of is supplied to the synthesizing circuit 31, and the still image luminance signal SC interpolated between fields and having a vertical resolution higher than that of the conventional one is obtained.

【0039】[第2実施例]本発明の第2実施例では、
図2のフィールド間内挿回路4を図5に示す如く構成し
ている。図1と同一構成要素には、同一符号を付してそ
の説明を省略する。
[Second Embodiment] In the second embodiment of the present invention,
The inter-field interpolation circuit 4 of FIG. 2 is constructed as shown in FIG. The same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0040】このフィールド間内挿画素生成回路では、
図1の擬似2次元フィルタ36の代わりに擬似2次元フ
ィルタ36Aを用いている。擬似2次元フィルタ36A
は、ローパスフィルタ38と加算回路39との間に高周
波域低減回路40を接続して、ローパスフィルタ38の
出力を後述の如くノンリニアエッジ信号SNで制御して
いる。すなわち、高周波成分低減手段として、ローパス
フィルタ38と高周波域低減回路40とを縦続接続した
ものを用いている。そして、加算回路39で高周波域低
減回路40の出力と垂直フィルタ33の出力との和を演
算している。他の点は図1と同ーである。
In this inter-field interpolation pixel generation circuit,
A pseudo two-dimensional filter 36A is used instead of the pseudo two-dimensional filter 36 of FIG. Pseudo two-dimensional filter 36A
Connects a high-frequency band reduction circuit 40 between the low-pass filter 38 and the adder circuit 39, and controls the output of the low-pass filter 38 with a non-linear edge signal SN as described later. That is, the low-pass filter 38 and the high-frequency region reduction circuit 40 connected in cascade are used as the high-frequency component reducing means. Then, the adder circuit 39 calculates the sum of the output of the high frequency band reduction circuit 40 and the output of the vertical filter 33. The other points are the same as in FIG.

【0041】ここで、MUSEエンコーダでは信号の高
域周波数成分のSN比を向上させるために、プリエンフ
ァシス処理を施している。このプリエンファシス処理に
より、信号のエッジ部分にオーバシュート及びアンダー
シュート(ひげ)が生ずる。このひげが伝送路のRF帯
域幅を越えないようにするために、ノンリニアエンファ
シス処理を施して、RF帯域幅を越えるひげの高さを圧
縮している。MUSEデコーダでは、この逆の処理、す
なわち、ノンリニアエンファシス処理を行ったひげの部
分を伸長させる処理を行う。このため、ひげの部分に乗
っているノイズまで伸長してしまうことになる。ノンリ
ニアエッジ信号SNは、このノンリニアエンファシスの
程度を示す信号であり、この値が大きい程その時点の信
号が高域周波数であることを示していて、S/Nが他の
部分に比べて悪くなっている。
Here, in the MUSE encoder, pre-emphasis processing is performed in order to improve the SN ratio of the high frequency components of the signal. This pre-emphasis processing causes overshoot and undershoot (whiskers) at the edge portion of the signal. In order to prevent the whiskers from exceeding the RF bandwidth of the transmission line, non-linear emphasis processing is performed to compress the height of the whiskers exceeding the RF bandwidth. The MUSE decoder performs the reverse process, that is, the process of expanding the beard portion subjected to the non-linear emphasis process. For this reason, the noise on the beard part will be expanded. The non-linear edge signal SN is a signal indicating the degree of this non-linear emphasis. The larger this value is, the higher the frequency of the signal at that time is, and the S / N becomes worse than the other parts. ing.

【0042】そこで、高周波域低減回路40は、ノンリ
ニアエッジ信号SNの値が所定値以上の場合、例えば入
力信号に1より小さい定数又はノンリニアエッジ信号S
Nの逆数に比例した値を乗じて入力信号を低減させ、ノ
ンリニアエッジ信号SNの値が該所定値以下の場合に
は、入力信号をそのまま出力する。
Therefore, when the value of the non-linear edge signal SN is equal to or larger than a predetermined value, the high frequency band reduction circuit 40 uses a constant smaller than 1 or the non-linear edge signal S for the input signal, for example.
The input signal is reduced by multiplying it by a value proportional to the reciprocal of N. If the value of the non-linear edge signal SN is less than the predetermined value, the input signal is output as it is.

【0043】これにより、ローパスフィルタ38の特性
が悪いために折り返し部分である高域周波数部分を充分
に取り除くことができない場合であっても、これを高周
波域低減回路40で取り除くことができる。
As a result, even if the high-frequency portion, which is the folded portion, cannot be sufficiently removed due to the poor characteristics of the low-pass filter 38, this can be removed by the high-frequency reduction circuit 40.

【0044】他の点は上記第1実施例と同一である。The other points are the same as those of the first embodiment.

【0045】[0045]

【発明の効果】以上説明した如く、本発明に係るフィー
ルド間内挿画素生成方法及びその回路では、第2静止画
輝度信号SBを1ライン遅延させ、第2静止画輝度信号
SBと第2静止画輝度信号SBを1ライン遅延させたも
のとの平均値を演算し、第1静止画輝度信号SAと該平
均値との差を演算し、該差の高周波成分を除去し、該平
均値と該差の高周波成分を除去したものとの和を演算し
て、該フィールド間内挿画素を生成するので、該平均値
の周波数スペクトルに含まれていない垂直方向解像度劣
化部分に、静止画輝度信号SAの周波数スペクトルに含
まれている垂直方向の解像度の良い部分を置いた信号が
得られ、簡単な構成で垂直方向の解像度を向上させるこ
とができるという優れた効果を奏し、ハイビジョンの低
価格化及び低消費電力化に寄与するところが大きい。
As described above, in the interfield interpolation pixel generation method and the circuit according to the present invention, the second still image luminance signal SB is delayed by one line to generate the second still image luminance signal SB and the second still image luminance signal SB. An average value of the image luminance signal SB delayed by one line is calculated, a difference between the first still image luminance signal SA and the average value is calculated, a high frequency component of the difference is removed, and the average value is calculated. Since the interpolated pixel is generated by calculating the sum of the difference and the high-frequency component removed, the still image luminance signal is included in the vertical resolution deterioration portion not included in the average value frequency spectrum. A signal with a good vertical resolution included in the SA frequency spectrum can be obtained, which has the excellent effect that the vertical resolution can be improved with a simple configuration, and the cost of HDTV can be reduced. And low consumption Which greatly contributes to Chikaraka.

【0046】本発明に係るフィールド間内挿画素生成回
路の第1態様では、高周波成分低減手段を、上記差の高
周波成分の通過を制限するローパスフィルタで構成して
いるので、構成が簡単となるという効果を奏する。
In the first aspect of the inter-field interpolation pixel generation circuit according to the present invention, the high frequency component reducing means is constituted by a low pass filter for limiting the passage of the high frequency component of the difference, so that the configuration is simplified. Has the effect.

【0047】本発明に係るフィールド間内挿画素生成回
路の第3態様では、高周波成分低減手段を、このローパ
スフィルタと、ノンリニアエッジ信号SNの値に応じて
ローパスフィルタの出力値を低減させる高周波域低減回
路とで構成しているので、ローパスフィルタの特性が悪
いために折り返し部分である高域周波数部分を充分に取
り除くことができない場合であっても、これを高周波域
低減回路で取り除くことができるという効果を奏する。
In the third aspect of the inter-field interpolation pixel generation circuit according to the present invention, the high frequency component reducing means is configured to reduce the output value of the low pass filter according to the value of this low pass filter and the nonlinear edge signal SN. Since it is composed of a reduction circuit, even if the high frequency part that is the folded part cannot be sufficiently removed due to the poor characteristics of the low-pass filter, it can be removed by the high frequency reduction circuit. Has the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のフィールド間内挿画素生
成回路図である。
FIG. 1 is an inter-field interpolation pixel generation circuit diagram of a first embodiment of the present invention.

【図2】静止画輝度信号再生回路の概略構成図である。FIG. 2 is a schematic configuration diagram of a still image luminance signal reproduction circuit.

【図3】MUSEエンコーダにより4フィールドに分割
された画像の各フィールドの画素配列図である。
FIG. 3 is a pixel array diagram of each field of an image divided into four fields by a MUSE encoder.

【図4】図1の回路の信号処理過程を示す周波数スペク
トル図である。
FIG. 4 is a frequency spectrum diagram showing a signal processing process of the circuit of FIG.

【図5】本発明の第2実施例のフィールド間内挿画素生
成回路図である。
FIG. 5 is an inter-field interpolation pixel generation circuit diagram of a second embodiment of the present invention.

【図6】従来のフィールド間内挿画素生成回路図であ
る。
FIG. 6 is a conventional inter-field interpolation pixel generation circuit diagram.

【図7】図6の回路によるフィールド間内挿画素生成処
理説明図である。
7 is an explanatory diagram of inter-field interpolation pixel generation processing by the circuit of FIG.

【図8】従来のフィールド間内挿回路図である。FIG. 8 is a conventional inter-field interpolation circuit diagram.

【図9】図8の回路によるフィールド間内挿処理説明図
である。
9 is an explanatory diagram of inter-field interpolation processing by the circuit of FIG.

【符号の説明】[Explanation of symbols]

30、32 32/48MHzクロックレート変換回路 31 合成回路 33 垂直フィルタ 34 1ライン遅延回路 35 平均値演算回路 36、36A 擬似2次元フィルタ 37 減算回路 38 ローパスフィルタ 39 加算回路 40 高周波域低減回路 SX、SY、SA、SB、SA1〜SA3、SB1〜S
B4 静止画輝度信号 SN ノンリニアエッジ信号 SS 輝度サンプリング位相信号 PM、PC11、PC12 内挿画素 PA11、PA12、PB11、PB12、PB21、
PB22 画素
30, 32 32/48 MHz clock rate conversion circuit 31 synthesis circuit 33 vertical filter 34 1 line delay circuit 35 average value calculation circuit 36, 36A pseudo two-dimensional filter 37 subtraction circuit 38 low-pass filter 39 addition circuit 40 high frequency region reduction circuit SX, SY , SA, SB, SA1-SA3, SB1-S
B4 still image luminance signal SN non-linear edge signal SS luminance sampling phase signal PM, PC11, PC12 interpolation pixel PA11, PA12, PB11, PB12, PB21,
PB22 pixel

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 フレーム間内挿された第1静止画輝度信
号(SA)と該第1静止画輝度信号を1フレーム遅延さ
せた第2静止画輝度信号(SB)とからフィールド間内
挿画素を生成するフィールド間内挿画素生成方法におい
て、 該第2静止画輝度信号を1ライン遅延させ、 該第2静止画輝度信号と該第2静止画輝度信号を1ライ
ン遅延させたものとの平均値を演算し、 該第1静止画輝度信号と該平均値との差を演算し、 該差の高周波成分を除去し、 該平均値と該差の高周波成分を除去したものとの和を演
算して、 該フィールド間内挿画素を生成することを特徴とするフ
ィールド間内挿画素生成方法。
1. An inter-field interpolation pixel from a first still image luminance signal (SA) interpolated between frames and a second still image luminance signal (SB) obtained by delaying the first still image luminance signal by one frame. In the inter-field interpolation pixel generation method for generating, the second still image luminance signal is delayed by one line, and the average of the second still image luminance signal and the second still image luminance signal delayed by one line. A value is calculated, a difference between the first still image luminance signal and the average value is calculated, a high frequency component of the difference is removed, and a sum of the average value and the high frequency component of the difference removed is calculated. Then, the interfield interpolation pixel generation method is characterized by generating the interfield interpolation pixel.
【請求項2】 前記高周波成分の除去は、前記差をロー
パスフィルタ(38)に通して行うことを特徴とする請
求項1記載のフィールド間内挿画素生成方法。
2. The interfield interpolated pixel generation method according to claim 1, wherein the high frequency component is removed by passing the difference through a low pass filter (38).
【請求項3】 前記高周波成分の除去は、ノンリニアエ
ッジ信号(SN)の値に応じて前記差を低減させること
により行うことを特徴とする請求項1記載のフィールド
間内挿画素生成方法。
3. The interfield interpolated pixel generation method according to claim 1, wherein the removal of the high frequency component is performed by reducing the difference according to the value of the non-linear edge signal (SN).
【請求項4】 フレーム間内挿された第1静止画輝度信
号(SA)と該第1静止画輝度信号を1フィールド遅延
させた第2静止画輝度信号(SB)とからフィールド間
内挿画素を生成するフィールド間内挿画素生成回路にお
いて、 該第2静止画輝度信号を1ライン遅延させる1ライン遅
延回路(34)と、 該1ライン遅延回路の入力値と出力値との平均値を演算
する平均値演算回路(35)と、 該第1静止画輝度信号と該平均値との差を演算する減算
回路(37)と、 該差の高周波成分の通過を制限する高周波成分低減手段
(38、40)と、 該平均値演算回路の出力と該高周波成分低減手段の出力
との和を演算する加算回路(39)と、 を有することを特徴とするフィールド間内挿画素生成回
路。
4. An inter-field interpolated pixel based on a first still image luminance signal (SA) interpolated between frames and a second still image luminance signal (SB) obtained by delaying the first still image luminance signal by one field. In the inter-field interpolated pixel generation circuit for generating a 1-line delay circuit (34) that delays the second still image luminance signal by 1 line, and calculate an average value of the input value and the output value of the 1-line delay circuit. An average value calculation circuit (35), a subtraction circuit (37) that calculates a difference between the first still image luminance signal and the average value, and a high frequency component reduction means (38) that restricts passage of a high frequency component of the difference. , 40) and an adder circuit (39) for calculating the sum of the output of the average value calculation circuit and the output of the high-frequency component reducing means, and an interfield interpolation pixel generation circuit.
【請求項5】 前記高周波成分低減手段は、前記差の高
周波成分の通過を制限するローパスフィルタ(38)で
あることを特徴とする請求項4記載のフィールド間内挿
画素生成回路。
5. The inter-field interpolated pixel generation circuit according to claim 4, wherein the high-frequency component reducing means is a low-pass filter (38) for restricting passage of the high-frequency component of the difference.
【請求項6】 前記高周波成分低減手段は、ノンリニア
エッジ信号(SN)の値に応じて前記差を低減させるこ
とにより該差の高周波成分の通過を制限する高周波域低
減回路(40)であることを特徴とする請求項4記載の
フィールド間内挿画素生成回路。
6. The high frequency component reducing means is a high frequency band reduction circuit (40) for limiting the passage of the high frequency component of the difference by reducing the difference according to the value of the non-linear edge signal (SN). The inter-field interpolation pixel generation circuit according to claim 4, wherein
【請求項7】 前記高周波成分低減手段は、前記差の高
周波成分の通過を制限するローパスフィルタ(38)
と、 ノンリニアエッジ信号(SN)の値に応じて該ローパス
フィルタの出力値を低減させる高周波域低減回路(4
0)と、 を有することを特徴とする請求項4記載のフィールド間
内挿画素生成回路。
7. The high-frequency component reducing means limits the passage of the high-frequency component of the difference by a low-pass filter (38).
And a high frequency band reduction circuit (4) that reduces the output value of the low-pass filter according to the value of the nonlinear edge signal (SN).
0) and are included, The interfield interpolation pixel generation circuit according to claim 4 characterized by the above.
JP4058505A 1992-03-17 1992-03-17 Inter-field interpolation pixel generation method and circuit thereof Expired - Lifetime JP2766419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058505A JP2766419B2 (en) 1992-03-17 1992-03-17 Inter-field interpolation pixel generation method and circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058505A JP2766419B2 (en) 1992-03-17 1992-03-17 Inter-field interpolation pixel generation method and circuit thereof

Publications (2)

Publication Number Publication Date
JPH05268575A true JPH05268575A (en) 1993-10-15
JP2766419B2 JP2766419B2 (en) 1998-06-18

Family

ID=13086281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058505A Expired - Lifetime JP2766419B2 (en) 1992-03-17 1992-03-17 Inter-field interpolation pixel generation method and circuit thereof

Country Status (1)

Country Link
JP (1) JP2766419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518660B2 (en) 2004-11-16 2009-04-14 Nec Viewtechnology, Ltd. Picture quality improvement device and picture quality improvement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518660B2 (en) 2004-11-16 2009-04-14 Nec Viewtechnology, Ltd. Picture quality improvement device and picture quality improvement method

Also Published As

Publication number Publication date
JP2766419B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
JP3729863B2 (en) Method and apparatus for increasing the vertical resolution of a television signal having a degraded vertical chrominance transition
JPH03265290A (en) Television signal scanning line converter
JPS6281888A (en) Video signal interpolator
JPS62135081A (en) Contour correcting circuit
JP3332093B2 (en) Television signal processor
JPH04326689A (en) Interpolation and scanning line converting circuit
JP2766419B2 (en) Inter-field interpolation pixel generation method and circuit thereof
JPH043594A (en) Signal interpolation device
US5302909A (en) Non-linear signal processor
JP2835829B2 (en) Scanning line conversion device and scanning line conversion method
JPS62171282A (en) Correlation adaptive type noise reducing device
JP3226799B2 (en) Noise reducer circuit
US5161016A (en) Method of interpolating an image signal using a slope correlation and a circuit thereof
JPS6390988A (en) Moving signal generating circuit
JP2512224B2 (en) Noise reduction device
JP3168660B2 (en) Scan conversion method
JPH04207670A (en) Edge emphasis circuit
JP3354065B2 (en) Motion detection circuit
JP2784817B2 (en) Video signal processing device
JPH01157675A (en) Vertical outline correcting device
JPH0723342A (en) Device for reproducing video signal
JPH03285472A (en) Horizontal contour emphasizing circuit
JPS624911B2 (en)
JPH01194693A (en) Method for interpolating movement adaptive scanning line
JPH02100496A (en) Picture signal processing circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324