JPH05267884A - Radiowave reflector and radiowave dark room - Google Patents

Radiowave reflector and radiowave dark room

Info

Publication number
JPH05267884A
JPH05267884A JP9222192A JP9222192A JPH05267884A JP H05267884 A JPH05267884 A JP H05267884A JP 9222192 A JP9222192 A JP 9222192A JP 9222192 A JP9222192 A JP 9222192A JP H05267884 A JPH05267884 A JP H05267884A
Authority
JP
Japan
Prior art keywords
dielectric
radio wave
layer
reflector
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9222192A
Other languages
Japanese (ja)
Other versions
JP3192467B2 (en
Inventor
Ko Yaginuma
效 柳沼
Masahiro Tojo
正宏 東條
Shinji Shirakawa
真司 白川
Yasuaki Kinoshita
康昭 木下
Ryozo Tsuruoka
良造 鶴岡
Shigeru Osawa
茂 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ii & C Eng Kk
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Ii & C Eng Kk
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ii & C Eng Kk, Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Ii & C Eng Kk
Priority to JP09222192A priority Critical patent/JP3192467B2/en
Publication of JPH05267884A publication Critical patent/JPH05267884A/en
Application granted granted Critical
Publication of JP3192467B2 publication Critical patent/JP3192467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to control a fine adjustment in accordance with various reflecting properties to the earth in the wide frequency range, by placing a magnetic layer on a metal plate and installing a laminated dielectric layer in which two materials having different dielectric constants are stacked alternately on the magnetic layer. CONSTITUTION:A radiowave reflector 10 comprises a conductor plate 1 made of a metal plate such as iron, a ferrite tile 2 made of a magnetic layer connected to the conductor plate 1, and a laminated structure dielectric 5 connected to the tile 2. The dielectric 5 is formed in a stacked structure in which an antistatic sheet 3 of rubber or vinyl type and a structural veneer plywood 4 are stacked alternately. The dielectric 5 is formed so that the antistatic sheet 3 is thicker and the veneer plywood 4 whose dielectric constant is close to that of air is thinner as they approach the surface of the reflector 10. The antistatic sheet 3 is set, to various values of dielectric constant by adjusting its material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電波反射体に関わり、特
に大地とほぼ同等の反射特性を有する電波反射体及び電
波暗室に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave reflector, and more particularly to a radio wave reflector and an anechoic chamber having a reflection characteristic almost equal to that of the ground.

【0002】[0002]

【従来の技術】自動車の雑音測定は、テストサイトとい
われる電波環境の良好な野外の実験場で行われる。これ
は、自動車から10m離れた地点の地上3mの位置に受
信アンテナを設置し、このアンテナで自動車からの雑音
電力を測定するものである。この測定値には地面からの
反射が含まれるので、雑音測定の精度を明確にするた
め、テストサイトの地面の反射特性についての基準が定
められている。すなわち、JASOの規格では、図2に
示すように地上1mに設置された送信アンテナ20から
10m離れた地上3mの位置に受信アンテナ21を設置
し、このアンテナで測定される30MHzから1000
MHzの周波数でのサイトアッテネーションカーブが、
標準的なサイトアッテネーションカーブの±3db以内
の範囲になければならないとされている。
2. Description of the Related Art Noise measurement of an automobile is carried out at an experimental field called a test site, which has a good radio environment. In this system, a receiving antenna is installed at a position 3 m above the ground 10 m away from the car, and noise power from the car is measured by this antenna. Since this measurement includes the reflection from the ground, a standard for the reflection characteristics of the ground at the test site is set in order to clarify the accuracy of noise measurement. That is, according to the JASO standard, as shown in FIG. 2, the receiving antenna 21 is installed at a position 3 m above the ground, which is 10 m away from the transmitting antenna 20 installed 1 m above the ground.
The site attenuation curve at the frequency of MHz is
It is said that it must be within ± 3db of the standard site attenuation curve.

【0003】このようなテストサイトを電波暗室で模擬
する場合、その床による反射特性が上記の規格に合致す
るような電波反射体で床を構成する必要がある。このよ
うな電波反射体の従来例には、例えば特公平3−263
50号に示されたものがある。上記従来例に示されたも
のは、導体板上にフェライト層を設け、さらにその上に
抵抗フィルム層を設けている。これらの電波反射体で
は、いずれも各層の厚さを制御することによって所望の
反射特性を実現するようにしている。また、特開昭58
−10902号に示された電波吸収体では、導体板上に
第1の層としてフェライト、その上に第2層として誘電
体を設けたものが示されており、その特性の設定は上記
従来例と同様である。また、特開昭57−102337
号などに示されたものでは、誘電体のみを単層で用いて
いる。
When simulating such a test site in an anechoic chamber, it is necessary to construct the floor with a radio wave reflector whose reflection characteristic of the floor conforms to the above standards. A conventional example of such a radio wave reflector is, for example, Japanese Patent Publication No. 3-263.
There is one shown in No. 50. In the conventional example, the ferrite layer is provided on the conductor plate, and the resistance film layer is further provided on the ferrite layer. In all of these radio wave reflectors, desired reflection characteristics are realized by controlling the thickness of each layer. In addition, JP-A-58
In the radio wave absorber disclosed in No. -10902, a conductor plate is provided with a ferrite as the first layer and a dielectric is provided as the second layer on the conductor plate. Is the same as. Also, JP-A-57-102337
In the one shown in No. 1 and the like, only the dielectric is used in a single layer.

【0004】[0004]

【発明が解決しようとする課題】上記した従来技術のう
ち、特開昭57−102337号に示された誘電体単層
のものでは、誘電体の小片を90〜130mmの厚さに
充填しているが、充填密度によって電気定数が変化する
ので必要な反射特性を得るのに細心の注意が必要とな
り、施工上に影響を与える。又調整に長期間要し工期的
な点でも改善の余地があった。また、特公平3−263
50号に示された多層構造のものでは、フェライトタイ
ル(5mm厚)の上にインピ−ダンス調整用の抵抗フィ
ルムを配置している。そして抵抗フィルムから見たイン
ピ−ダンスが大地のインピ−ダンスに概ね等しくなるよ
うにフェライト厚さと抵抗フィルム特性を調整してい
る。この技術では、特定周波数において大地のインピ−
ダンスと概ね同等にすることは可能であるが、広い周波
数範囲(30〜1000MHz)にわたってフェライト
タイルと薄い抵抗フィルムのみで所望の特性を実現する
のは簡単ではない。また特開昭58−10902号に示
されたものは、電波吸収体であり、反射体としての特性
は考慮されていない。
Among the above-mentioned conventional techniques, in the case of the dielectric single layer disclosed in JP-A-57-102337, small pieces of the dielectric are filled to a thickness of 90 to 130 mm. However, since the electric constant changes depending on the packing density, great care must be taken to obtain the necessary reflection characteristics, which affects the construction. In addition, adjustment required a long period of time and there was room for improvement in terms of construction period. In addition, Japanese Patent Publication 3-263
In the multilayer structure shown in No. 50, a resistance film for impedance adjustment is arranged on a ferrite tile (5 mm thick). The ferrite thickness and the resistance film characteristics are adjusted so that the impedance seen from the resistance film is approximately equal to the ground impedance. With this technology, the impedance of the earth at a specific frequency
Although it is possible to make it almost equal to the dance, it is not easy to realize the desired characteristics only with the ferrite tile and the thin resistance film over a wide frequency range (30 to 1000 MHz). Further, the one disclosed in JP-A-58-10902 is a radio wave absorber, and the characteristics as a reflector are not taken into consideration.

【0005】本発明の目的は、特性の調整が簡単に行
え、広い周波数範囲で所望の反射特性を容易に実現でで
きる電波反射体を提供するにあり、又大地の反射特性を
精度良く近似した床面を有する電波暗室を提供するにあ
る。
An object of the present invention is to provide a radio wave reflector whose characteristics can be easily adjusted and desired reflection characteristics can be easily realized in a wide frequency range, and the reflection characteristics of the ground can be accurately approximated. It is to provide an anechoic chamber having a floor surface.

【0006】[0006]

【課題を解決するための手段】上記の目的は、金属板上
に層状に配置された磁性体層と、該磁性体層の上に層状
に配置され、その内部が誘電率の異なる2つの材料が交
互に層状に配置されて成るところの積層誘電体層とを設
けることにより達成され、又こうして構成された電波反
射体を電波暗室の床面に敷き詰めることにより達成され
る。
The above-mentioned object is to provide a magnetic material layer arranged in layers on a metal plate, and two materials arranged in layers on the magnetic material layer and having different dielectric constants inside. Is provided by alternately arranging the laminated dielectric layers in layers, and by arranging the radio wave reflector thus constructed on the floor surface of the anechoic chamber.

【0007】[0007]

【作用】反射波の位相を制御する積層誘電体層を層構造
とし、その層を構成する各材料の厚さを変えるだけで積
層誘電体層全体の誘電率を容易に制御できるから、反射
特性の広い周波数帯域にわたる調整が容易となり、反射
体自体の厚さも小さくできる。又、広い周波数帯域で良
好な特性が得られるから、大地の反射特性をよく近似で
きる。
[Function] Since the laminated dielectric layer for controlling the phase of the reflected wave has a layered structure, and the dielectric constant of the entire laminated dielectric layer can be easily controlled only by changing the thickness of each material constituting the layer, the reflection characteristic is improved. It becomes easy to adjust over a wide frequency band, and the thickness of the reflector itself can be reduced. Moreover, since good characteristics can be obtained in a wide frequency band, the reflection characteristics of the ground can be well approximated.

【0008】[0008]

【実施例】図1に本発明による電波反射体の一実施例を
示す。同図は電波反射体10の断面図であり、導体板
1、導体板1に接合されるフェライトタイル2、フェラ
イトタイル2に接合される積層構造誘電体5からなって
おり、この誘電体5は、ゴム又はビニール系帯電防止シ
ート3と構造ベニヤ板4とが交互に重ねられた積層構造
と成っている。導体板1は電波のシールドとなってお
り、鉄が適している。フェライトはコイルなどの磁心や
電波吸収体として用いられ、その複素透磁率は広い範囲
で選べる材料である。従って導体板1上にフェライトタ
イル2を設け、その透磁率や厚みを調整することで種々
の反射特性を実現できる。フェライトタイル2の上に積
層誘電体5を設けた理由はフェライトが誘電体よりもイ
ンピーダンスが高いためである。更に誘電体5を積層化
した理由はその層構成(層数や、各層の厚みや、各層の
シートとベニヤ板との個々の厚み)によって種々の電磁
反射特性を得ることが出来るためである。かくしてフェ
ライトタイルと積層誘電体との種々の組合せで、大地と
同様な電磁波反射特性を得る。
FIG. 1 shows an embodiment of the radio wave reflector according to the present invention. This figure is a cross-sectional view of a radio wave reflector 10, which includes a conductor plate 1, a ferrite tile 2 bonded to the conductor plate 1, and a laminated structure dielectric 5 bonded to the ferrite tile 2. The rubber or vinyl antistatic sheet 3 and the structural veneer plate 4 are laminated alternately. The conductor plate 1 serves as a radio wave shield, and iron is suitable. Ferrite is used as a magnetic core such as a coil and a radio wave absorber, and its complex permeability is a material that can be selected in a wide range. Therefore, various reflection characteristics can be realized by providing the ferrite tile 2 on the conductor plate 1 and adjusting the magnetic permeability and thickness thereof. The reason why the laminated dielectric 5 is provided on the ferrite tile 2 is that ferrite has higher impedance than the dielectric. Further, the reason why the dielectric 5 is laminated is that various electromagnetic reflection characteristics can be obtained depending on the layer structure (the number of layers, the thickness of each layer, the individual thickness of the sheet of each layer and the veneer plate). Thus, with various combinations of ferrite tiles and laminated dielectrics, electromagnetic wave reflection characteristics similar to those of the ground are obtained.

【0009】誘電体5は上記のように多層構造になって
おり、反射体10の表面に近づく程、帯電防止シート3
を薄くかつベニヤ板4を厚くなるようにし、又フェライ
トタイル2に近づくほど、逆に帯電防止シート3が厚く
かつベニヤ板4が薄くなるようにしてある。ベニヤ板4
の誘電率は空気に近い。一方、帯電防止シート3の誘電
率は大きく、材質を調整することでその値を種々の値に
設定できる。こうして、誘電体5の誘電率は、フェライ
トタイル2から表面方向の距離をxとしたとき、xの増
大につれて次第に低下することになり、その様子は図4
に例示されている。そしてこの特性を利用して、誘電率
の大きいフェライトとの接触面(x=0)ではフェライ
ト材とほぼ等しい誘電率とし、誘電率の小さい空気との
接触面(x=d)では誘電体5の誘電率を同様に小さく
することが出来るから、誘電率の不連続変化が小さくな
って、複雑な反射を減らすことが出来る。これは反射特
性の調整を簡単にするとともに、広い周波数範囲での所
望の反射特性を実現するのに役立つ。
The dielectric 5 has a multi-layered structure as described above, and the closer to the surface of the reflector 10 is, the closer the antistatic sheet 3 becomes.
Is thin and the veneer plate 4 is thick, and as the ferrite tile 2 is approached, the antistatic sheet 3 is thicker and the veneer plate 4 is thinner. Veneer board 4
Has a dielectric constant close to that of air. On the other hand, the antistatic sheet 3 has a large dielectric constant, and its value can be set to various values by adjusting the material. Thus, when the distance from the ferrite tile 2 in the surface direction is x, the dielectric constant of the dielectric 5 gradually decreases as x increases, as shown in FIG.
Is illustrated in. Utilizing this characteristic, the contact surface with ferrite having a large permittivity (x = 0) has a dielectric constant substantially equal to that of the ferrite material, and the contact surface with air having a small permittivity (x = d) has the dielectric material 5. Since the permittivity of can be similarly reduced, the discontinuous change in permittivity can be reduced, and complex reflection can be reduced. This simplifies the adjustment of the reflection characteristics and helps achieve the desired reflection characteristics in a wide frequency range.

【0010】例として、反射波の振幅を制御するための
磁性体材料であるフェライトタイル2の複素比透磁率の
実数部を85〜1程度、虚数部を170〜6.5程度、
比誘電率の実数部を14程度、虚数部を1.0程度、厚
さを8mm程度とし、一方、反射波の位相を制御するた
めの誘電体5の複素比誘電率の実数部を30〜7程度、
虚数部を60〜3.0程度、厚さを15〜30mm程度
とすれば、30〜1000MHz帯で良好な反射特性が
得られる。図5、6は本実施例の実測値と大地の反射特
性(サイトアッテネーション、即ち受信電力/送信電力
のこと)とを比較したもので、水平偏波(図5)、垂直
偏波(図6)共に30〜1000MHz帯で良好な一致
を見ている。ここで図5、図6において(イ)が本実施
例での実測値、(ロ)が実際の大地での実測値である。
そしてこの実施例では、誘電体材料の厚さは、使用する
最高周波数1000MHzの自由空間(真空中)波長3
0cmの5/100〜10/100=15〜30mm度
になり、従来技術(特開63−25758号)に比べて
はるかに薄い厚さで実現出来ることがわかる。
As an example, the real part of the complex relative permeability of the ferrite tile 2 which is a magnetic material for controlling the amplitude of the reflected wave is about 85 to 1, the imaginary part is about 170 to 6.5,
The real part of the relative permittivity is about 14, the imaginary part is about 1.0, and the thickness is about 8 mm, while the real part of the complex relative permittivity of the dielectric 5 for controlling the phase of the reflected wave is 30 to 30 mm. About 7,
If the imaginary part is about 60 to 3.0 and the thickness is about 15 to 30 mm, good reflection characteristics can be obtained in the 30 to 1000 MHz band. FIGS. 5 and 6 compare the actual measurement values of this embodiment with the ground reflection characteristics (site attenuation, that is, reception power / transmission power). Horizontal polarization (FIG. 5) and vertical polarization (FIG. 6). ) Both show good agreement in the 30 to 1000 MHz band. Here, in FIGS. 5 and 6, (a) is the actual measurement value in the present embodiment, and (b) is the actual measurement value in the ground.
And, in this embodiment, the thickness of the dielectric material is such that the maximum frequency used is 1000 MHz in free space (in vacuum) wavelength 3
It becomes 5 / 100-10 / 100 = 15-30 mm degree of 0 cm, and it can be seen that it can be realized with a much thinner thickness as compared with the prior art (Japanese Patent Laid-Open No. 63-25758).

【0011】図3は本発明の電波反射体を床面に使用し
た電波暗室の一実施例を示す。同図は電波暗室の床面に
置ける平面図で、周囲が電波吸収帯12で囲まれた暗室
内の床面に本発明の電波反射体10を敷き詰めたもので
ある。これを大地と見なして、図2で示したJASO測
定方法による測定を電波暗室内で行うことが出来る。
FIG. 3 shows an embodiment of an anechoic chamber using the radio wave reflector of the present invention on the floor. This figure is a plan view that can be placed on the floor of an anechoic chamber, in which the radio wave reflector 10 of the present invention is spread over the floor of the anechoic chamber surrounded by the electromagnetic wave absorption band 12. Considering this as the ground, the measurement by the JASO measurement method shown in FIG. 2 can be performed in the anechoic chamber.

【0012】尚、ベニヤ板の代わりに一般の木材又は他
の材料を使用してもよくシートとしてゴム又はビニール
系を使ったが他の有機樹脂系を使ってもよい。
Incidentally, general wood or other materials may be used in place of the veneer plate, and rubber or vinyl type is used as the sheet, but other organic resin type may be used.

【0013】[0013]

【発明の効果】本発明によれば、積層構造の誘電体を用
いることにより、比誘電率を300から10程度まで容
易に制御でき、従って反射体表面での反射波の振幅及び
位相特性、反射体内へ透過した電磁波の振幅及び位相特
性、磁性体への入射角の制御が容易となり、従来技術に
比べて広い周波数範囲にわたり、各種の大地の反射特性
に対応した微調整が効果的に行える。
According to the present invention, by using a laminated dielectric, the relative permittivity can be easily controlled from about 300 to about 10. Therefore, the amplitude and phase characteristics of the reflected wave and the reflection on the surface of the reflector can be easily controlled. The amplitude and phase characteristics of the electromagnetic wave transmitted into the body and the angle of incidence on the magnetic material can be easily controlled, and fine adjustment corresponding to the reflection characteristics of various grounds can be effectively performed over a wider frequency range than in the prior art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電波反射体の一実施例を示す断面図で
ある。
FIG. 1 is a sectional view showing an embodiment of a radio wave reflector of the present invention.

【図2】JASO規格の説明図である。FIG. 2 is an explanatory diagram of JASO standard.

【図3】本発明の電波反射体を用いた電波暗室の一実施
例を示す図である。
FIG. 3 is a diagram showing an embodiment of an anechoic chamber using the radio wave reflector of the present invention.

【図4】積層構造誘電帯の厚み方向の誘電率変化を示す
図である。
FIG. 4 is a diagram showing a change in a dielectric constant of a laminated dielectric band in a thickness direction.

【図5】本発明の電波反射体と大地の水平偏波特性の実
測値を示したものである。
FIG. 5 shows measured values of horizontal polarization characteristics of the radio wave reflector of the present invention and the ground.

【図6】本発明の電波反射体と大地の垂直偏波特性の実
測値を示したものである。
FIG. 6 shows measured values of vertical polarization characteristics of the radio wave reflector of the present invention and the ground.

【符号の説明】[Explanation of symbols]

1 導体板 2 磁性体(フェライトタイル) 3 ゴム又はビニール系帯電防止シート 4 構造ベニヤ板 5 積層構造誘電体 10 電波反射体 1 Conductor Plate 2 Magnetic Material (Ferrite Tile) 3 Rubber or Vinyl Antistatic Sheet 4 Structural Veneer Plate 5 Laminated Structure Dielectric 10 Radio Wave Reflector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳沼 效 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 東條 正宏 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 白川 真司 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 木下 康昭 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 鶴岡 良造 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 大沢 茂 神奈川県横浜市港北区新横浜3丁目16番1 イー・アンド・シー・エンジニアリング 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yaginuma Efficacy 3-2-1, Sachimachi, Hitachi City, Ibaraki Hitachi Engineering Co., Ltd. (72) Inventor Masahiro Tojo 4-6, Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. (72) Inventor Shinji Shirakawa 1168 Moriyama-cho, Hitachi City, Ibaraki Pref., Energy Research Laboratory, Nitrate Works Co., Ltd. (72) Inventor Yasuaki Kinoshita 1-280, Higashi Koigakubo, Kokubunji, Tokyo Hitachi Central Research Institute In-house (72) Ryozo Tsuruoka 3-2-1, Saiwaicho, Hitachi, Ibaraki Hitachi Engineering Co., Ltd. (72) Inventor Shigeru Osawa 3-16-1 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa E & C Engineering Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属板と、該金属板上に層状に配置され
た磁性体層と、該磁性体層の上に層状に配置され、その
内部が誘電率の異なる2つの材料が交互に層状に配置さ
れて成るところの積層誘電体層とから構成されたことを
特徴とする電波反射体。
1. A metal plate, a magnetic layer arranged in a layer on the metal plate, and a layer arranged on the magnetic layer in a layered manner. Two materials having different dielectric constants are alternately layered inside. A radio wave reflector comprising: a laminated dielectric layer that is disposed in the.
【請求項2】 前記磁性体層をフェライトタイルとした
ことを特徴とする請求項1記載の電波反射体。
2. The radio wave reflector according to claim 1, wherein the magnetic layer is a ferrite tile.
【請求項3】 前記積層誘電体層を構成する材料の1つ
をベニヤ板、他方をゴムまたはビニール系帯電防止シー
ルとしたことを特徴とする請求項1または2記載の電波
反射体。
3. The radio wave reflector according to claim 1, wherein one of the materials forming the laminated dielectric layer is a veneer plate and the other is a rubber or vinyl antistatic seal.
【請求項4】 前記積層誘電体層を構成する2つの材料
のうち、より誘電率の大きい方の材料の厚さを前記磁性
体層に近いほど大きくし、かつより誘電率の小さい方の
材料の厚さを上記磁性体層に近いほど小さくしたことを
特徴とする請求項1または2または3のうちの1つに記
載の電波反射体。
4. Of the two materials forming the laminated dielectric layer, the material having a larger dielectric constant has a larger thickness, and the material having a smaller dielectric constant has a larger thickness. 5. The radio wave reflector according to claim 1, wherein the thickness of the radio wave is made smaller as it is closer to the magnetic layer.
【請求項5】 前記積層誘電体層の厚さは、使用最短波
長の5/100〜10/100の厚さとする請求項4の
電波反射体。
5. The radio wave reflector according to claim 4, wherein the laminated dielectric layer has a thickness of 5/100 to 10/100 of the shortest usable wavelength.
【請求項6】 請求項1または2または3または4また
は5のうちの1つに記載の電波反射体を床面に張り付け
た電波暗室。
6. An anechoic chamber in which the radio wave reflector according to claim 1 or 2 or 3 or 4 or 5 is attached to a floor surface.
JP09222192A 1992-03-18 1992-03-18 Radio wave reflector, anechoic chamber Expired - Lifetime JP3192467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09222192A JP3192467B2 (en) 1992-03-18 1992-03-18 Radio wave reflector, anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09222192A JP3192467B2 (en) 1992-03-18 1992-03-18 Radio wave reflector, anechoic chamber

Publications (2)

Publication Number Publication Date
JPH05267884A true JPH05267884A (en) 1993-10-15
JP3192467B2 JP3192467B2 (en) 2001-07-30

Family

ID=14048397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09222192A Expired - Lifetime JP3192467B2 (en) 1992-03-18 1992-03-18 Radio wave reflector, anechoic chamber

Country Status (1)

Country Link
JP (1) JP3192467B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299588A (en) * 1999-04-15 2000-10-24 Takenaka Komuten Co Ltd Electromagnetic wave shielding panel
JP2006132970A (en) * 2004-11-02 2006-05-25 Ntt Docomo Inc System and method for measuring specific absorption rate
JP2013101140A (en) * 2013-01-21 2013-05-23 Ntt Docomo Inc Specific absorption rate measurement system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299588A (en) * 1999-04-15 2000-10-24 Takenaka Komuten Co Ltd Electromagnetic wave shielding panel
JP2006132970A (en) * 2004-11-02 2006-05-25 Ntt Docomo Inc System and method for measuring specific absorption rate
JP2013101140A (en) * 2013-01-21 2013-05-23 Ntt Docomo Inc Specific absorption rate measurement system and method

Also Published As

Publication number Publication date
JP3192467B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
USRE36506E (en) Antenna design using a high index, low loss material
WO2005084096A1 (en) Electromagnetic wave absorber
JP2510880B2 (en) Multilayer type electromagnetic wave absorber and anechoic chamber consisting of the electromagnetic wave absorber
GB1074898A (en) Improvements in devices for absorbing elector-magnetic waves
KR930011548B1 (en) Electric wave absorber
JP3030453B2 (en) Broadband radio wave absorber
US6359581B2 (en) Electromagnetic wave abosrber
Hou et al. Capacity of 4-by-4 MIMO channel using one composite leaky coaxial cable with user position information
US5724052A (en) Device for reducing the radome effect with a surface-radiating wideband antenna and reducing the radar cross section of the assembly
JPH05267884A (en) Radiowave reflector and radiowave dark room
JPH09181475A (en) Composite type wide band electromagnetic wave absorber
JP2003133784A (en) Electromagnetic absorber and material thereof
JP3323113B2 (en) Multilayer chip antenna
JP3509936B2 (en) Radio wave absorber, precast concrete plate and curtain wall
JPH1154981A (en) Electromagnetic wave absorber
RU97103691A (en) SUPERWIDE-BAND ELECTROMAGNETIC WAVE DETECTOR
JP2005315614A (en) Communication space for mobile type radio communication equipments
JPS6332278B2 (en)
JP2979898B2 (en) Anechoic chamber
JPH0132394Y2 (en)
JP2006186725A (en) Electromagnetic wave absorbing board
JP2590549Y2 (en) Anechoic chamber
JPH06224583A (en) Ferrite radio absorptive material
JPH10135682A (en) Multilayered radio wave absorber
JPH0815357A (en) Field strength margin tester

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100525

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110525

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120525

EXPY Cancellation because of completion of term