JPH05266768A - D.c. breaker - Google Patents

D.c. breaker

Info

Publication number
JPH05266768A
JPH05266768A JP6315092A JP6315092A JPH05266768A JP H05266768 A JPH05266768 A JP H05266768A JP 6315092 A JP6315092 A JP 6315092A JP 6315092 A JP6315092 A JP 6315092A JP H05266768 A JPH05266768 A JP H05266768A
Authority
JP
Japan
Prior art keywords
current
circuit
trigger gap
main
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6315092A
Other languages
Japanese (ja)
Inventor
Takashi Sato
隆 佐藤
Koji Suzuki
光二 鈴木
Takeshi Hashimoto
斌 橋本
Shunkichi Endo
俊吉 遠藤
Yukio Kurosawa
幸夫 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6315092A priority Critical patent/JPH05266768A/en
Publication of JPH05266768A publication Critical patent/JPH05266768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PURPOSE:To improve breaking performance with an insulation recovering characteristic after current breaking improved, and with the diffusion of charged particles in a radical direction undisturbed, by making a current-zero point at a point of time when axial magnetic flux is sufficiently attenuated. CONSTITUTION:Commutation capacitors 5a and 5b are charged previously. Excess current, flowing in a main circuit, is detected with an excess current trip device 7, and an axial magnetic field, generated by an electrode itself, is applied to arcs generated by separating a movable electrode 2b from a fixed electrode 2a. At the time of breaking, first, a trigger gap 8a is ignited, and first current is applied to reduce the absolute value of current flowing in a main electrode. A trigger gap 8b is ignited so as to make a current-zero point at a point of time, when axial magnetic flux is sufficiently attenuated behind a change of current, and then second current is applied to make a current-zero point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空バルブを用いた直
流遮断器、すなわち、規定以上の直流電流が回路に流れ
たときにその電流を遮断し、回路を保護するのに用いら
れる直流遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC circuit breaker using a vacuum valve, that is, a DC circuit breaker used to protect a circuit when a DC current exceeding a specified value flows through the circuit. Regarding vessels.

【0002】[0002]

【従来の技術】直流遮断器は、逆極性の電流を挿入して
生じさせた電流零点において主電極間の電気的絶縁を回
復し、電流を遮断することによって回路を過電流から保
護するもので、例えば、図11に従来の一般的な直流遮
断器の回路図を、図12にその動作原理を示す。
2. Description of the Related Art A DC circuit breaker protects a circuit from overcurrent by restoring electrical insulation between main electrodes at a current zero point generated by inserting a current of opposite polarity and interrupting the current. For example, FIG. 11 shows a circuit diagram of a conventional general DC breaker, and FIG. 12 shows its operating principle.

【0003】図11において、1は直流遮断器であって
真空バルブ2,転流コンデンサ5,転流リアクトル6,
トリガギャップ8,電磁反発コイル3,ショートリング
4,過電流引き外し装置7,酸化亜鉛非直線抵抗9から
構成される。
In FIG. 11, reference numeral 1 is a DC breaker, which is a vacuum valve 2, a commutation capacitor 5, a commutation reactor 6, and the like.
It is composed of a trigger gap 8, an electromagnetic repulsion coil 3, a short ring 4, an overcurrent trip device 7, and a zinc oxide nonlinear resistor 9.

【0004】このように構成された従来の直流遮断器1
において、転流コンデンサ5はあらかじめ充電装置によ
り、図に示すように、直流電源10側を負,負荷11側
を正になる極性に充電されている。時刻toから主回路
に過電流Ioが流れ、過電流引き外し装置7により検出
されると同時に、電磁反発コイル3が励磁され、ショー
トリング4との間に電磁反発力が生じ、時刻t1で真空
バルブ2の可動電極2bは固定電極2aから開離し、可
動電極2bと固定電極2aの間にアークが発生する。こ
のときアークには固定電極2a,可動電極2b自身によ
って発生する軸方向平行磁束φoが作用するため、アー
クは安定に電極間に維持される。
A conventional DC circuit breaker 1 constructed in this way
In FIG. 3, the commutation capacitor 5 is charged in advance by a charging device so that the DC power supply 10 side is negative and the load 11 side is positive as shown in the figure. An overcurrent Io flows into the main circuit from the time to, and at the same time when it is detected by the overcurrent trip device 7, the electromagnetic repulsion coil 3 is excited and an electromagnetic repulsion force is generated between the short ring 4 and the vacuum circuit. The movable electrode 2b of the bulb 2 is separated from the fixed electrode 2a, and an arc is generated between the movable electrode 2b and the fixed electrode 2a. At this time, since the axial parallel magnetic flux φo generated by the fixed electrode 2a and the movable electrode 2b itself acts on the arc, the arc is stably maintained between the electrodes.

【0005】真空バルブ2の開極後の時刻t2でトリガ
ギャップ8が点弧されると、転流コンデンサ5−転流リ
アクトル6−トリガギャップ8−真空バルブ2の閉回路
が形成され、転流コンデンサ5が放電して主回路電流と
逆方向に逆電流Ic1が流れる。
When the trigger gap 8 is ignited at time t2 after opening the vacuum valve 2, a commutation condenser 5-commutation reactor 6-trigger gap 8-a closed circuit of the vacuum valve 2 is formed and commutation occurs. The capacitor 5 is discharged and the reverse current Ic1 flows in the direction opposite to the main circuit current.

【0006】この電流によって時刻t3において真空バ
ルブ2を流れる電流Io+Ic1が零点に達すると真空
バルブ2は消弧し、主回路電流は転流コンデンサ5−転
流リアクトル6−トリガギャップ8の回路に転流する。
When this current causes the current Io + Ic1 flowing through the vacuum valve 2 to reach the zero point at time t3, the vacuum valve 2 is extinguished, and the main circuit current is transferred to the circuit of the commutation capacitor 5-commutation reactor 6-trigger gap 8. Shed.

【0007】負荷側のインダクタンスに蓄えられていた
エネルギは、転流コンデンサ5の充電エネルギに変換さ
れ、転流コンデンサ5の電圧が上昇し酸化亜鉛非直線抵
抗9の動作電圧に達すると、酸化亜鉛非直線抵抗9が放
電し遮断動作を完了する。
The energy stored in the inductance on the load side is converted into the charging energy of the commutation capacitor 5, and when the voltage of the commutation capacitor 5 rises to reach the operating voltage of the zinc oxide nonlinear resistor 9, the zinc oxide is discharged. The non-linear resistor 9 discharges and completes the breaking operation.

【0008】[0008]

【発明が解決しようとする課題】上記従来技術では、図
9に示すように、主回路に流れる過電流Ioにより電極
自身によって発生した電極間の軸方向平行磁束φoの減
衰速度が時刻t2から挿入される逆電流Ic1の周期に
比べて遅いため、逆電流Ic1によって時刻t3に生じ
る主回路の過電流Io+Ic1の零点でもφo′に示す
ように、磁束φrが残留していた。このため、時刻t3
の電流零点での電極間の荷電粒子の半径方向への拡散が
妨げられ、電極間の絶縁回復速度が低下する結果、過渡
回復電圧に耐えることができずに再発弧が生じ、遮断性
能が抑えられるという欠点があった。
In the above prior art, as shown in FIG. 9, the damping speed of the axial parallel magnetic flux φo generated between the electrodes by the overcurrent Io flowing in the main circuit is inserted from time t2. Since it is slower than the cycle of the reverse current Ic1 generated, the magnetic flux φr remains as shown by φo ′ even at the zero point of the overcurrent Io + Ic1 of the main circuit generated at the time t3 by the reverse current Ic1. Therefore, at time t3
The diffusion of charged particles between the electrodes at the current zero point of the electrode is hindered in the radial direction, and the insulation recovery speed between the electrodes decreases.As a result, the transient recovery voltage cannot be withstood and re-arcing occurs, and the interrupting performance is suppressed. There was a drawback that

【0009】本発明の目的は、電極間の絶縁速度を向上
させて遮断性能の高い直流遮断器を提供することにあ
る。
An object of the present invention is to provide a DC circuit breaker having a high breaking performance by improving the insulating speed between electrodes.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は主回路に電流を挿入する回路を複数個設
け、それぞれの電流挿入回路を独立に制御することによ
って、主電極間の磁束密度の変化に応じて電流零点を任
意の時刻に生じさせる。
In order to achieve the above object, the present invention provides a main circuit with a plurality of circuits for inserting a current, and controls each current inserting circuit independently, so that the main electrodes are electrically connected to each other. A current zero is generated at an arbitrary time according to the change in magnetic flux density.

【0011】[0011]

【作用】軸方向の磁界をアークに印加することによって
遮断性能を向上する平行磁界式電極では、電極やホルダ
などに流れるうず電流が原因となって、電流零点でも電
極間に軸方向の磁界が残留する。
[Function] In a parallel magnetic field type electrode which improves the breaking performance by applying a magnetic field in the axial direction to the arc, the eddy current flowing through the electrode or holder causes the magnetic field in the axial direction between the electrodes even at the current zero point. To remain.

【0012】電流零点で荷電粒子は半径方向に拡散する
が、その運動は磁力線の方向に沿うという性質があるた
め、電極間に軸方向の磁界が残留していると、荷電粒子
は電極間に補足され半径方向への速やかな拡散が妨げら
れる。そのため、電極間の絶縁回復速度が押さえられて
遮断性能が押さえ込まれるという現象がある。この現象
は遮断電流が大きい場合や、電流零点での電流変化率が
大きい場合に特に問題となる。
At the current zero point, the charged particles diffuse in the radial direction, but the motion has the property of being along the direction of the magnetic force lines. Therefore, if an axial magnetic field remains between the electrodes, the charged particles will be distributed between the electrodes. It is supplemented and prevents rapid diffusion in the radial direction. Therefore, there is a phenomenon that the insulation recovery speed between the electrodes is suppressed and the blocking performance is suppressed. This phenomenon becomes a particular problem when the breaking current is large or when the current change rate at the current zero point is large.

【0013】本発明は、主回路に電流を挿入する回路を
複数個設け、それぞれの電流挿入回路を独立に制御す
る。まず、主回路を流れるのとは逆極性の電流を第1の
電流挿入回路によって主回路電流に挿入し、主回路の一
部である真空バルブを流れる電流の絶対値を絞り込む。
その結果、真空バルブの主電極間の軸方向磁界は真空バ
ルブを流れる電流値の絶対値の変化に応じて、うず電流
のために、ある時定数で電流の変化に遅れて減衰して行
く。
According to the present invention, a plurality of circuits for inserting a current are provided in the main circuit, and each current inserting circuit is independently controlled. First, a current having a polarity opposite to that flowing through the main circuit is inserted into the main circuit current by the first current inserting circuit, and the absolute value of the current flowing through the vacuum valve, which is a part of the main circuit, is narrowed down.
As a result, the axial magnetic field between the main electrodes of the vacuum valve decays with a certain time constant after a change in the current due to the eddy current in accordance with the change in the absolute value of the current flowing through the vacuum valve.

【0014】つぎに主電極間の軸方向磁界が十分に小さ
く減衰した時点に、主電極間の軸方向磁界を乱さない程
度の電流を第2の電流挿入回路によって主回路電流に挿
入して電流零点を発生させる。このとき、主電極間の軸
方向磁界は十分小さい値まで減衰しているため、荷電粒
子の半径方向への拡散が妨げられず、絶縁回復速度も押
さえ込まれないために遮断性能を向上することができ
る。
Next, when the axial magnetic field between the main electrodes is attenuated to a sufficiently small level, a current that does not disturb the axial magnetic field between the main electrodes is inserted into the main circuit current by the second current inserting circuit to generate a current. Generate a zero point. At this time, since the axial magnetic field between the main electrodes is attenuated to a sufficiently small value, diffusion of charged particles in the radial direction is not hindered and the insulation recovery speed is not suppressed, so that the blocking performance can be improved. it can.

【0015】[0015]

【実施例】以下、本発明の一実施例を添付図面について
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0016】図1は本発明の一実施例を示す回路図であ
り、図2は図1に示す本発明の一実施例の動作原理の説
明図である。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operating principle of the embodiment of the present invention shown in FIG.

【0017】図1において、1は直流遮断器であって真
空バルブ2,電磁反発コイル3,ショートリング4,過
電流引き外し装置7,酸化亜鉛非直線抵抗9と、転流コ
ンデンサ5a,抵抗15a,トリガギャップ8aからな
る第1の電流挿入回路と、転流コンデンサ5b,転流リ
アクトル6b,トリガギャップ8bからなる第2の電流
挿入回路から構成される。
In FIG. 1, reference numeral 1 denotes a DC circuit breaker, which is a vacuum valve 2, an electromagnetic repulsion coil 3, a short ring 4, an overcurrent trip device 7, a zinc oxide nonlinear resistor 9, a commutation capacitor 5a and a resistor 15a. , A first current insertion circuit composed of a trigger gap 8a, and a second current insertion circuit composed of a commutation capacitor 5b, a commutation reactor 6b, and a trigger gap 8b.

【0018】このように構成された回路遮断器1におい
て、転流コンデンサ5a,5bはあらかじめ図示しない
充電装置により図に示す極性に充電されている。時刻t
oから主回路に過電流Ioが流れ、過電流引き外し装置
7により検出されると同時に、電磁反発コイル3が励磁
され、ショートリング4との間に電磁反発力が生じ、時
刻t1で真空バルブ2の可動電極2bは固定電極2aか
ら開離し、可動電極2bと固定電極2aの間にアークが
発生する。このときアークには固定電極2a,可動電極
2b自身によって発生する軸方向平行磁束φoが作用す
るため、アークは安定に電極間に維持される。
In the circuit breaker 1 thus constructed, the commutation capacitors 5a and 5b are charged in advance to the polarity shown in the drawing by a charging device (not shown). Time t
An overcurrent Io flows from o to the main circuit and is detected by the overcurrent trip device 7, and at the same time, the electromagnetic repulsion coil 3 is excited and an electromagnetic repulsion force is generated between the short circuit and the short ring 4. The second movable electrode 2b is separated from the fixed electrode 2a, and an arc is generated between the movable electrode 2b and the fixed electrode 2a. At this time, since the axial parallel magnetic flux φo generated by the fixed electrode 2a and the movable electrode 2b itself acts on the arc, the arc is stably maintained between the electrodes.

【0019】真空バルブ2の開極後の時刻t2にトリガ
ギャップ8aが点弧されると、転流コンデンサ5a−抵
抗15a−トリガギャップ8a−真空バルブ2の閉回路
が形成され、転流コンデンサ5aが放電して主回路の一
部を構成する真空バルブ2に逆電流Ic1が挿入され
る。電流Ic1によって真空バルブ2を流れる電流はI
o+Ic1に減少し、その結果、電極自身に電流が流れ
ることによって発生する軸方向平行磁束φoは、電極や
ホルダ等に流れるうず電流のために、φo′のように電
流の変化に遅れてある時定数で減衰していく。
When the trigger gap 8a is fired at time t2 after opening the vacuum valve 2, a commutation capacitor 5a-resistor 15a-trigger gap 8a-a closed circuit of the vacuum valve 2 is formed, and the commutation capacitor 5a. Is discharged and the reverse current Ic1 is inserted into the vacuum valve 2 which constitutes a part of the main circuit. The current flowing through the vacuum valve 2 due to the current Ic1 is I
As a result, the axial parallel magnetic flux φo generated by the current flowing through the electrode itself is delayed to the change of the current like φo ′ due to the eddy current flowing in the electrode, the holder, etc. It decays with a constant.

【0020】そこで、主電極間の軸方向磁束が十分小さ
く減衰した時刻t4に真空バルブ2を流れる電流Io+
Ic1+Ic2が電流零点を形成できるように時刻t3
にトリガギャップ8bを点弧すると、転流コンデンサ5
b−転流リアクトル6b−トリガギャップ8b−真空バ
ルブ2の閉回路が形成されて転流コンデンサ5が放電
し、主回路の一部を構成する真空バルブ2に逆電流Ic
2が挿入される。
Therefore, the current Io + flowing through the vacuum valve 2 at time t4 when the axial magnetic flux between the main electrodes is attenuated sufficiently small.
Time t3 so that Ic1 + Ic2 can form a current zero point
When the trigger gap 8b is fired at, the commutation capacitor 5
b-Commutation reactor 6b-Trigger gap 8b-The closed circuit of the vacuum valve 2 is formed, the commutation capacitor 5 is discharged, and the reverse current Ic is applied to the vacuum valve 2 forming a part of the main circuit.
2 is inserted.

【0021】この逆電流Ic2によって時刻t4に真空
バルブ2を流れる電流Io+Ic1+Ic2が零点に達
すると真空バルブ2は消弧する。このとき主電極間の軸
方向平行磁束はφo′に示すように十分に小さく減衰し
ており荷電粒子の半径方向への拡散が妨げられないた
め、良好な絶縁回復特性を発揮する。
When the reverse current Ic2 causes the current Io + Ic1 + Ic2 flowing through the vacuum valve 2 to reach the zero point at time t4, the vacuum valve 2 is extinguished. At this time, the parallel magnetic flux in the axial direction between the main electrodes is attenuated sufficiently small as shown by φo ', and the diffusion of the charged particles in the radial direction is not hindered, so that a good insulation recovery characteristic is exhibited.

【0022】主回路電流が遮断された後、主回路電流は
転流コンデンサ5a−抵抗15a−トリガギャップ8a
の回路と、転流コンデンサ5b−転流リアクトル6b−
トリガギャップ8bの回路に転流する。負荷側のインダ
クタンスに蓄えられていたエネルギは、転流コンデンサ
5a,5bの充電エネルギに変換され、転流コンデンサ
5a,5bの電圧が上昇して酸化亜鉛非直線抵抗9の動
作電圧に達すると、酸化亜鉛非直線抵抗9が放電し遮断
動作を完了する。
After the main circuit current is cut off, the main circuit current is commutated capacitor 5a-resistor 15a-trigger gap 8a.
Circuit and commutation capacitor 5b-commutation reactor 6b-
Commutation occurs in the circuit of the trigger gap 8b. The energy stored in the inductance on the load side is converted into the charging energy of the commutation capacitors 5a and 5b, and when the voltage of the commutation capacitors 5a and 5b rises and reaches the operating voltage of the zinc oxide nonlinear resistor 9, The zinc oxide nonlinear resistor 9 discharges and completes the breaking operation.

【0023】このように複数の電流挿入回路を設けるこ
とによって、電流零点の前に主電極間の軸方向磁束を十
分小さな値まで減衰させることによって、電流遮断後の
絶縁回復特性を向上させ直流遮断器の遮断性能を向上す
ることができる。
By thus providing a plurality of current insertion circuits, the axial magnetic flux between the main electrodes is attenuated to a sufficiently small value before the current zero point, thereby improving the insulation recovery characteristic after the current interruption and the DC interruption. It is possible to improve the shutoff performance of the container.

【0024】次に、図3は本発明の第二の実施例を示す
回路図であり、図4は図3に示す本発明の第二の実施例
の動作原理の説明図である。本実施例は転流コンデンサ
5a,抵抗15a,トリガギャップ8aからなる第1の
電流挿入回路と転流コンデンサ5b,転流リアクトル6
b,トリガギャップ8bからなる第2の電流挿入回路を
備えていることは図1に示した本発明の実施例と同様で
あるが、第1の電流挿入回路の転流コンデンサ5aと第
2の電流挿入回路の転流コンデンサ5bの充電極性が互
いに逆である例である。本実施例では図4に示すよう
に、時刻toにトリガギャップ8bを点弧して、第一の
電流挿入回路によって電流Ic1を挿入すると、真空バ
ルブを流れる電流Ico+Ic1の極性が反転し合わせ
て絶対値が小さく絞り込まれる。
Next, FIG. 3 is a circuit diagram showing a second embodiment of the present invention, and FIG. 4 is an explanatory diagram of the operating principle of the second embodiment of the present invention shown in FIG. In this embodiment, a first current insertion circuit including a commutation capacitor 5a, a resistor 15a, and a trigger gap 8a, a commutation capacitor 5b, and a commutation reactor 6 are provided.
b is the same as the embodiment of the present invention shown in FIG. 1 in that the second current inserting circuit composed of the trigger gap 8b is provided, but the commutation capacitor 5a and the second current inserting circuit of the first current inserting circuit are provided. This is an example in which the charge polarities of the commutation capacitors 5b of the current insertion circuit are opposite to each other. In the present embodiment, as shown in FIG. 4, when the trigger gap 8b is ignited at time to and the current Ic1 is inserted by the first current inserting circuit, the polarities of the current Ico + Ic1 flowing through the vacuum valve are reversed and the absolute values are absolute. The value is narrowed down.

【0025】このとき電極間の軸方向平行磁束φは、電
極やホルダ等に流れるうず電流のために、φo′のよう
に電流の変化に遅れてある時定数で減衰していく。φ′
が十分小さく減衰する時刻t4に、真空バルブ2を流れ
る電流Ico+Ic1+Ic2が電流零点を形成できる
ように時刻t3にトリガギャップ8bを点弧して、逆電
流(極性的には正方向の電流)Ic2を真空バルブ2に
挿入する。
At this time, the axial parallel magnetic flux φ between the electrodes is attenuated with a time constant delayed from the change of the current like φo 'because of the eddy current flowing through the electrodes and the holder. φ ′
At time t4 at which the current decays sufficiently small, the trigger gap 8b is ignited at time t3 so that the current Ico + Ic1 + Ic2 flowing through the vacuum valve 2 can form a current zero point, and the reverse current (polarity positive current) Ic2 is generated. Insert into the vacuum valve 2.

【0026】この電流Ic2によって、時刻t4に真空
バルブ2を流れる電流Io+Ic1+Ic2が零点に達
すると真空バルブ2は消弧する。この時、φo′は十分
に小さく減衰しているため、荷電粒子の半径方向への拡
散が妨げられないため、良好な絶縁回復特性を発揮す
る。
Due to this current Ic2, when the current Io + Ic1 + Ic2 flowing through the vacuum valve 2 reaches the zero point at time t4, the vacuum valve 2 is extinguished. At this time, since φo ′ is attenuated to a sufficiently small level, diffusion of charged particles in the radial direction is not hindered, and good insulation recovery characteristics are exhibited.

【0027】このように、真空バルブに挿入する電流I
c1,Ic2の極性を互いに逆にしても図1に示した実
施例と同様の作用効果を得ることができる。
Thus, the electric current I to be inserted into the vacuum valve is
Even if the polarities of c1 and Ic2 are opposite to each other, the same effect as that of the embodiment shown in FIG. 1 can be obtained.

【0028】次に、図5は本発明の他の実施例を示す回
路図であり、第1の電流挿入回路をコンデンサ5a,抵
抗15a,トリガギャップ8aから構成し、第2の電流
挿入回路を同様にコンデンサ5b,抵抗15b,トリガ
ギャップ8bから構成したものである。
Next, FIG. 5 is a circuit diagram showing another embodiment of the present invention. The first current inserting circuit is composed of a capacitor 5a, a resistor 15a and a trigger gap 8a, and a second current inserting circuit is formed. Similarly, it is composed of a capacitor 5b, a resistor 15b, and a trigger gap 8b.

【0029】また、図6は本発明の第四の実施例を示す
回路図で、図5に示した実施例のうちコンデンサ5aと
コンデンサ5bの充電極性を互いに逆にしたものであ
る。
FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention, in which the charging polarities of the capacitors 5a and 5b in the embodiment shown in FIG. 5 are opposite to each other.

【0030】ここで、図5に示した実施例は図1に示し
た実施例の第2の電流挿入回路をRC回路に置き換えた
ものであってその動作原理は図2に対応し、また図6に
示した実施例は図3に示した実施例の第2の電流挿入回
路をRC回路に置き換えたものであってその動作原理は
図4に対応し、それぞれ同様の作用効果を得ることがで
きる。
Here, the embodiment shown in FIG. 5 is obtained by replacing the second current inserting circuit of the embodiment shown in FIG. 1 with an RC circuit, and its operating principle corresponds to that of FIG. The embodiment shown in FIG. 6 is obtained by replacing the second current inserting circuit of the embodiment shown in FIG. 3 with an RC circuit, and its operation principle corresponds to that of FIG. 4, and the same action and effect can be obtained. it can.

【0031】次に図7から図10にかけては、第五ない
し第八の実施例を示す回路図であって、第1の電流挿入
回路をLCのn段π形とトリガギャップから構成した例
である。図7は第2の電流挿入回路をコンデンサ5bと
リアクトル6bから構成した例、図8は図7と同様の構
成であるが、第1の電流挿入回路のコンデンサ5aと第
2の電流挿入回路のコンデンサ5bの充電極性を互いに
逆にしたものである。さらに図9は第2の電流挿入回路
をコンデンサ5bと抵抗15bから構成した例、図10
は図9と同様の構成であるが、第1の電流挿入回路のコ
ンデンサ5aと第2の電流挿入回路のコンデンサ5bの
充電極性を互いに逆にしたものである。これらの動作原
理は図7と図9が図1に対応し、図8と図10が図2に
対応してそれぞれ同様の作用効果が得られる。また、第
1の電流挿入回路にLCn段π形回路を用いるため、第
1の電流挿入回路にRC回路を用いた図1から図6に示
した実施例に比べて逆電流Ic1の準定常部分を長く取
ることができて、電流Ic2を挿入する時刻t3の自由
度を大きくできるという特徴がある。
Next, FIGS. 7 to 10 are circuit diagrams showing fifth to eighth embodiments, in which the first current insertion circuit is composed of an LC n-stage π type and a trigger gap. is there. FIG. 7 shows an example in which the second current insertion circuit is composed of the capacitor 5b and the reactor 6b, and FIG. 8 has the same configuration as that of FIG. 7, but the capacitor 5a and the second current insertion circuit of the first current insertion circuit are The charging polarities of the capacitor 5b are opposite to each other. Further, FIG. 9 shows an example in which the second current insertion circuit is composed of the capacitor 5b and the resistor 15b, and FIG.
9 has the same configuration as in FIG. 9, but the charging polarities of the capacitor 5a of the first current inserting circuit and the capacitor 5b of the second current inserting circuit are opposite to each other. 7 and 9 correspond to FIG. 1, and FIG. 8 and FIG. 10 correspond to FIG. 2, and similar operational effects can be obtained. Further, since the LCn stage π-type circuit is used for the first current insertion circuit, the quasi-steady portion of the reverse current Ic1 is different from the embodiment shown in FIGS. 1 to 6 in which the RC circuit is used for the first current insertion circuit. Can be taken longer, and the degree of freedom at time t3 when the current Ic2 is inserted can be increased.

【0032】また、本発明では複数の電流挿入回路を設
けることによって、第1,第2の電流挿入によって電流
遮断に失敗してもさらに第3,第4の電流挿入によって
速やかに次の遮断動作に移るというような動作も考えら
れる。また、電流零点に先立って段階的に主電流の絶対
値を絞り込んでいくような動作も考えられる。
Further, in the present invention, by providing a plurality of current insertion circuits, even if the current interruption fails due to the first and second current insertion, the next interruption operation is promptly performed by the third and fourth current insertion. It is also conceivable that the operation moves to. Further, an operation in which the absolute value of the main current is narrowed down step by step prior to the current zero point is also conceivable.

【0033】[0033]

【発明の効果】本発明によれば、第1の電流挿入回路に
より挿入した電流によって主電極を流れる電流の絶対値
を小さく抑え込み、その電流変化に遅れて減衰していく
主電極間の軸方向磁束密度が十分に減衰した後に、第2
の電流挿入回路により挿入した電流によって主電極を流
れる電流に零点を生じさせる。すると、電流零点におけ
る残留磁束は抑えられ、荷電粒子の半径方向への拡散を
妨げられず、電流遮断後の絶縁回復特性を向上して直流
遮断器の遮断性能を向上することができる。
According to the present invention, the absolute value of the current flowing through the main electrode is suppressed to a small value by the current inserted by the first current inserting circuit, and the axial direction between the main electrodes is attenuated after the current change. After the magnetic flux density is sufficiently attenuated, the second
The current inserted by the current insertion circuit causes a zero point in the current flowing through the main electrode. Then, the residual magnetic flux at the current zero point is suppressed, diffusion of charged particles in the radial direction is not hindered, the insulation recovery characteristic after current interruption is improved, and the interruption performance of the DC circuit breaker can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】本発明の一実施例の動作原理の説明図。FIG. 2 is an explanatory diagram of an operation principle of one embodiment of the present invention.

【図3】本発明の第二の実施例を示す回路図。FIG. 3 is a circuit diagram showing a second embodiment of the present invention.

【図4】本発明の第二の実施例の動作原理の説明図。FIG. 4 is an explanatory diagram of the operation principle of the second embodiment of the present invention.

【図5】本発明の第三の実施例を示す回路図。FIG. 5 is a circuit diagram showing a third embodiment of the present invention.

【図6】本発明の第四の実施例を示す回路図。FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention.

【図7】本発明の第五の実施例を示す回路図。FIG. 7 is a circuit diagram showing a fifth embodiment of the present invention.

【図8】本発明の第六の実施例を示す回路図。FIG. 8 is a circuit diagram showing a sixth embodiment of the present invention.

【図9】本発明の第七の実施例を示す回路図。FIG. 9 is a circuit diagram showing a seventh embodiment of the present invention.

【図10】本発明の第八の実施例を示す回路図。FIG. 10 is a circuit diagram showing an eighth embodiment of the present invention.

【図11】従来の一般的な直流遮断器の回路図。FIG. 11 is a circuit diagram of a conventional general DC breaker.

【図12】従来の一般的な直流遮断器の動作原理の説明
図。
FIG. 12 is an explanatory diagram of an operating principle of a conventional general DC breaker.

【符号の説明】[Explanation of symbols]

1…直流遮断器、2…真空バルブ、2a…固定電極、2
b…可動電極、3…電磁反発コイル、4…ショートリン
グ、5a,5b…転流コンデンサ、6a,6b…転流リ
アクトル、7…過電流引き外し装置、8a,8b…トリ
ガギャップ、9…酸化亜鉛非直線抵抗、10…直流電
源、11…負荷。
1 ... DC circuit breaker, 2 ... Vacuum valve, 2a ... Fixed electrode, 2
b ... movable electrode, 3 ... electromagnetic repulsion coil, 4 ... short ring, 5a, 5b ... commutation capacitor, 6a, 6b ... commutation reactor, 7 ... overcurrent trip device, 8a, 8b ... trigger gap, 9 ... oxidation Zinc non-linear resistance, 10 ... DC power supply, 11 ... Load.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 俊吉 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 黒澤 幸夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunkichi Endo 4026 Kuji Town, Hitachi City, Ibaraki Prefecture 4026, Hitachi Research Institute, Ltd. Hitachi Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、前記真空容器内に配置された
接離自在な少なくとも一対の軸方向磁束成分を発生する
手段を備えた主電極と、前記主電極の裏面より前記真空
容器外に延びるロッドと、アークシールドからなる真空
バルブと、前記真空バルブを含む電流主回路に電流を挿
入する回路より構成される直流回路遮断器において、前
記電流主回路に電流を挿入する回路を複数個設けたこと
を特徴とする直流遮断器。
1. A vacuum container, a main electrode provided in the vacuum container, which is provided with at least a pair of means for generating a magnetic flux component in the direction of contact and separation, and a rear surface of the main electrode to the outside of the vacuum container. A DC circuit breaker comprising a rod extending, a vacuum valve composed of an arc shield, and a circuit for inserting a current into a current main circuit including the vacuum valve, and a plurality of circuits for inserting a current into the current main circuit are provided. A DC circuit breaker characterized by that.
【請求項2】請求項1において、前記電流主回路に電流
を挿入する複数の回路は、コンデンサと抵抗とトリガギ
ャップからなる回路と、コンデンサとリアクトルとトリ
ガギャップからなる回路である直流遮断器。
2. The DC circuit breaker according to claim 1, wherein the plurality of circuits for inserting current into the current main circuit are a circuit including a capacitor, a resistor and a trigger gap, and a circuit including a capacitor, a reactor and a trigger gap.
【請求項3】請求項1において、前記電流主回路に電流
を挿入する複数の回路は、コンデンサと抵抗とトリガギ
ャップからなる回路である直流遮断器。
3. The DC circuit breaker according to claim 1, wherein the plurality of circuits for inserting current into the current main circuit are circuits including capacitors, resistors, and a trigger gap.
【請求項4】請求項1において、前記電流主回路に電流
を挿入する複数の回路は、コンデンサとリアクトルのπ
型回路とトリガギャップからなる回路と、コンデンサと
リアクトルとトリガギャップからなる回路である直流遮
断器。
4. The circuit according to claim 1, wherein the plurality of circuits for inserting a current into the current main circuit are π of a capacitor and a reactor.
A DC circuit breaker, which is a circuit consisting of a mold circuit and a trigger gap, and a circuit consisting of a capacitor, a reactor and a trigger gap.
【請求項5】請求項1において、前記電流主回路に電流
を挿入する複数の回路は、コンデンサとリアクトルのπ
型回路とトリガギャップからなる回路と、コンデンサと
抵抗とトリガギャップからなる回路である直流遮断器。
5. The plurality of circuits for inserting a current into the current main circuit according to claim 1, wherein:
A DC circuit breaker, which is a circuit consisting of a mold circuit and a trigger gap, and a circuit consisting of a capacitor, a resistor and a trigger gap.
【請求項6】請求項1,2,3,4または5において、
前記電流主回路に電流を挿入する複数の回路は、それぞ
れが主回路に流れる遮断すべき電流と逆極性の電流を挿
入する回路である直流遮断器。
6. The method according to claim 1, 2, 3, 4 or 5.
A DC circuit breaker, wherein each of the plurality of circuits for inserting a current into the current main circuit is a circuit for inserting a current flowing in the main circuit and having a polarity opposite to that of the current to be blocked.
【請求項7】請求項1,2,3,4または5において、
前記電流主回路に電流を挿入する複数の回路は、主回路
に流れる遮断すべき電流と逆極性の電流を挿入する回路
と、同極性の電流を挿入する回路から構成される直流遮
断器。
7. The method according to claim 1, 2, 3, 4, or 5,
The plurality of circuits for inserting a current into the current main circuit is a DC circuit breaker including a circuit for inserting a current having a polarity opposite to that of a current to be interrupted flowing in the main circuit and a circuit for inserting a current of the same polarity.
JP6315092A 1992-03-19 1992-03-19 D.c. breaker Pending JPH05266768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6315092A JPH05266768A (en) 1992-03-19 1992-03-19 D.c. breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6315092A JPH05266768A (en) 1992-03-19 1992-03-19 D.c. breaker

Publications (1)

Publication Number Publication Date
JPH05266768A true JPH05266768A (en) 1993-10-15

Family

ID=13220928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315092A Pending JPH05266768A (en) 1992-03-19 1992-03-19 D.c. breaker

Country Status (1)

Country Link
JP (1) JPH05266768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655319A (en) * 2012-04-26 2012-09-05 华中科技大学 Direct-current circuit breaker capable of reducing forward superimposed current
US9413157B2 (en) 2012-05-01 2016-08-09 Mitsubishi Electric Corporation Direct-current circuit breaker
CN111211543A (en) * 2020-01-19 2020-05-29 国网江苏省电力有限公司电力科学研究院 Fusing type direct current breaker and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655319A (en) * 2012-04-26 2012-09-05 华中科技大学 Direct-current circuit breaker capable of reducing forward superimposed current
US9413157B2 (en) 2012-05-01 2016-08-09 Mitsubishi Electric Corporation Direct-current circuit breaker
CN111211543A (en) * 2020-01-19 2020-05-29 国网江苏省电力有限公司电力科学研究院 Fusing type direct current breaker and control method thereof
CN111211543B (en) * 2020-01-19 2022-06-17 国网江苏省电力有限公司电力科学研究院 Fusing type direct current breaker and control method thereof

Similar Documents

Publication Publication Date Title
US4805062A (en) DC circuit breaker and method of commutation thereof
JP3356457B2 (en) Vacuum circuit breaker
GB1594287A (en) D-c circuit breaker
JPH05266768A (en) D.c. breaker
CN105742095A (en) Vacuum switch tube direct-current steep-wave bipolar large-current impact aging device and process
US4406952A (en) Opening switch for interrupting current using a plasma focus device
US4291255A (en) Plasma switch
US6667863B1 (en) Method and apparatus for interrupting current through deionization of arc plasma
US6631058B1 (en) Method and apparatus for reducing arc retrogression in a circuit interrupter
Lutz et al. The Gamitron-A high power crossed-field switch tube for HVDC interruption
JPS5811065B2 (en) Switch device using crossed magnetic fields
JPS59184411A (en) Dc breaker
Bauville et al. Study of recovery phenomena in a high-current pulse-triggered vacuum switch
US4896076A (en) Binary and ternary gas mixtures for use in glow discharge closing switches
US6594126B1 (en) Method and apparatus for extinguishing an arc through material surface ablation
Pedrow et al. Performance of a vacuum arc commutating switch for a fault-current limiter
CN103299389A (en) Method of extinguishing an electric arc in a low or high voltage switchgear by pulse discharge
US3105171A (en) High voltage d. c. transmission systems
US3621275A (en) Long lived switch means for inductive dc circuits
JPH11262277A (en) Charging and discharging circuit including discharge gap switch
Guo et al. Investigation on the Influence of the Dynamic Characteristics on the DC Vacuum Arc
RU2138904C1 (en) Pulse generator using inductance power accumulators
Tsuruta et al. Ignition and lifetime of low current DC vacuum arc ignited by the opening of the electrodes
Gilmour Jr Vacuum arc switching
RU2062551C1 (en) Plasma circuit-breaker