JPH0526828Y2 - - Google Patents

Info

Publication number
JPH0526828Y2
JPH0526828Y2 JP784686U JP784686U JPH0526828Y2 JP H0526828 Y2 JPH0526828 Y2 JP H0526828Y2 JP 784686 U JP784686 U JP 784686U JP 784686 U JP784686 U JP 784686U JP H0526828 Y2 JPH0526828 Y2 JP H0526828Y2
Authority
JP
Japan
Prior art keywords
output
circuit
input
current
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP784686U
Other languages
Japanese (ja)
Other versions
JPS62121838U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP784686U priority Critical patent/JPH0526828Y2/ja
Publication of JPS62121838U publication Critical patent/JPS62121838U/ja
Application granted granted Critical
Publication of JPH0526828Y2 publication Critical patent/JPH0526828Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Description

【考案の詳細な説明】 (技術分野) この考案は信号切換回路に関する。特にオシロ
スコープの入力信号切換回路に関するものであ
る。
[Detailed Description of the Invention] (Technical Field) This invention relates to a signal switching circuit. In particular, it relates to an input signal switching circuit for an oscilloscope.

(従来技術とその問題点) オシロスコープの信号切換器は2〜4チヤネル
の入力があり1つの出力をもつことが一般的であ
る。第5図に示す回路は3チヤネルの信号選択回
路で3入力端子1,2,3と出力端子18をもつ
た信号切換回路の一例である。同図の状態は入力
端1が選択され、ON状態のスイツチ回路7を経
由し出力段17に接続されている。スイツチ回路
7,8,9によつて信号のON/OFFを行ない、
3チヤネルの信号の選択を行なう。この場合
OFF時は入力段4,5,6のコレクタ間22を
短絡し、OFF時でも入力段が直流的に動作する
ようにバイアス電流を供給する。切換制御器13
の出力する(通常TTLレベル)制御信号10,
11,12は通常はどれか1つが“H”である、
つまりどれか1つのチヤネルが選択されている状
態(以下第1の状態と称す)が普通であるが、ブ
ラウン管面への文字表示が可能なオシロスコープ
のように一時的に全チヤネルが選択されない状態
(以下第2の状態と称す)と特定の2チヤネルを
選択して信号を加算する状態(以下第3の状態と
称す)が必要となる。一方入力エミツタ接地段
4,5,6に流すバイアス電流の流れる経路はス
イツチ回路7,8,9のON,OFF状態で変わる
ため第2の状態あるいは第3の状態時に加算点の
電流19,20が0から2Iまで変化することにな
る。仮に入力段4,5,6のうちONになつてい
る入力段と出力段17にバイアス電流を与える可
変電流源15,16が一定電流を流し込むだけで
あれば、電流19,20の変化が直接出力に現わ
れ、出力端子18の直流電圧が大きく変動するこ
とになる。従来はこの変動の補正を行なうため、
切換制御器13の出力論理を受けて電流源制御回
路21が発する制御信号14で可変電流源15,
16を制御するという構成であつた。ところが実
際に前に述べた第1〜第3の状態を論理的に検出
するには回路が複雑となり、部品点数が増加する
という欠点があつた。一方、この問題を解決する
もう1つの方法として従来例として7〜9のスイ
ツチ部を第4図のような構成とした回路がある。
トランジスタ46,47のベース電圧25をトラ
ンジスタ48,49のベース電圧VBよりも低く
するとトランジスタ48,49がONとなり、差
動入力信号は入力端22から出力端23に伝送さ
れる。一方、ベース電圧25がVBよりも高くな
るとトランジスタ46,47がONとなり差動信
号は打消されバイアス電流Iのみ出力23から入
力22に向つて流れる。つまり信号がON/OFF
どちらの状態でも出力23から流入するバイアス
電流は変化しない。したがつて、各スイツチ回路
7〜9をこの第4図の回路で実現すれば、前述し
た動作点変動の問題は解決可能である。ところ
が、この回路は入力端22と出力端23の電位差
を低くできないという欠点がある。すなわち、入
出力間22と23との電位差が大きくなると、電
源電圧の範囲も限られているため、後につながる
回路でレベルシフトを行ない低いレベルに動作点
を下げる必要が生じる。例えばオシロスコープの
ような多段直結型の増幅器では高周波特性のよい
レベルシフト回路は難しいため、各段の直流電圧
の上昇はできるだけ小さくしなければならない。
ここで、入力端22と出力端23の間の電位を低
くできない理由は抵抗Rの値を小さくできないと
いうことに起因する。すなわち、抵抗Rはトラン
ジスタ48,49がONのときは差動信号の負荷
抵抗となり、また、次段のドライブ抵抗となる。
次段は並列帰還回路で、入力抵抗は低いが、抵抗
Rが小さくなり過ぎると抵抗Rに分流する電流が
増加し利得誤差につながる。つまり抵抗Rの値は
大きくしなければならない。しかし、これを大き
くすると、回路がOFFのときつまり、トランジ
スタ46,47がONのとき抵抗Rを通つて流れ
る電流Iによつて電圧降下を生じるため、46,
47のVCBを0V以上に保つため、RI+VBE46,
47なる電圧が入出力間(22,23の間)に必
要となる。つまり抵抗Rの値を大きくすると入出
力間の電位を高くしなければならなくなる。また
抵抗Rの値を大きくしても、チヤネル数がふえる
と不利になる。それは第4図の回路の出力端23
が複数個つながることになり、次段のドライブ抵
抗はチヤネル数分の1となり、利得誤差につなな
り不利になる。
(Prior art and its problems) Generally, a signal switching device for an oscilloscope has two to four channels of input and one output. The circuit shown in FIG. 5 is a three-channel signal selection circuit, which is an example of a signal switching circuit having three input terminals 1, 2, and 3 and an output terminal 18. In the state shown in the figure, the input terminal 1 is selected and connected to the output stage 17 via the switch circuit 7 which is in the ON state. Switch circuits 7, 8, and 9 turn the signal ON/OFF,
Selects 3 channel signals. in this case
When OFF, the collectors 22 of the input stages 4, 5, and 6 are short-circuited, and a bias current is supplied so that the input stages operate like DC even when OFF. Switching controller 13
(usually TTL level) control signal 10,
Usually one of 11 and 12 is "H",
In other words, a state in which one channel is selected (hereinafter referred to as the first state) is normal, but a state in which all channels are temporarily not selected (hereinafter referred to as the first state), such as in an oscilloscope that can display characters on the CRT surface. A state (hereinafter referred to as the second state) and a state in which two specific channels are selected and signals are added (hereinafter referred to as the third state) are required. On the other hand, since the path through which the bias current flows to the input emitter grounding stages 4, 5, and 6 changes depending on the ON/OFF state of the switch circuits 7, 8, and 9, the currents at the summing point 19, 20 in the second or third state. will change from 0 to 2I. If the variable current sources 15 and 16 that provide bias current to the input stage 4, 5, and 6 that are turned ON and the output stage 17 only flow a constant current, then the changes in the currents 19 and 20 will directly affect the output stage 17. This will appear in the output, and the DC voltage at the output terminal 18 will fluctuate greatly. Conventionally, to compensate for this variation,
In response to the output logic of the switching controller 13, the variable current source 15,
The configuration was to control 16. However, in order to actually logically detect the first to third states mentioned above, the circuit becomes complicated and the number of parts increases. On the other hand, as another method for solving this problem, there is a conventional circuit in which switch sections 7 to 9 are configured as shown in FIG.
When the base voltage 25 of the transistors 46 and 47 is made lower than the base voltage V B of the transistors 48 and 49, the transistors 48 and 49 are turned on, and the differential input signal is transmitted from the input terminal 22 to the output terminal 23. On the other hand, when the base voltage 25 becomes higher than V B , the transistors 46 and 47 are turned on, the differential signal is canceled, and only the bias current I flows from the output 23 to the input 22. In other words, the signal is ON/OFF
In either state, the bias current flowing from the output 23 does not change. Therefore, if each of the switch circuits 7 to 9 is implemented using the circuit shown in FIG. 4, the above-mentioned problem of operating point fluctuation can be solved. However, this circuit has a drawback in that the potential difference between the input terminal 22 and the output terminal 23 cannot be reduced. That is, when the potential difference between the input and output terminals 22 and 23 becomes large, the range of the power supply voltage is also limited, and therefore it becomes necessary to perform level shifting in a subsequent circuit to lower the operating point to a lower level. For example, it is difficult to create a level shift circuit with good high frequency characteristics in a multi-stage directly connected amplifier such as an oscilloscope, so the rise in DC voltage at each stage must be kept as small as possible.
Here, the reason why the potential between the input terminal 22 and the output terminal 23 cannot be lowered is that the value of the resistor R cannot be lowered. That is, the resistor R serves as a load resistance for differential signals when the transistors 48 and 49 are ON, and also serves as a drive resistance for the next stage.
The next stage is a parallel feedback circuit, which has a low input resistance, but if the resistor R becomes too small, the current shunted to the resistor R will increase, leading to a gain error. In other words, the value of the resistor R must be large. However, if this is increased, a voltage drop will occur due to the current I flowing through the resistor R when the circuit is OFF, that is, when the transistors 46 and 47 are ON, so 46,
In order to keep V CB of 47 above 0V, RI + V BE 46,
A voltage of 47 is required between the input and output (between 22 and 23). In other words, if the value of the resistor R is increased, the potential between the input and output must be increased. Furthermore, even if the value of the resistance R is increased, it will be disadvantageous if the number of channels increases. It is the output terminal 23 of the circuit in Figure 4.
A plurality of channels are connected, and the drive resistance at the next stage becomes 1/the number of channels, leading to a gain error and being disadvantageous.

(目的) この考案は第5図の従来例の回路が複雑になる
という欠点と、第4図の従来例のようにスイツチ
回路部の入力間の電位差が高くなるという欠点を
解決するため、OFFチヤネルの入力エミツタ接
地段に流すバイアス電流をチヤネル数分加算し、
OFFになつているチヤネル数を電流の変化によ
つて検出し、出力段の入力点へ適正な電流を流し
込む回路を設けたものである。
(Purpose) This invention solves the drawbacks of the conventional example shown in Fig. 5 that the circuit is complicated and the drawback that the potential difference between the inputs of the switch circuit section becomes high as in the conventional example shown in Fig. 4. Add the bias current flowing to the input emitter grounding stage of the channels for the number of channels,
It is equipped with a circuit that detects the number of channels that are OFF based on changes in current, and flows the appropriate current to the input point of the output stage.

(実施例) 考案の総括的説明 このようにトランジスタやダイオードを用いた
電流スイツチを用いて複数チヤネルの信号を切換
える方式では、スイツチON時にスイツチに電流
を流す必要がある。常に1つのチヤネルしか選択
されないような回路では、スイツチ回路に流す電
流は常に1チヤネル分であるため、どのチヤネル
を選択しても後段の回路のバイアス状態に影響を
与えないが、オシロスコープのように、2チヤネ
ルの加算(第3の状態)や、全チヤネルOFF(第
2の状態)の状態を作ろうとすると、スイツチ回
路に流す電流が変化するためその変化分を補正す
る必要が生じる。本考案はこの補正手段をできる
だけシンプルにし、かつ回路に与える影響を小さ
くした。第1図が本考案の信号切換器で具体的実
施例を第2図、第3図を用いて以下詳細に説明す
る。なお、第2図は2チヤネル入力の場合を示し
たものである。入力端子1,2から入力した信号
は出力端18から出力される。入力エミツタ接地
段4,5は第5図の従来例と同じく一定電流Iで
駆動されており、出力に現われる差動信号電流は
それに重畳した形で伝送される。30,31はス
イツチ回路の一例であり、ダイオードとトランジ
スタを組み合わせたものであり、このトランジス
タ36,37,38,39のベース電位を外部で
制御することによつてON/OFFする。この場合
電圧源32,33が接続点34,35の電位より
低ければダイオード40,41または42,43
がONとなりバイアス電流Iが流れ、差動信号電
流はそれに重畳して出力段17に伝送される。ま
た、電圧源32,33が前述した接続点34,3
5の電位より高くなるとトランジスタ36,37
または、38,39はONとなり、バイアス電流
Iはこれらのトランジスタを流れる。このとき
各々のトランジスタのコレクタは結合されている
ためバイアス電流に重畳した差動信号電流は合流
点44で打ち消しされ、バイアス電流Iのみ入力
段1,2に向けて流れ、34点に信号は伝送され
ない。このような入力段1,2とスイツチ回路3
0,31の組合せを必要なチヤネル数設けること
によつて、必要なチヤネルの信号を選択して接続
点34,35に伝送することができる。このまま
では前述したように、第2、第3の状態(全チヤ
ネルOFF、2チヤネル加算)のときに、接続点
34から入力へ向けて流れる電流Iが、第2の状
態のときは0、第3の状態のときは2Iまで変化
し、出力点18の動作点が変化する。そこで第5
図従来例のように固定電圧源V+に接続していた
OFFチヤネルバイアス電流供給端子を各チヤネ
ル結合し、第2図実施例のように抵抗RBを介し
て電圧源に供給した。これによつて抵抗RBに流
れる電流はOFFチヤネル数×2Iの電流が流れ、44
点の電圧はOFFのチヤネル数(逆に言えばONの
チヤネル数)に応じて変化することになる。この
変化をエミツタフオロアトランジスタ45と抵抗
RAによつて電流変化として接続点34に流し込
んでいる。具体的に動作を実施例のように2チヤ
ネル入力の場合で説明する。選択されるチヤネル
数が0(第2の状態)、1(第1の状態)、2(第3
の状態)と変化すると、接続点34,35から入
力エミツタ接地段4,5へ向けて流れる電流がそ
れぞれ0,I,2IとIずつ変化するのに対して、
抵抗RBに流れる電流は4I,2I,0と−2Iずつ変化
し、合流点44の電圧変化は2I・RBずつ変化す
る。RA=2RBと設定すればRAを通り44点に流れ
込む電流の変化は、44点は出力段17が並列帰還
回路なので一定電圧となるので、2I・RB/RA=Iと なりIずつ変化する。つまり、選択されるチヤネ
ル数に応じてRAから電流が供給されるため、出
力段へのバイアス電流は変化しなくなり、出力点
の動作点も変化しなくなる。
(Example) General explanation of the idea In this method of switching signals of multiple channels using a current switch using a transistor or a diode, it is necessary to flow a current through the switch when the switch is turned on. In a circuit where only one channel is always selected, the current flowing through the switch circuit is always one channel's worth, so no matter which channel is selected, it does not affect the bias state of the subsequent circuit. , when attempting to add two channels (third state) or create a state in which all channels are OFF (second state), the current flowing through the switch circuit changes, so it is necessary to correct the change. The present invention has made this correction means as simple as possible and has less influence on the circuit. FIG. 1 shows a signal switching device according to the present invention, and a concrete example thereof will be described in detail below with reference to FIGS. 2 and 3. Note that FIG. 2 shows the case of two-channel input. Signals input from input terminals 1 and 2 are output from output terminal 18. The input emitter grounding stages 4 and 5 are driven with a constant current I as in the conventional example shown in FIG. 5, and the differential signal current appearing at the output is transmitted in a superimposed manner. Reference numerals 30 and 31 indicate an example of a switch circuit, which is a combination of a diode and a transistor, and is turned on and off by controlling the base potentials of the transistors 36, 37, 38, and 39 externally. In this case, if the voltage sources 32, 33 are lower than the potential of the connection points 34, 35, the diodes 40, 41 or 42, 43
is turned on, the bias current I flows, and the differential signal current is superimposed on it and transmitted to the output stage 17. Further, the voltage sources 32 and 33 are connected to the connection points 34 and 3 mentioned above.
When the potential becomes higher than 5, transistors 36 and 37
Alternatively, 38 and 39 are turned on, and the bias current I flows through these transistors. At this time, since the collectors of each transistor are coupled, the differential signal current superimposed on the bias current is canceled at the confluence point 44, and only the bias current I flows toward input stages 1 and 2, and the signal is transmitted to 34 points. Not done. Such input stages 1 and 2 and switch circuit 3
By providing the necessary number of channels with the combination of 0 and 31, signals of the necessary channels can be selected and transmitted to the connection points 34 and 35. If this continues, the current I flowing from the connection point 34 to the input in the second and third states (all channels OFF, two channels added) will be 0 in the second state and 0 in the second state, as described above. In state 3, it changes to 2I, and the operating point of output point 18 changes. Therefore, the fifth
Figure: As in the conventional example, it was connected to a fixed voltage source V + .
OFF channel bias current supply terminals were connected to each channel and supplied to a voltage source via a resistor R B as in the embodiment of FIG. As a result, the current flowing through the resistor R B is the number of OFF channels x 2I, which is 44
The voltage at the point changes depending on the number of OFF channels (or conversely, the number of ON channels). This change is reflected by the emitter follower transistor 45 and the resistor.
R A causes the current to flow into the connection point 34 as a current change. The operation will be specifically explained in the case of two-channel input as in the embodiment. The number of selected channels is 0 (second state), 1 (first state), 2 (third state).
When the state of
The current flowing through the resistor R B changes by -2I to 4I, 2I, 0, and the voltage at the junction 44 changes by 2I· RB . If we set R A = 2R B , the change in the current flowing through R A to 44 points will be a constant voltage at 44 points because the output stage 17 is a parallel feedback circuit, so 2I・R B /R A = I and I It changes gradually. In other words, since current is supplied from RA according to the number of channels selected, the bias current to the output stage does not change, and the operating point of the output point also does not change.

また、第3図はスイツチ回路30,31の他の
実施例を示す回路図でこの回路はダイオード40
〜43に替えトランジスタ44,45を用いたも
のである。
Further, FIG. 3 is a circuit diagram showing another embodiment of the switch circuits 30 and 31, and this circuit has a diode 40.
.about.43 are replaced with transistors 44 and 45.

(効果) この考案によるスイツチの状態による出力の直
流電圧補正手段は、簡単な回路を追加することで
実現でき、スイツチ段の入出間の電位差を高く取
る必要がなく、したがつて信号切換回路の入出間
の直流電位差も低くする回路構成が実現でき、オ
シロスコープの信号切換器として好適なものとな
る。
(Effects) The output DC voltage correction means according to the switch state according to this invention can be realized by adding a simple circuit, and there is no need to set a high potential difference between the input and output of the switch stage. It is possible to realize a circuit configuration that also reduces the DC potential difference between input and output, making it suitable as a signal switch for an oscilloscope.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の回路図、第2図、第3図は本
考案の実施例を示す回路図、第4図、第5図は従
来例の回路図。 1,2,3……入力エミツタ接地段、18……
出力並列帰還段、7,8,9,30,33……電
流スイツチ回路、32,33……可変電圧源、
RB……電流検出手段、45……エミツタフオロ
ア、RA……電圧−電流変換手段。
FIG. 1 is a circuit diagram of the present invention, FIGS. 2 and 3 are circuit diagrams showing an embodiment of the present invention, and FIGS. 4 and 5 are circuit diagrams of a conventional example. 1, 2, 3... Input emitter grounding stage, 18...
Output parallel feedback stage, 7, 8, 9, 30, 33... Current switch circuit, 32, 33... Variable voltage source,
R B ... Current detection means, 45 ... Emitter follower, R A ... Voltage-current conversion means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 多入力単出力の信号切換器において、差動信号
入力をそのまま出力するか該差動信号の正負を短
絡して出力するかを選択する複数のスイツチ回路
と、該複数のスイツチ回路の出力側差動信号の同
極性どうしを接続し単出力の差動信号出力とし、
更に該単出力の差動信号出力の正負を接続する少
なくとも二つの直列抵抗と、該二つの直列抵抗の
接続点とエミツタを接続しベースを前記複数のス
イツチ回路の全ての短絡出力側の線路と接続した
エミツタフオロア回路と、該エミツタフオロア回
路のベースと該接続点に抵抗を介して接続される
共通電源より成ることを特徴とする信号切換器。
In a multi-input single-output signal switch, there are multiple switch circuits that select whether to output the differential signal input as is or to short-circuit the positive and negative sides of the differential signal, and the difference between the output sides of the multiple switch circuits. Connect dynamic signals of the same polarity to create a single differential signal output.
Furthermore, at least two series resistors connecting the positive and negative terminals of the differential signal output of the single output, a connection point of the two series resistors and an emitter are connected, and the base is connected to the line on the short-circuited output side of all of the plurality of switch circuits. A signal switching device comprising a connected emitter follower circuit, and a common power source connected to the base of the emitter follower circuit and the connection point via a resistor.
JP784686U 1986-01-24 1986-01-24 Expired - Lifetime JPH0526828Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP784686U JPH0526828Y2 (en) 1986-01-24 1986-01-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP784686U JPH0526828Y2 (en) 1986-01-24 1986-01-24

Publications (2)

Publication Number Publication Date
JPS62121838U JPS62121838U (en) 1987-08-03
JPH0526828Y2 true JPH0526828Y2 (en) 1993-07-07

Family

ID=30791678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP784686U Expired - Lifetime JPH0526828Y2 (en) 1986-01-24 1986-01-24

Country Status (1)

Country Link
JP (1) JPH0526828Y2 (en)

Also Published As

Publication number Publication date
JPS62121838U (en) 1987-08-03

Similar Documents

Publication Publication Date Title
EP0108428B1 (en) Differential amplifier circuit with rail-to-rail capability
JP2713167B2 (en) Comparator
US3813607A (en) Current amplifier
JP2730767B2 (en) Voltage-to-current converter
JPH03149920A (en) Voltage converter
JP2000223966A (en) Power amplifier device
US4833424A (en) Linear amplifier with transient current boost
US4837523A (en) High slew rate linear amplifier
US4319199A (en) Efficient power amplifier with staggered power supply voltages
US4463319A (en) Operational amplifier circuit
US4165494A (en) Bi-state linear amplifier
EP0027860B1 (en) Complementary transistor, inverting emitter follower circuit
US4283673A (en) Means for reducing current-gain modulation due to differences in collector-base voltages on a transistor pair
JPH0526828Y2 (en)
JPS5938773B2 (en) level shift circuit
US4910477A (en) Bridge-type linear amplifier with wide dynamic range and high efficiency
US4308469A (en) Unity gain emitter follower bridge circuit
US4382197A (en) Logic having inhibit mean preventing erroneous operation circuit
US6559706B2 (en) Mixer circuitry
JP2896029B2 (en) Voltage-current converter
JPS5928287B2 (en) push pull amplifier circuit
US5059826A (en) Voltage threshold generator for use in diode load emitter coupled logic circuits
JPH0221784Y2 (en)
JPH0543533Y2 (en)
JPH0540456Y2 (en)