JPH0526544Y2 - - Google Patents
Info
- Publication number
- JPH0526544Y2 JPH0526544Y2 JP1984084838U JP8483884U JPH0526544Y2 JP H0526544 Y2 JPH0526544 Y2 JP H0526544Y2 JP 1984084838 U JP1984084838 U JP 1984084838U JP 8483884 U JP8483884 U JP 8483884U JP H0526544 Y2 JPH0526544 Y2 JP H0526544Y2
- Authority
- JP
- Japan
- Prior art keywords
- inner tank
- magnetic field
- squid
- radiation
- radiation shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 15
- 241000238366 Cephalopoda Species 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 8
- 229920003002 synthetic resin Polymers 0.000 description 5
- 239000000057 synthetic resin Substances 0.000 description 5
- 210000005069 ears Anatomy 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Details Of Measuring And Other Instruments (AREA)
- Measuring Magnetic Variables (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【考案の詳細な説明】
「産業上の利用分野」
本考案は、スクイド(SQUID)を内蔵しかつ
液体ヘリウム等の極低温液を充填した内槽の外周
側が、輻射シールド部材により囲成され、外部磁
場を上記極低温下のスクイドを用いて測知する磁
場検出装置に関する。[Detailed description of the invention] "Industrial application field" This invention consists of an inner tank containing a SQUID and filled with a cryogenic liquid such as liquid helium, the outer circumference of which is surrounded by a radiation shielding member. The present invention relates to a magnetic field detection device that detects an external magnetic field using the SQUID at an extremely low temperature.
「従来の技術」
先ず、上記スクイド(SQUID)は、
Superconducting Quantum Interference
Devicesの頭文字をとつて呼ばれる超電導状態で
働くセンサの略号であり、例えばNbのような物
質が極低温で超電導状態に転位する特性が利用さ
れるものである。"Conventional technology" First, the above SQUID is
Superconducting Quantum Interference
Devices is an abbreviation for a sensor that operates in a superconducting state, and utilizes the property of a substance such as Nb to transform into a superconducting state at extremely low temperatures.
ところで、第5図は、上記スクイド2を用いた
公知の磁場検出装置1を示す概略図であるが、こ
れによればスクイド2は、外部からの輻射熱が侵
入しないようにCu、Al等の金属材からなる中空
円筒状の輻射シールド部材3により囲成されてい
る。 By the way, FIG. 5 is a schematic diagram showing a known magnetic field detection device 1 using the above-mentioned SQUID 2. According to this, the SQUID 2 is made of metal such as Cu or Al to prevent radiant heat from entering from the outside. It is surrounded by a hollow cylindrical radiation shield member 3 made of material.
このため、上記磁場検出装置1で外部磁場の変
化を検出しようとする場合、磁場の一部は、輻射
シールド部材3の上面3aにおける円周方向の渦
流Aや、外周面3bにおける円周方向や縦方向の
渦流B,Cに変換され、この結果磁場の強さは、
これが減衰されてしまい、磁場の測定が困難とな
つて精度が低下したり、特に微少な磁場である
と、その測定すら不可能となる。 Therefore, when trying to detect a change in the external magnetic field with the magnetic field detection device 1, part of the magnetic field is generated by the eddy current A in the circumferential direction on the upper surface 3a of the radiation shield member 3, or the eddy current A in the circumferential direction on the outer peripheral surface 3b. It is converted into longitudinal vortex currents B and C, and as a result, the strength of the magnetic field is
This is attenuated, making it difficult to measure the magnetic field and reducing accuracy, or even making it impossible to measure a particularly small magnetic field.
すなわち、例えば常温下100Hzの磁場で通常1V
の測定値となるものが、上記のうず電流の発生に
より0.6V(60%)の測定値しか得られなくなり、
更にこの際極低温になると、輻射シールド部材3
の抵抗がほとんど零となるから、これに伴つて当
該渦流がかなり大きなものとなり、磁場の減衰率
は一層大きくなるのであつて、−196°では100Hzで
5%以下の磁場しか測定できないことになる。 That is, for example, normally 1V in a 100Hz magnetic field at room temperature.
However, due to the generation of the eddy current described above, only a measured value of 0.6V (60%) can be obtained.
Furthermore, if the temperature becomes extremely low at this time, the radiation shield member 3
As the resistance of .
「考案が解決しようとする問題点」
本考案は、上記した従来技術の欠点を除くため
になされたものであつて、輻射シールド部材がコ
字状に形成された多数の帯状片を用い、これらの
帯状片を円周方向に夫々所定の間〓だけ離して配
設することにより、中空円筒籠形状のものが形成
されるよう固定することで、外部磁場測定の際、
当該輻射シールド部材に生ずるうず電流を、ほと
ど発生しないのに近い状態となり、これにより磁
場の減衰を、可及的に少なくして微少な磁場の測
定をも正確に測知し得るようにするのが、その目
的である。"Problems to be Solved by the Invention" The present invention has been made in order to eliminate the drawbacks of the prior art described above. By arranging the strips in the circumferential direction at a predetermined distance from each other and fixing them to form a hollow cylindrical cage shape, when measuring an external magnetic field,
The eddy current generated in the radiation shield member becomes almost non-existent, thereby reducing the attenuation of the magnetic field as much as possible, making it possible to accurately measure even the smallest magnetic field. That is its purpose.
「実施例」
以下本考案を図面に示す実施例により説示する
と、第4図に明示の如く当該磁場検出装置11
は、既知のように外槽12、内槽13、そして輻
射シールド部材14を備えている。``Embodiment'' The present invention will be explained below with reference to an embodiment shown in the drawings. As clearly shown in FIG. 4, the magnetic field detection device 11
As is known, it includes an outer tank 12, an inner tank 13, and a radiation shield member 14.
外槽12は合成樹脂材により上面を開口した円
筒状に形成され、当該開口部は合成樹脂材よりな
る蓋部材16の固定により閉塞され、該蓋部材1
6の中心部からは、外槽12内に円筒管16aが
突設されており、該円筒管16aの通孔16b上
端口は、蓋部材16の上面にあつて、Oリング1
8を介して密封するように、止ねじ21にて固定
した栓部材20により閉成されている。 The outer tank 12 is formed of a synthetic resin material into a cylindrical shape with an open top, and the opening is closed by fixing a lid member 16 made of a synthetic resin material.
A cylindrical tube 16a projects from the center of the outer tank 12 into the outer tank 12, and the upper end opening of the through hole 16b of the cylindrical tube 16a is located on the upper surface of the lid member 16, and the O-ring 1
8 and is closed by a plug member 20 fixed with a set screw 21 so as to be sealed.
内槽13は、液体ヘリウム等の液化ガスによる
極低温液22を充填した容器、すなわちデユワで
あり、強化プラスチツク(FRP)よりなり、中
空円筒状に形成され、その上面中心部には、前記
円筒管16aの下端口が連通するよう固定され、
該円筒管16aの通孔16bから極低温液22が
内槽13内に供給貯留されている。 The inner tank 13 is a container filled with a cryogenic liquid 22 made of liquefied gas such as liquid helium, that is, a dewar, and is made of reinforced plastic (FRP) and is formed in a hollow cylindrical shape. The lower end of the pipe 16a is fixed so as to communicate with the lower end of the pipe 16a,
A cryogenic liquid 22 is supplied and stored in the inner tank 13 through the through hole 16b of the cylindrical tube 16a.
内槽13の下面中心部には、これまた既知の如
く下方に突出した円筒状の収納凹部13aが形成
されており、同部13aには、前記スクイド2を
内蔵した合成樹脂製の蓋付きとした円筒状の中空
器体23が収納載置され、内槽13には、極低温
液22の液面を電気的に測定するため液面計24
が装着されており、該液面計24は配線25によ
り蓋部材16の上面に固定された外部コネクタ2
6に接続され、これに所定の計測機器が結線され
る。 In the center of the lower surface of the inner tank 13, a cylindrical storage recess 13a that protrudes downward is formed as is also known, and the storage recess 13a has a lid made of synthetic resin that houses the SQUID 2. A cylindrical hollow container body 23 is housed therein, and a liquid level gauge 24 is installed in the inner tank 13 to electrically measure the liquid level of the cryogenic liquid 22.
is attached, and the liquid level gauge 24 is connected to an external connector 2 fixed to the top surface of the lid member 16 by wiring 25.
6, and a predetermined measuring device is connected to this.
輻射シールド部材14は、第1図に明示の通り
Cu、Al等の金属材により形成され、しかも対向
する上下の水平片部28a,28a′の幅が縦装の
軸心、すなわち内側先端に向つて漸次幅狭となる
ように、全体がコ字状に形成された複数帯状片2
8の集合により形成されている。 The radiation shield member 14 is shown in FIG.
It is formed of a metal material such as Cu, Al, etc., and the width of the opposing upper and lower horizontal pieces 28a, 28a' gradually becomes narrower toward the axis of the vertical mounting, that is, toward the inner tip, so that the overall shape is U-shaped. A plurality of strips 2 formed in the shape of
It is formed by a set of 8.
これをさらに詳記すると、上記帯状片28の前
記水平片部28aにおける内側先端には、夫々直
交状に折曲された耳部28bが形成され、上位で
ある水平片部28aの耳部28bを、前記円筒管
16aに被着された金属による連結部材30に、
下位である水平片部28aの耳部28bは合成樹
脂にて円板状に形成した集結子32に、夫々接着
等の手段で固定し、これによつて上記の如く複数
の帯状片28が円周方向に夫々所定の間〓gをも
つて内槽13の回りを囲むようにして中空円筒籠
状に組成されている。 To describe this in more detail, ears 28b bent perpendicularly are formed at the inner tips of the horizontal pieces 28a of the strip 28, and the ears 28b of the upper horizontal piece 28a are formed at the inner ends of the horizontal pieces 28a. , a metal connecting member 30 attached to the cylindrical tube 16a,
The ears 28b of the lower horizontal piece 28a are each fixed to a disk-shaped concentrator 32 made of synthetic resin by adhesive or other means, whereby the plurality of strips 28 are arranged in a circle as described above. It is composed of a hollow cylindrical cage shape so as to surround the inner tank 13 with a predetermined distance 〓g in the circumferential direction.
ここで、上記連結部材30に金属を用いるよう
にしたのは、極低温液22の蒸発冷熱を輻射シー
ルド部材14に伝えて、冷却するためであり、こ
の際当該部材30に基づくうず電流は微小であつ
て、これによる実質的な影響はない。 Here, the reason why metal is used for the connecting member 30 is to transmit the evaporation cold heat of the cryogenic liquid 22 to the radiation shield member 14 for cooling, and at this time, the eddy current due to the member 30 is small. However, this has no real impact.
ここで、帯状片28の強度を補強する必要があ
れば、各帯状片28の直立片部28c内側面に、
合成樹脂によるリング状の補強板34を接着する
のがよく、また上位の水平面片部28aについて
は、その耳部28bを直接円筒管16aの外周面
に、接着等にて固定してもよい。 Here, if it is necessary to reinforce the strength of the strip 28, on the inner surface of the upright piece 28c of each strip 28,
A ring-shaped reinforcing plate 34 made of synthetic resin is preferably bonded, and the ears 28b of the upper horizontal piece 28a may be directly fixed to the outer peripheral surface of the cylindrical tube 16a by adhesive or the like.
また図示例では外槽12と輻射シールド部材1
4との間に形成された空間部36に、断熱材40
が充填されており、38は前記蓋部材16に設け
た閉栓で、当該開口から空間部36の真空排気が
行われている。 In addition, in the illustrated example, the outer tank 12 and the radiation shield member 1
A heat insulating material 40 is placed in the space 36 formed between the
38 is a stopper provided on the lid member 16, and the space 36 is evacuated through the opening.
上記のようにして構成されたものにより、外部
磁場の測定を行えば、帯状片28は、僅かな間〓
gをもつて分断状に組成されているから、従来例
につき説示したような円周方向の渦流A,Bも縦
方向の渦流も、その流路を失うこととなつて発生
せず、従つてほとんどうず電流が発生しなくな
り、磁場の減衰率は極めて小さくなると共に、内
槽13は、真空内に収容された断熱材40で外部
から遮断された輻射シールド部材14により包囲
されているので、僅かな間〓gが存するものの外
部からの輻射熱を有効に遮断し、従つて内槽13
内の極低温液22は、常に極低温度を保つことが
でき、スクイド2の磁場測定機能は常に良好な状
態に保持される。 When an external magnetic field is measured using the device configured as described above, the strip 28 will move for a short period of time.
Since it has a segmented composition with g, neither the circumferential vortex flows A and B nor the longitudinal vortex flow as explained in the conventional example lose their flow paths and are not generated. Almost no eddy current is generated, the attenuation rate of the magnetic field is extremely small, and since the inner tank 13 is surrounded by a radiation shield member 14 that is shielded from the outside by a heat insulating material 40 housed in a vacuum, only a small amount of eddy current is generated. Although 〓g exists during this period, it effectively blocks the radiant heat from the outside
The cryogenic liquid 22 inside can always maintain an extremely low temperature, and the magnetic field measurement function of the SQUID 2 is always maintained in a good condition.
「問題点を解決するための手段」
以上要するに本考案は、スクイド2を内蔵しか
つ液体ヘリウム等の極低温液22を充填した内槽
13と、該内槽13に外部からの輻射熱が侵入し
ないように該内槽13を包囲するよう金属材にて
形成された輻射シールド部材14とを備えたもの
において、上記輻射シールド部材14が、内側先
端に向つて漸次幅狭となるようにした上下の水平
片部28aと直立片部28cとによりコ字状に形
成された多数の帯状片28により、これらの帯状
片28を円周方向に夫々所定の間〓を有するよう
にして中空円筒籠形状となし、前記上下の水平片
部における内側先端を夫々金属による連結部材、
非電導部材に固定したことを特徴としている。"Means for Solving the Problems" In summary, the present invention has an inner tank 13 that contains the SQUID 2 and is filled with a cryogenic liquid 22 such as liquid helium, and that radiant heat from the outside does not enter the inner tank 13. A radiation shield member 14 formed of a metal material so as to surround the inner tank 13 is provided. A large number of strips 28 are formed in a U-shape by a horizontal strip 28a and an upright strip 28c, and these strips 28 are spaced apart from each other by a predetermined distance in the circumferential direction to form a hollow cylindrical cage shape. None, the inner tips of the upper and lower horizontal pieces are each made of a metal connecting member,
It is characterized by being fixed to a non-conductive member.
「考案の効果」
上記の構成を有するから、外部磁場測定の際、
輻射シールド部材14にほとんど、うず電流が発
生しないので、磁場の減衰が僅小となり、従つて
微少な磁場の測定をも正確に行うことができると
共に、輻射熱遮断の本来的要請をも充分に満足さ
せることが可能である。"Effect of the invention" With the above configuration, when measuring an external magnetic field,
Since almost no eddy current is generated in the radiation shield member 14, the attenuation of the magnetic field is minimal, and therefore even minute magnetic fields can be measured accurately, and the original requirement of blocking radiant heat is fully satisfied. It is possible to do so.
第1図は本考案に係る磁場検出装置の要部であ
る輻射シールド部材の斜視図、第2図は同部材の
部分を示した斜視図、第3図は上記検出装置の平
面図、第4図は同縦断正面図、第5図は縦来のス
クイドを用いた磁場検出装置の略示斜視図であ
る。
2……スクイド、11……スクイドを用いた磁
場検出装置、13……内槽、14……輻射シール
ド部材、22……極低温液、28……帯状片、2
8a……水平片部、28c……直立片部。
FIG. 1 is a perspective view of a radiation shield member which is a main part of the magnetic field detection device according to the present invention, FIG. 2 is a perspective view showing a portion of the same member, FIG. 3 is a plan view of the detection device, and FIG. The figure is a vertical sectional front view of the same, and FIG. 5 is a schematic perspective view of a magnetic field detection device using a vertical SQUID. 2...SQUID, 11...Magnetic field detection device using SQUID, 13...Inner tank, 14...Radiation shield member, 22...Cryogenic liquid, 28...Strip piece, 2
8a...Horizontal piece, 28c...Upright piece.
Claims (1)
と、該内槽に外部からの輻射熱が侵入しないよう
に該内槽を包囲するよう金属材にて形成された輻
射シールド部材とを備えたものにおいて、上記輻
射シールド部材が、内側先端に向つて漸次幅狭と
なるようにした上下の水平片部と直立片部とによ
りコ字状に形成された多数の帯状片により、これ
らの帯状片を円周方向に夫々所定の間〓を有する
ようにして中空円筒籠形状となし、前記上下の水
平片部における内側先端を夫々金属による連結部
材、非電導部材に固定してなるスクイド冷却装置
の輻射シールド装置。 Equipped with an inner tank containing a SQUID and filled with cryogenic liquid, and a radiation shield member formed of a metal material to surround the inner tank to prevent radiant heat from entering the inner tank from outside. In this case, the radiation shielding member has a large number of strips formed in a U-shape by upper and lower horizontal pieces and upright pieces whose width gradually becomes narrower toward the inner tip. The radiation of the SQUID cooling device is formed into a hollow cylindrical cage shape with a predetermined distance in the circumferential direction, and the inner tips of the upper and lower horizontal pieces are fixed to a metal connecting member and a non-conductive member, respectively. shield device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984084838U JPS611179U (en) | 1984-06-07 | 1984-06-07 | Radiation shield device for SQUID cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984084838U JPS611179U (en) | 1984-06-07 | 1984-06-07 | Radiation shield device for SQUID cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS611179U JPS611179U (en) | 1986-01-07 |
JPH0526544Y2 true JPH0526544Y2 (en) | 1993-07-05 |
Family
ID=30634683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1984084838U Granted JPS611179U (en) | 1984-06-07 | 1984-06-07 | Radiation shield device for SQUID cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS611179U (en) |
-
1984
- 1984-06-07 JP JP1984084838U patent/JPS611179U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS611179U (en) | 1986-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Andrews et al. | Attenuated superconductors I. For measuring infra‐red radiation | |
Hirao et al. | An improved type of electron temperature probe | |
Busey et al. | THE HEAT CAPACITY OF POTASSIUM HEXACHLORORHENATE (IV) FROM 7 TO 320° K. ANOMALIES NEAR 12, 76, 103, AND 111° K. ENTROPY AND FREE ENERGY FUNCTIONS. SOLUBILITY AND HEAT OF SOLUTION OF K2ReCl6. ENTROPY OF THE HEXACHLORORHENATE ION1 | |
JPH0526544Y2 (en) | ||
US3665761A (en) | Liquid vaporization calorimeter | |
Geldart et al. | Dipole-dipole interactions and the critical resistivity of gadolinium | |
Welander et al. | Miniature high-resolution thermometer for low-temperature applications | |
US4445386A (en) | Hermetically sealed high temperature strain gage | |
Day et al. | Neutron diffraction study of the incommensurate magnetic phase of Ni0. 92Zn0. 08Br2 | |
US3509758A (en) | Gas leak rate monitor | |
JPH0621441Y2 (en) | Brain magnetic wave measurement device | |
Babiskin | Magnetic properties of a hollow superconducting lead sphere | |
JPH06273025A (en) | Horizontal cryostat | |
JPS583076Y2 (en) | Detector for NQR thermometer | |
US2718786A (en) | Gaseous thermocouple temperature measuring means | |
JPS61167527U (en) | ||
JPS621665Y2 (en) | ||
KR102554308B1 (en) | Cryogenic explosion-proof pressure sensor capable of measuring hydrogen pressure or gas pressure | |
JPH0242321A (en) | Liquid level gauge | |
SU737793A1 (en) | Device for introducing resistance thermometer into cryogenic pipeline | |
JPS6236334Y2 (en) | ||
JPH053964Y2 (en) | ||
JPH0346367Y2 (en) | ||
JPH0126030B2 (en) | ||
RU1501684C (en) | Cryogenic liquids level sensor |