JPH05266839A - Faraday cup - Google Patents

Faraday cup

Info

Publication number
JPH05266839A
JPH05266839A JP5991492A JP5991492A JPH05266839A JP H05266839 A JPH05266839 A JP H05266839A JP 5991492 A JP5991492 A JP 5991492A JP 5991492 A JP5991492 A JP 5991492A JP H05266839 A JPH05266839 A JP H05266839A
Authority
JP
Japan
Prior art keywords
coil
gas
ion beam
current
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5991492A
Other languages
Japanese (ja)
Inventor
Katsuhiko Sakai
克彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5991492A priority Critical patent/JPH05266839A/en
Publication of JPH05266839A publication Critical patent/JPH05266839A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent measuring of an implant current from being affected by gas if generated inside a Faraday cup during ion implantation. CONSTITUTION:An ion beam 1 is implanted through a coil-shaped Faraday cage 7 into a subject 4 to be implanted with ions, and the ion current is measured by an ammeter 6. Gas generated during implanting is expeled from gaps in the coil 7. Secondary electrons are trapped by a magnetic field that the coil 7 generates, and are thereby not emitted outside. Therefore, even if the subject to be implanted with ions is one that readily emits gas, such as a resist- equipped semiconductor wafer, the gas is promptly expeled from the gaps in the coil, so the rate of lowering of the degree of vacuum can be reduced and the ion beam current can be accurately measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン打込装置の打込
処理室におけるイオン電流計測のための構成に係り、特
に打込時真空度が変動しても電流計測誤差を最小限に留
めるための工夫をしたイオン打込装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for measuring an ion current in an implanting processing chamber of an ion implanting device, and particularly to minimize an error in current measurement even if the vacuum degree at the time of implanting changes. The present invention relates to an ion implantation device that has been devised.

【0002】[0002]

【従来の技術】従来の装置は、米国特許4,001,449 記載
に代表されるように、密閉された筒状電極を被打込物前
方に設けた構成となっていた。
2. Description of the Related Art A conventional apparatus has a structure in which a sealed cylindrical electrode is provided in front of an object to be driven, as represented by U.S. Pat. No. 4,001,449.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、イオ
ンビーム電流値を精度よく測定するため、被打込物にイ
オンビームを照射した際に発生する2次電子や、2次イ
オンを捕獲するという点では十分機能を果たす。しか
し、イオンビーム電流が10mA級となり、イオンビー
ム照射時に被打込物からガスが発生する場合、特に、半
導体ウェハ上のレジスト膜のように、被打込物表面に樹
脂性の膜などがある場合、打込時のアウトガスにより、
真空度が低下する。ガスはファラデーケージ(筒状電
極)のイオンビーム入口しか逃げ口がないので、ファラ
デーケージ内に充満し、さらにイオンビーム入口の開口
を通ってビームライン上流へ拡散し、イオンビームがフ
ァラデーカップに入る前にイオンビームと衝突して、イ
オンビームの一部を中性化させてしまう。また、ファラ
デーケージ内でイオンビームと衝突してガスがイオン化
され、イオンの状態で排気されるため電流リークと同じ
現象を起こしてしまう。いずれの場合にもイオンビーム
電流は正確に測定できず、真空度の変化に伴い変動する
という問題があった。
In the above-mentioned prior art, since the current value of the ion beam is accurately measured, secondary electrons or secondary ions generated when the object to be implanted is irradiated with the ion beam are captured. In that respect, it functions well. However, when the ion beam current is in the 10 mA class and gas is generated from the implanting object during ion beam irradiation, there is a resin film or the like on the surface of the implanting object, such as a resist film on a semiconductor wafer. In this case, depending on the outgas when driving,
The degree of vacuum decreases. The gas only escapes from the ion beam inlet of the Faraday cage (cylindrical electrode), so it fills the Faraday cage and further diffuses to the upstream of the beam line through the opening of the ion beam inlet, and the ion beam enters the Faraday cup. It collides with the ion beam before and neutralizes a part of the ion beam. Further, the gas is ionized by colliding with the ion beam in the Faraday cage, and the gas is exhausted in the ion state, so that the same phenomenon as the current leak occurs. In either case, the ion beam current cannot be accurately measured, and there is a problem that the ion beam current fluctuates as the degree of vacuum changes.

【0004】また、電流計測系に2次電子のサプレッサ
電極のような高電圧電極等がある場合、真空度低下によ
って放電を起こしやすくなるといった問題もある。さら
に、発生したガス物質がイオンビーム打込時のミキシン
グ作用によって、被打込物表面に打込まれるといった汚
染の問題、ガス物質が集結して異物として問題になる大
きさまで成長し、特に半導体ウェハへの打込時に悪影響
を与えるといったことが懸念される。
Further, when the current measuring system has a high-voltage electrode such as a suppressor electrode for secondary electrons, there is a problem that discharge is likely to occur due to a decrease in vacuum degree. Furthermore, the generated gas substance is mixed into the surface of the object to be implanted due to the mixing action at the time of ion beam implantation, and the gas substance collects and grows to a size as a foreign matter. There is a concern that it will have an adverse effect when it is driven into.

【0005】本発明の目的は、これらファラデーケージ
内のガスの発生,充満に起因する問題を解決することに
ある。
An object of the present invention is to solve the problems caused by the generation and filling of gas in these Faraday cages.

【0006】[0006]

【課題を解決するための手段】上記目的は、ファラデー
ケージをコイル状にすることによって達成される。打込
によってガスが発生しても、ガスはコイルのすきまから
排出される。ファラデーケージ内に充満することはな
い。
The above objective is accomplished by coiling the Faraday cage. Even if gas is generated by driving, the gas is discharged from the clearance of the coil. It does not fill the Faraday cage.

【0007】しかしここで、発生したガスと共に2次電
子や2次イオンがリークすると正確な電流計測はできな
くなる。そのため 1.ファラデーケージであるコイルに電流を流し、強い
磁場を発生させる。
However, if secondary electrons or secondary ions leak together with the generated gas, accurate current measurement cannot be performed. Therefore 1. A strong magnetic field is generated by passing an electric current through the coil, which is a Faraday cage.

【0008】2.ターゲットからみてコイルのすきまか
ら、ファラデーケージの外側が見通せないようにコイル
の線の太さと間隔を決める。
2. Determine the thickness and spacing of the coil wire so that the outside of the Faraday cage cannot be seen through the gap of the coil as seen from the target.

【0009】いずれもコイルのすきまからは、電荷を持
っていない中性のガスのみ排出し、電子やイオン等の荷
電粒子は捕獲するよう構成している。
In both cases, only a neutral gas having no electric charge is discharged from the clearance of the coil, and charged particles such as electrons and ions are trapped.

【0010】[0010]

【作用】ファラデーケージ部に磁場を設けると、電子や
イオン等の荷電粒子のみが磁場によって進行方向を曲げ
られる。磁場が十分強ければ、進行方向を曲げるだけで
なく、その磁場に荷電粒子をトラップすることができ
る。
When a magnetic field is provided in the Faraday cage, only charged particles such as electrons and ions can be bent in the traveling direction by the magnetic field. If the magnetic field is strong enough, not only can the direction of travel be bent, but charged particles can be trapped in the magnetic field.

【0011】2次電子について必要な磁場強度を算出し
てみる。2次電子のエネルギーEeは数十eV,磁場の
粒子通過方例長さLを数cmとすると、磁場による電子の
施回半径RがLよりも小さければ、2次電子はこの磁場
を通過することができない。
The magnetic field strength required for secondary electrons will be calculated. If the energy Ee of the secondary electron is several tens of eV and the length L of the particle passage example of the magnetic field is several cm, and the radius R of the electron applied by the magnetic field is smaller than L, the secondary electron passes through this magnetic field. I can't.

【0012】[0012]

【数1】 [Equation 1]

【0013】とし、荷電粒子と磁場の関係式And the relational expression between the charged particles and the magnetic field

【0014】[0014]

【数2】 [Equation 2]

【0015】ただし、Meは電子の質量(原子量換算)
Bは磁束密度(Gauss )によって
However, Me is the mass of the electron (converted into atomic weight)
B depends on the magnetic flux density (Gauss)

【0016】[0016]

【数3】 [Equation 3]

【0017】従って、ファラデーケージのコイル部付近
には、50Gauss 程度の磁場があれば、2次電子は磁場
でトラップできる。2次イオンのエネルギーも2次電子
とほぼ同等とおもわれるが、質量が大きいため、この程
度の磁場ではトラップされずに通り抜けてしまう恐れが
ある。このためターゲットからみて、コイルのすきまか
ら外側が見透せないようにすることが望ましい。
Therefore, if a magnetic field of about 50 Gauss is present near the coil portion of the Faraday cage, secondary electrons can be trapped by the magnetic field. Although the energy of the secondary ions is almost the same as that of the secondary electrons, the mass of the secondary ions is large, so there is a risk that they will pass through without being trapped in a magnetic field at this level. Therefore, it is desirable that the outside of the coil cannot be seen through the gap of the coil when viewed from the target.

【0018】[0018]

【実施例】以下、本発明の実施例を図1ないし図3を用
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0019】図2は従来の打込装置の構成でイオンビー
ム1はイオン源10で生成され加速された後分析管11
にて質量分離されアース電極2,サプレッサ電極3を通
過して被打込物4とファラデーケージ5によって構成さ
れるファラデーカップによって捕獲され、電流計6で計
測される。
FIG. 2 shows the structure of a conventional implanting device, in which an ion beam 1 is generated by an ion source 10 and accelerated, and then an analysis tube 11 is provided.
Is mass-separated, passes through the earth electrode 2 and the suppressor electrode 3, is captured by the Faraday cup composed of the driven object 4 and the Faraday cage 5, and is measured by the ammeter 6.

【0020】これに対し図1では、ファラデーケージ5
の後方を純アルミ製コイル7で構成し、コイル7にコイ
ル電源8を接続して、電流を流して磁場を発生できるよ
うにした。
On the other hand, in FIG. 1, the Faraday cage 5
The rear part of the coil was made up of a coil 7 made of pure aluminum, and a coil power source 8 was connected to the coil 7 so that a current could be passed to generate a magnetic field.

【0021】純アルミは、熱伝導,被打ち込み物の重金
属汚染防止の点で有効である。コイル8は純アルミ製な
ので中央がたるまぬよう、アルミナや樹脂等で作った支
持部品9を3ないし4方向に取り付け、コイルを支持し
ている。さらにこの支持部品9には、コイルを留める溝
を設けてあり、これによりコイルは、等間隔に支持され
る。図1においてイオンビーム1は、アース電極2,サ
プレッサ電極3を通りコイル状ファラデー7,ファラデ
ー筒5を通って被打込物4に打込まれ、イオン電流計6
で、イオン電流が計測される。
Pure aluminum is effective in terms of heat conduction and prevention of heavy metal contamination of the driven object. Since the coil 8 is made of pure aluminum, a supporting part 9 made of alumina or resin is attached in 3 or 4 directions so as to prevent the center from slackening, thereby supporting the coil. Further, the support component 9 is provided with grooves for retaining the coil, so that the coil is supported at equal intervals. In FIG. 1, the ion beam 1 passes through the earth electrode 2, the suppressor electrode 3, the coil-shaped Faraday 7, and the Faraday cylinder 5, and is driven into the target object 4.
Then, the ion current is measured.

【0022】打込中に発生するガスは、コイル7のすき
まから排気される。しかし、打込中に発生する2次電子
は、コイル7が発生する磁場にトラップされてコイルの
すきまから外へ出ることはない。また、2次イオンは、
磁場によって偏向される角度が電子より小さいので、磁
場にはトラップされにくいが、被打込物上4で発生した
2次イオンについては、コイルすきまから直進して外へ
出ることがないようにコイルすきまを決めている。被打
込物上で発生したスパッタ物も同様である。コイルは直
径約6mmの純アルミで作った場合、すきまは3mm以下に
すればよい。また、コイルを図3に示すように偏平にす
ると粒子の捕獲率が上がる。図3では5a≒b程度が望
ましい。
The gas generated during the driving is exhausted from the clearance of the coil 7. However, the secondary electrons generated during the implantation are trapped by the magnetic field generated by the coil 7 and do not go out through the clearance of the coil. The secondary ions are
Since the angle deflected by the magnetic field is smaller than that of electrons, it is hard to be trapped in the magnetic field, but the secondary ions generated on the implanting object 4 are coiled so that they do not go straight out of the coil gap to the outside. I have decided the clearance. The same applies to the sputtered material generated on the driven material. If the coil is made of pure aluminum with a diameter of about 6 mm, the clearance should be 3 mm or less. Further, if the coil is made flat as shown in FIG. 3, the particle capture rate increases. In FIG. 3, about 5a≈b is desirable.

【0023】本実施例によれば、被打込物がレジスト付
の半導体ウェハのような、ガスを出しやすいものでもガ
スはコイル7のすきまからすぐ排気されるので、真空度
の低下が少なくてすみ、正確にイオンビーム電流を測定
できるという効果がある。
According to the present embodiment, even if the object to be implanted is a semiconductor wafer having a resist, which easily emits gas, the gas is immediately exhausted from the clearance of the coil 7, so that the degree of vacuum is not lowered. Therefore, there is an effect that the ion beam current can be accurately measured.

【0024】[0024]

【発明の効果】本発明によれば、レジスト付の半導体ウ
ェハ等にイオンビームを打込んでアウトガスのため真空
が低下しても、イオンビームの電流値が変動することな
く正確に測定することができる。さらに、極度の真空度
低下時に発生するサプレッサ電極等での放電の恐れもな
くなる。また発生したガスが被打込室付近にある状態で
打込みを行うことによって、ガス物質が被打込物に打込
まれるというミキシング作用による被打込物の汚染や、
ガス物質が集結して異物となり、被打込物への正常な打
込みを阻害するといった恐れもなくなる。
According to the present invention, even if a vacuum is lowered due to outgas by implanting an ion beam on a semiconductor wafer having a resist, the current value of the ion beam can be accurately measured without changing. it can. Further, there is no fear of electric discharge at the suppressor electrode or the like which occurs when the degree of vacuum is extremely lowered. Moreover, by performing the driving in a state where the generated gas is in the vicinity of the driving chamber, contamination of the driving target due to the mixing action that the gas substance is driven into the driving target,
There is no fear that the gas substance will be collected and become a foreign substance, which will hinder the normal driving of the object.

【0025】またガス物質が周囲の構成物に付着するこ
とによる汚れの問題、ひいてはメンテナンスの問題も軽
減され得る。
Further, the problem of fouling due to the adherence of gaseous substances to the surrounding components, and hence the problem of maintenance, can be alleviated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で、ファラデー筒の一部をコ
イルで構成した例を示す図である。
FIG. 1 is a diagram showing an example in which a part of a Faraday cylinder is formed of a coil in an embodiment of the present invention.

【図2】従来のイオン打込装置の主な構成の例を示す図
である。
FIG. 2 is a diagram showing an example of a main configuration of a conventional ion implantation device.

【図3】コイルを扁平材で作った例を示す図である。FIG. 3 is a diagram showing an example in which a coil is made of a flat material.

【符号の説明】[Explanation of symbols]

1…イオンビーム、2…アース電極、3…サプレッサ電
極、4…被打ち込み物、5…ファラデーケージ、6…イ
オン電流計、7…コイル状ファラデー、8…コイル電
源、9…コイル支持部品、10…イオン源、11…分析
管、15…扁平コイル。
1 ... Ion beam, 2 ... Ground electrode, 3 ... Suppressor electrode, 4 ... Implanted object, 5 ... Faraday cage, 6 ... Ion ammeter, 7 ... Coil-shaped Faraday, 8 ... Coil power supply, 9 ... Coil support part, 10 … Ion source, 11… Analysis tube, 15… Flat coil.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】真空処理室において、被打込物とその前方
に位置する筒状電極によってイオン電流を測定するもの
において、前記筒状電極をコイル状にしたことを特徴と
するファラデーカップ。
1. A Faraday cup, wherein in a vacuum processing chamber, an ion current is measured by an object to be implanted and a cylindrical electrode positioned in front of the object, wherein the cylindrical electrode has a coil shape.
【請求項2】真空処理室において、被打込物とその前方
に位置する筒状電極によってイオン電流を測定するもの
において、被打込物付近に前記筒状電極を残し、前記筒
状電極のイオンビーム入口側をコイル状にしたことを特
徴とするファラデーカップ。
2. In a vacuum processing chamber, wherein an ion current is measured by an implanting object and a tubular electrode positioned in front of the implanting object, the tubular electrode is left in the vicinity of the implanting object, and the tubular electrode A Faraday cup characterized in that the ion beam entrance side is coiled.
【請求項3】前記コイル状の電極に電流を流し、磁場を
発生させたことを特徴とする請求項1又は2記載のファ
ラデーカップ。
3. The Faraday cup according to claim 1, wherein a current is applied to the coil-shaped electrode to generate a magnetic field.
【請求項4】請求項3において形成した磁場の磁力線の
方向がイオンビームと同軸方向となるよう構成したこと
を特徴とするファラデーカップ。
4. A Faraday cup characterized in that the direction of the magnetic force lines of the magnetic field formed in claim 3 is coaxial with the ion beam.
【請求項5】前記コイル状電極を、純アルミで作ったこ
とを特徴とする請求項1ないし4のいずれか1項に記載
のファラデーカップ。
5. The Faraday cup according to claim 1, wherein the coil electrode is made of pure aluminum.
【請求項6】請求項1ないし5のいずれか1項に記載の
ファラデーカップをもちいたことを特徴とするイオン打
込装置。
6. An ion implanter using the Faraday cup according to any one of claims 1 to 5.
JP5991492A 1992-03-17 1992-03-17 Faraday cup Pending JPH05266839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5991492A JPH05266839A (en) 1992-03-17 1992-03-17 Faraday cup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5991492A JPH05266839A (en) 1992-03-17 1992-03-17 Faraday cup

Publications (1)

Publication Number Publication Date
JPH05266839A true JPH05266839A (en) 1993-10-15

Family

ID=13126879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5991492A Pending JPH05266839A (en) 1992-03-17 1992-03-17 Faraday cup

Country Status (1)

Country Link
JP (1) JPH05266839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787709B1 (en) * 2006-11-03 2007-12-21 동부일렉트로닉스 주식회사 Set-up cup assembly of ion injector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787709B1 (en) * 2006-11-03 2007-12-21 동부일렉트로닉스 주식회사 Set-up cup assembly of ion injector

Similar Documents

Publication Publication Date Title
Dolder et al. A measurement of the ionization cross-section of helium ions by electron impact
US7791049B2 (en) Ion implantation apparatus
JPH06236747A (en) Plasma emission system redusing electrification in semiconductor wafer during ion implantation
EP0890975B1 (en) System and method for detecting neutral particles in an ion beam
JPS5824745B2 (en) Beam current measuring device
JPH0724209B2 (en) Ion implanter
Koyama et al. Dependence of secondary electron emission coefficients on z1 in metal targets under bombardment with bare projectiles
JPH05266839A (en) Faraday cup
JPH03194841A (en) Electron shower
JP2756704B2 (en) Charge neutralizer in ion beam irradiation equipment
JPH0754689B2 (en) Ion implanter
JP3460242B2 (en) Negative ion implanter
JP4009013B2 (en) Ion current detection device and ion implantation device
JP2830958B2 (en) Electron beam excited ion irradiation equipment
JP2968955B2 (en) Wafer contamination prevention equipment for ion implantation equipment
JP3084299B2 (en) Ion implanter
JPH0626107B2 (en) Charged particle irradiation device
JP2001210267A (en) Particle detector and mass spectrograph using it
JP3387251B2 (en) Ion processing equipment
JPS60100349A (en) Secondary electron detector
Smith Metal ion injection into metals III. Irradiation system and experimental techniques
JP3100006B2 (en) Synchrotron radiation generator
JP2973706B2 (en) Ion beam irradiation equipment
JPH06273595A (en) Static magnetic field type positive electron beam analyzer
Baumann et al. Determination of the ReA-EBIT electron beam radius and current density with an X-ray pinhole camera