JPH05267163A - Polycrystalline semiconductor film formation method and photovoltaic device using the film - Google Patents

Polycrystalline semiconductor film formation method and photovoltaic device using the film

Info

Publication number
JPH05267163A
JPH05267163A JP4093444A JP9344492A JPH05267163A JP H05267163 A JPH05267163 A JP H05267163A JP 4093444 A JP4093444 A JP 4093444A JP 9344492 A JP9344492 A JP 9344492A JP H05267163 A JPH05267163 A JP H05267163A
Authority
JP
Japan
Prior art keywords
semiconductor film
film
polycrystalline
photovoltaic device
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4093444A
Other languages
Japanese (ja)
Inventor
Takao Matsuyama
隆夫 松山
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4093444A priority Critical patent/JPH05267163A/en
Publication of JPH05267163A publication Critical patent/JPH05267163A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide a formation method which is capable of forming a polycrystalline semiconductor film which provides larger crystal sizes and a high carrier mobility. CONSTITUTION:An intrinsic amorphous semiconductor film 2 and a amorphous semiconductor film 3 of one conductivity tape are formed on an uneven substrate 1 in this order. Then, they are heat-treated so that the impurities contained in the amorphous semiconductor film 3 may be diffused in the intrinsic amorphous semiconductor film 2 and further crystallized, thereby forming a polycrystalline semiconductor film 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、多結晶半導体膜形成
方法及びその膜を用いた光起電力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a polycrystalline semiconductor film and a photovoltaic device using the film.

【0002】[0002]

【従来の技術】多結晶半導体膜からなる光起電力装置で
は、この多結晶半導体膜内の結晶粒径の大型化と、膜内
のキャリア移動度の向上が、その光電変換効率を向上す
るための必須条件である。斯る多結晶半導体膜の代表と
しては、多結晶シリコン膜などがある。
2. Description of the Related Art In a photovoltaic device composed of a polycrystalline semiconductor film, an increase in the crystal grain size in the polycrystalline semiconductor film and an improvement in carrier mobility in the film improve the photoelectric conversion efficiency. Is an essential condition of. A typical example of such a polycrystalline semiconductor film is a polycrystalline silicon film.

【0003】従来より、前記多結晶シリコン膜の形成方
法として、いわゆる固相成長法が採用されている。従来
の固相成長法としては、図6に示すように、表面に凹凸
形状を備えた基板1上に不純物をドープした非晶質シリ
コン11を形成し、この非晶質シリコン11上に真性非
晶質シリコン2を成膜する。そして、非晶質シリコンに
熱処理を施すことで、上記不純物が真性非晶質シリコン
層まで拡散されつつ結晶化が行われ、一導電型の多結晶
シリコン膜10に変質させることにより形成するもので
ある。
Conventionally, a so-called solid phase growth method has been adopted as a method for forming the polycrystalline silicon film. As a conventional solid-phase growth method, as shown in FIG. 6, an amorphous silicon 11 doped with impurities is formed on a substrate 1 having an uneven surface, and an intrinsic non-crystalline silicon 11 is formed on the amorphous silicon 11. Amorphous silicon 2 is formed. Then, the amorphous silicon is heat-treated to be crystallized while the impurities are diffused to the intrinsic amorphous silicon layer, and the polycrystalline silicon film 10 of one conductivity type is transformed to be formed. is there.

【0004】[0004]

【発明が解決しようとする課題】上記方法によれば、あ
る程度の大きさの結晶粒径を有する多結晶シリコン膜が
得られるものの、下層に位置する不純物をドープした非
晶質シリコン層により発生核数が多くなり、結晶粒径の
大きさ、キャリア移動度においてもまだ不十分であると
いう問題があった。
According to the above method, although a polycrystalline silicon film having a crystal grain size of a certain size can be obtained, the nuclei generated by the impurity-doped amorphous silicon layer located in the lower layer are obtained. There is a problem that the number is large and the crystal grain size and carrier mobility are still insufficient.

【0005】そこで、この発明は、より大きな結晶粒径
と、高キャリア移動度を備えた多結晶半導膜を形成する
ことができる方法を提供することをその課題とする。
Therefore, an object of the present invention is to provide a method capable of forming a polycrystalline semiconductor film having a larger crystal grain size and high carrier mobility.

【0006】[0006]

【課題を解決するための手段】この発明の多結晶半導体
膜の形成方法は、その表面に凹凸形状を備えた基板上に
真性非晶質半導体膜、一導電型非晶質半導体膜をこの順
序で形成した後、熱処理を施し、前記一導電型非晶質半
導体膜に含有された不純物を真性非晶質半導体膜中に拡
散しつつ結晶化を行い多結晶半導体膜を形成することを
特徴とする。
According to the method of forming a polycrystalline semiconductor film of the present invention, an intrinsic amorphous semiconductor film and a one-conductivity type amorphous semiconductor film are formed in this order on a substrate having an uneven surface. And then crystallize while diffusing the impurities contained in the one conductivity type amorphous semiconductor film into the intrinsic amorphous semiconductor film to form a polycrystalline semiconductor film. To do.

【0007】この発明の光起電力装置は、その表面に凹
凸形状を備えた基板上に真性非晶質半導体一導電型の非
晶質半導体がこの順序に形成された非晶質半導体に熱処
理を施すことにより形成された一導電型の多結晶半導体
膜を具備したことを特徴とする。
In the photovoltaic device of the present invention, an amorphous semiconductor in which an intrinsic amorphous semiconductor and an amorphous semiconductor of one conductivity type are formed in this order on a substrate having irregularities on its surface is subjected to heat treatment. A polycrystalline semiconductor film of one conductivity type formed by applying is provided.

【0008】[0008]

【作用】この発明によれば、真性半導体にドーピングす
るために不純物層は真性半導体の上部に位置する。従っ
て、核形成の中心は基板の凹凸に左右され、基板の凹凸
に対応して発生核数が少なくなり、大きな結晶粒径が得
られる。
According to the present invention, the impurity layer is located above the intrinsic semiconductor for doping the intrinsic semiconductor. Therefore, the center of nucleation depends on the unevenness of the substrate, the number of nuclei generated decreases corresponding to the unevenness of the substrate, and a large crystal grain size can be obtained.

【0009】[0009]

【実施例】以下、この発明の実施例を図面に従い説明す
る。図1はこの発明に斯る多結晶半導体膜の形成方法を
説明するための製造工程別素子構造図であり、材料とし
てはシリコンを使用したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an element structure diagram for each manufacturing step for explaining a method for forming a polycrystalline semiconductor film according to the present invention, in which silicon is used as a material.

【0010】まず、表面に0.3μm〜数10μmの凹
凸形状を具備した基板1上に真性非晶質シリコン膜2を
従来周知のプラズマCVD法により形成する。基板1と
しては導電性あるいは絶縁性のいずれであってもよい
が、実施例では透光性絶縁基板を使用した。
First, an intrinsic amorphous silicon film 2 is formed by a conventionally known plasma CVD method on a substrate 1 having an uneven surface of 0.3 μm to several tens of μm on its surface. The substrate 1 may be either conductive or insulating, but a translucent insulating substrate was used in the examples.

【0011】上記凹凸形状の製作方法として、例えば前
記透光性絶縁基板の表面自体を化学的あるいは物理的エ
ッチングにより加工するものや、前記基板の表面にSn
2膜やITO(Indium Tin Oxide)
膜などの導電膜、あるいはSiO2膜やSi34膜など
の絶縁膜を形成することにより、これらの膜の表面に備
わった凹凸形状を用いるものなどがある。
As the method of manufacturing the uneven shape, for example, the surface itself of the translucent insulating substrate is processed by chemical or physical etching, or Sn is formed on the surface of the substrate.
O 2 film and ITO (Indium Tin Oxide)
For example, by forming a conductive film such as a film or an insulating film such as a SiO 2 film or a Si 3 N 4 film, the uneven shape provided on the surface of these films is used.

【0012】プラズマCVD法による形成条件として
は、反応ガスとしてシランガス10cc/minを用
い、放電時真空度を11Paとし、放電電力は15Wで
形成した。基板温度は350℃である。
As the formation conditions by the plasma CVD method, 10 cc / min of silane gas was used as a reaction gas, the degree of vacuum during discharge was 11 Pa, and the discharge power was 15 W. The substrate temperature is 350 ° C.

【0013】そしてこの真性非晶質シリコン膜2を形成
した後、リンをドープしたn型非晶質シリコン層3を形
成する。この形成も同じくプラズマCVD法により形成
すればよい。このプラズマCVD法の形成条件は、反応
ガスとしてシランガス10cc/minにホスフィン
(1%濃度の水素希釈)5cc/min混合させたもの
を用い、放電時真空度で11Paとし、放電電力は15
Wで形成した。基板温度は350℃である。
After forming the intrinsic amorphous silicon film 2, a phosphorus-doped n-type amorphous silicon layer 3 is formed. This formation may be similarly performed by the plasma CVD method. The formation conditions of this plasma CVD method were as follows: silane gas of 10 cc / min mixed with phosphine (1% concentration of hydrogen diluted) of 5 cc / min was used, the discharge vacuum was 11 Pa, and the discharge power was 15
Formed with W. The substrate temperature is 350 ° C.

【0014】次に、真性非晶質シリコン膜及びこの上に
n型非晶質シリコン膜3が成膜された基板1を電気炉内
に設置し600℃〜700℃の温度で3〜7時間の熱処
理を施す。これより前記n型非晶質シリコン層内のn型
不純物、すなわちリンが真性非晶質シリコン層内まで拡
散し、そしてこれら非晶質シリコン膜が多結晶シリコン
に変質し、n-型多結晶シリコン20が形成される。
Next, the intrinsic amorphous silicon film and the substrate 1 having the n-type amorphous silicon film 3 formed thereon are placed in an electric furnace at a temperature of 600 ° C. to 700 ° C. for 3 to 7 hours. Heat treatment of. This n-type impurity of the n-type amorphous silicon layer, i.e. phosphorus is diffused to an intrinsic amorphous silicon layer, and these amorphous silicon film is transformed into polycrystalline silicon, n - -type polycrystalline Silicon 20 is formed.

【0015】この実施例により得られた前記n-型多結
晶シリコン膜20の粒径は8〜10μmである。
The grain size of the n -- type polycrystalline silicon film 20 obtained in this embodiment is 8 to 10 μm.

【0016】これに対し、図6に示すように、基板1に
n型非晶質シリコン11を形成し、その上に真性非晶質
シリコン2を形成した後、固相成長により多結晶シリコ
ン膜10とした従来のものでは、その粒径は4〜6μm
であり、この発明によるものが大きく成長していること
がわかる。
On the other hand, as shown in FIG. 6, after the n-type amorphous silicon 11 is formed on the substrate 1 and the intrinsic amorphous silicon 2 is formed thereon, the polycrystalline silicon film is formed by solid phase growth. In the case of the conventional one having a diameter of 10, the particle diameter is 4 to 6 μm.
Therefore, it can be seen that the product according to the present invention has grown significantly.

【0017】また、上記実施例では、n-型多結晶シリ
コン膜を形成する場合について説明したが、n-型以
外、すなわちp-型多結晶シリコン膜を形成する場合で
も全く同様に形成することができる。この場合は、真性
非晶質シリコン上にp型不純物をドープしたp型非晶質
シリコン層を積層し、その後熱処理を施して固相成長さ
せれば良い。
In the above embodiment, the case where the n -- type polycrystalline silicon film is formed has been described. However, the formation is exactly the same even when the p -- type polycrystalline silicon film other than the n -- type is formed. You can In this case, a p-type amorphous silicon layer doped with p-type impurities may be stacked on the intrinsic amorphous silicon, and then heat treatment may be performed to perform solid phase growth.

【0018】このようにして得られた多結晶シリコン膜
を用いた光起電力装置を図2及び図3に示す。図2のも
のは、上記の方法により形成されたn-型多結晶シリコ
ン20上に真性の非晶質シリコン層3を形成し、更にそ
の上にp型非晶質シリコン層4を形成することにより接
合を形成したものである。
A photovoltaic device using the polycrystalline silicon film thus obtained is shown in FIGS. 2 and 3. In FIG. 2, the intrinsic amorphous silicon layer 3 is formed on the n type polycrystalline silicon 20 formed by the above method, and the p type amorphous silicon layer 4 is further formed thereon. To form a joint.

【0019】また図3に示すものは、上記の方法により
形成されたn-型多結晶シリコン20上にp型多結晶シ
リコン5を形成することにより接合を形成したものであ
る。
In FIG. 3, the junction is formed by forming the p-type polycrystalline silicon 5 on the n -- type polycrystalline silicon 20 formed by the above method.

【0020】このようにして得られた多結晶シリコン膜
を用いた光起電力装置のデータを図4及び図5に示す。
図4にこの発明による多結晶シリコン膜(A)と図6に
示す従来の多結晶シリコン膜(B)及びフラット基板を
用いた以外は図6に示す方法と同様に形成した多結晶シ
リコン膜(C)との夫々のキャリア濃度とキャリア依存
度の関係を示す。図中実線で示されるものがこの発明に
よるもの、一点鎖線が凹凸基板を用いた従来のもの、点
線がフラット基板を用いた従来のものである。図4よ
り、この発明の多結晶シリコン膜は従来のものに比較し
てキャリア移動度が格段に改善されていることがわか
る。
Data of a photovoltaic device using the thus obtained polycrystalline silicon film are shown in FIGS. 4 and 5.
In FIG. 4, a polycrystalline silicon film (A) according to the present invention, a conventional polycrystalline silicon film (B) shown in FIG. 6 and a polycrystalline silicon film formed in the same manner as in the method shown in FIG. The relationship between each carrier concentration and carrier dependence with C) is shown. In the figure, what is shown by the solid line is according to the present invention, the one-dot chain line is the conventional one using the uneven substrate, and the dotted line is the conventional one using the flat substrate. It can be seen from FIG. 4 that the polycrystalline silicon film of the present invention has a much improved carrier mobility as compared with the conventional one.

【0021】図5はこの発明及び従来例の多結晶シリコ
ン膜を用いた光起電力装置の光学的特性である収集効率
特性図であり、Aはこの発明による多結晶シリコンを用
いた光起電力装置、Bは従来方法により形成した多結晶
シリコンを用いた光起電力装置、Cは従来のフラット基
板を用いて従来方法により形成した多結晶シリコンを用
いた光起電力装置を夫々示している。この図5より明ら
かなように、この発明による光起電力装置では長波長領
域における収集効率が従来の光起電力素子に比較してさ
らに向上していることが分かる。
FIG. 5 is a characteristic diagram of collection efficiency which is an optical characteristic of the photovoltaic device using the polycrystalline silicon film according to the present invention and the conventional example, and A is the photovoltaic efficiency using the polycrystalline silicon according to the present invention. Device B is a photovoltaic device using polycrystalline silicon formed by a conventional method, and C is a photovoltaic device using polycrystalline silicon formed by a conventional method using a conventional flat substrate. As is clear from FIG. 5, the photovoltaic device according to the present invention has further improved collection efficiency in the long wavelength region as compared with the conventional photovoltaic device.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、表面に凹凸形状を有する基板上に真性非晶質半導
体、一導電型非晶質半導体がこの順序に形成し、そして
これを熱処理することにより形成された多結晶半導体膜
は大きな粒径を有し、又大きなキャリア移動度を備えて
いる。そしてこの方法によって形成された多結晶半導体
膜を具備する光起電力装置ではその光電変換効率が大き
いものが得られる。
As described above, according to the present invention, an intrinsic amorphous semiconductor and a one-conductivity type amorphous semiconductor are formed in this order on a substrate having an uneven surface, and this is heat treated. The polycrystalline semiconductor film thus formed has a large grain size and a large carrier mobility. A photovoltaic device having a polycrystalline semiconductor film formed by this method has high photoelectric conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に斯る多結晶半導体膜の形成方法を説
明するための製造工程別素子構造図である。
FIG. 1 is an element structure diagram for each manufacturing step for explaining a method for forming a polycrystalline semiconductor film according to the present invention.

【図2】この発明による多結晶シリコン膜を用いた光起
電力装置を示す模式図である。
FIG. 2 is a schematic view showing a photovoltaic device using a polycrystalline silicon film according to the present invention.

【図3】この発明による多結晶シリコン膜を用いた光起
電力装置を示す模式図である。
FIG. 3 is a schematic view showing a photovoltaic device using a polycrystalline silicon film according to the present invention.

【図4】この発明による多結晶シリコン膜と従来の多結
晶シリコン膜のキャリア濃度とキャリア依存度の関係を
示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between carrier concentration and carrier dependence of a polycrystalline silicon film according to the present invention and a conventional polycrystalline silicon film.

【図5】この発明及び従来例の多結晶シリコン膜を用い
た光起電力装置の収集効率特性図である。
FIG. 5 is a collection efficiency characteristic diagram of photovoltaic devices using the polycrystalline silicon film of the present invention and the conventional example.

【図6】従来の多結晶半導体膜の形成方法を説明するた
めの製造工程別素子構造図である。
FIG. 6 is an element structure diagram for each manufacturing step for explaining a conventional method for forming a polycrystalline semiconductor film.

【符号の説明】[Explanation of symbols]

1 基板 2 真性非晶質シリコン膜 3 n型非晶質シリコン膜 20 n-型多結晶シリコン 10 n-型多結晶シリコン 11 n型非晶質シリコン膜DESCRIPTION OF SYMBOLS 1 Substrate 2 Intrinsic amorphous silicon film 3 n-type amorphous silicon film 20 n - type polycrystalline silicon 10 n - type polycrystalline silicon 11 n-type amorphous silicon film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 その表面に凹凸形状を備えた基板上に真
性非晶質半導体膜、一導電型非晶質半導体膜をこの順序
で形成した後、熱処理を施し、前記一導電型非晶質半導
体膜に含有された不純物を真性非晶質半導体膜中に拡散
しつつ結晶化を行い多結晶半導体膜を形成することを特
徴とする多結晶半導体膜の形成方法。
1. An intrinsic amorphous semiconductor film and a one-conductivity type amorphous semiconductor film are formed in this order on a substrate having an uneven surface, and then heat treated to form the one-conductivity type amorphous film. A method for forming a polycrystalline semiconductor film, which comprises forming a polycrystalline semiconductor film by crystallization while diffusing impurities contained in the semiconductor film into an intrinsic amorphous semiconductor film.
【請求項2】 その表面に凹凸形状を備えた基板上に真
性非晶質半導体、一導電型の非晶質半導体がこの順序に
形成された非晶質半導体に熱処理を施すことにより形成
された一導電型の多結晶半導体膜を具備したことを特徴
とする光起電力装置。
2. An intrinsic amorphous semiconductor and an amorphous semiconductor of one conductivity type are formed by subjecting an amorphous semiconductor formed in this order to heat treatment on a substrate having an uneven surface. A photovoltaic device comprising a polycrystalline semiconductor film of one conductivity type.
JP4093444A 1992-03-19 1992-03-19 Polycrystalline semiconductor film formation method and photovoltaic device using the film Pending JPH05267163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4093444A JPH05267163A (en) 1992-03-19 1992-03-19 Polycrystalline semiconductor film formation method and photovoltaic device using the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4093444A JPH05267163A (en) 1992-03-19 1992-03-19 Polycrystalline semiconductor film formation method and photovoltaic device using the film

Publications (1)

Publication Number Publication Date
JPH05267163A true JPH05267163A (en) 1993-10-15

Family

ID=14082500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4093444A Pending JPH05267163A (en) 1992-03-19 1992-03-19 Polycrystalline semiconductor film formation method and photovoltaic device using the film

Country Status (1)

Country Link
JP (1) JPH05267163A (en)

Similar Documents

Publication Publication Date Title
US5831334A (en) Field effect transistors comprising electrically conductive plugs having monocrystalline and polycrystalline silicon
JP3822238B2 (en) Multilayer solar cell manufacturing method
US5264070A (en) Method of growth-orientation of a crystal on a device using an oriented seed layer
US6703289B2 (en) Method for forming crystalline silicon layer and crystalline silicon semiconductor device
JPS62570B2 (en)
JP2917388B2 (en) Method for manufacturing semiconductor device
JPH05267163A (en) Polycrystalline semiconductor film formation method and photovoltaic device using the film
JP2854038B2 (en) Semiconductor element
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JP2000353706A (en) Production of semiconductor device
JPS62209871A (en) Manufacture of photovoltaic device
JPH07135332A (en) Fabrication of photovoltaic power element
JP2889718B2 (en) Method for manufacturing photovoltaic device
JPH04229664A (en) Photoelectromotive force device and its manufacture
JP2003218030A (en) Crystalline silicon semiconductor device and its manufacturing method
US20040124445A1 (en) Semiconductor substrate and method of manufacture thereof
JPH0888189A (en) Thin film polycrystalline semiconductor and its manufacture, and photovoltaic device and its manufacture
JP2501451B2 (en) Thin film transistor and manufacturing method thereof
JP3347747B2 (en) Method for manufacturing photoelectric conversion device
JP3094730B2 (en) Solar cell element
JPH05206492A (en) Photoelectric conversion device
JPH06342763A (en) Forming method of polycrystalline semiconductor film
JP3164199B2 (en) Method of manufacturing solar cell device
JP3016950B2 (en) Method for manufacturing photovoltaic device
JPH04286335A (en) Manufacture of thin film semiconductor device