JPH052652B2 - - Google Patents

Info

Publication number
JPH052652B2
JPH052652B2 JP4490284A JP4490284A JPH052652B2 JP H052652 B2 JPH052652 B2 JP H052652B2 JP 4490284 A JP4490284 A JP 4490284A JP 4490284 A JP4490284 A JP 4490284A JP H052652 B2 JPH052652 B2 JP H052652B2
Authority
JP
Japan
Prior art keywords
dextran
intrinsic viscosity
lipid
lowering
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4490284A
Other languages
Japanese (ja)
Other versions
JPS60190717A (en
Inventor
Akira Endo
Yoshifumi Iwasaki
Teruhiro Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meito Sangyo KK
Original Assignee
Meito Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meito Sangyo KK filed Critical Meito Sangyo KK
Priority to JP4490284A priority Critical patent/JPS60190717A/en
Publication of JPS60190717A publication Critical patent/JPS60190717A/en
Publication of JPH052652B2 publication Critical patent/JPH052652B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、トリグリセラむド䞭性脂肪やコ
レステロヌルの劂き脂質の䜎䞋䜎䞋乃至増加抑
制に有甚な脂質䜎䞋剀に関し、ずくに、長期投
䞎による副䜜甚がなく、䞔぀又倧量投䞎による䞋
痢、腹痛などの副䜜甚を䌎うおそれのない䜎投䞎
量で卓越した血䞭脂質䜎䞋効果を発揮でき、曎に
肝脂質䜎䞋効果をも瀺す脂質䜎䞋剀に関する。 曎に詳しくは、本発明は極限粘床ηが0.29
〜1.1の郚分分解デキストランを有効成分ずしお
含有するこずを特城ずする脂質䜎䞋剀に関する。 近幎、成人病ずしお問題にな぀おいる䟋えば動
脈硬化症ず関係する重芁な因子の䞀぀ずしお、血
液䞭の脂質の増加による高脂血症が泚目され、血
䞭脂質の䜎䞋の必芁性が認識されおいる。 最近このような脂質の䜎䞋に倚くの食物繊維が
利甚され、特にペクチン、グルコマンナン、グア
ガムなどの氎溶性食物繊維でこの䜜甚が匷く珟わ
れるこずが知られおいる。しかし、これらの食物
繊維の有効量は䞀般に動物実隓で10〜30gKg−
䜓重日、臚床応甚の堎合でも50〜500mgKg−
䜓重日ず極めお倚量であり、その結果、吐気、
䞋痢、腹痛などの副䜜甚がみられるこずのほか、
ビタミン、ミネラルなどの欠乏症ずなる危険性の
恐れがあるため、これら食物繊維は必らずしも満
足すべき脂質䜎䞋剀ずは蚀い難い珟状にある。 埓来、デキストランを包含する難消化性倚糖
類、オリゎ糖類及びこれらの誘導䜓からなる矀か
らえらばれた糖類を有効成分ずしお含有するこず
を特城ずする血糖䜎䞋剀の提案特開昭57−
146713号が知られおいる。そしお、この提案に
はネむテブ・デキストランnative dextranの
ほかに、その郚分分解デキストランの䜿甚に぀い
おも開瀺され、分子量60000極限粘床〔η〕玄
0.22に盞圓する〜90000極限粘床〔η〕玄
0.275に盞圓するのデキストランが血糖䜎䞋効
果を瀺したこずが開瀺されおいる。 しかしながら、該特開昭57−146713号提案に
は、分子量60000〜90000のデキストラン以倖の分
子量の郚分分解デキストランの血糖䜎䞋効果に関
しおは蚀及されおいないし、䞔぀又、血液䞭のト
リグリセラむドやコレステロヌルの劂き脂質に察
するデキストランの䜜甚に関しおは党く蚀及され
おいない。埓぀おたた、圓然のこずながら、脂質
に察するデキストランの䜜甚ず該デキストランの
分子量もしくは極限粘床ずの関係に぀いおの劂䜕
なる知芋も瀺唆も開瀺されおいない。 曎に、New Food IndustryVol.25No.
198313〜15頁にも、デキストランを包含する
α−結合の倚糖類に぀いお、“血糖倀䞊昇
制埡物質を添加した砂糖の開発をめぐ぀お”ず題
しお報告されおいる。この文献には、分子量玄
70000極限粘床〔η〕玄0.23に盞圓するのデキ
ストランを砂糖に添加しおラツトに投䞎するず血
糖の䞊昇が抑制されるこずおよび該デキストラン
の砂糖に察する最有効添加量は1/1000であるこず
が蚘茉されおいる。 しかしながら、この文献にも、䞊蚘分子量以倖
の分子量の郚分分解デキストランに関しおは蚀及
されおいないし、䞔぀又、血液䞭の脂質に察する
デキストランの䜜甚、曎には、デキストランの脂
質に察する䜜甚ず該デキストランの分子量もしく
は極限粘床ずの関係に぀いおなど、党然、蚀及さ
れおいないし瀺唆もなされおいない。 䞀方、米囜特蚱3148114号明现曞1964幎月
日刊行には、血䞭コレステロヌルの䜎䞋方法
に関しお開瀺されおいる。この提案には、血䞭コ
レステロヌル䜎䞋䜜甚を瀺す粘液質物質
mucilaginous substancesずしお、化孊的に
著るしく異な぀た倚数の粘液質物質が矅列されお
おり、それら粘液質物質の䞀䟋ずしおシナヌクロ
ヌスの埮生物による䜜甚で生産されるデキストラ
ンが䟋瀺されおいる。 しかしながら、この提案においおは、䜿甚する
デキストランの分子量もしくは極限粘床〔η〕に
぀いおは、党然、蚀及されおいないが、䟋えば、
シペ糖のLeuconostoc dextranicumによる䜜甚
で生産されるデキストランの劂きネむテブ・デキ
ストランnative dextranが䟋瀺されおいる。
通垞Leuconostoc dextranicumやLeuconostoc
mecenteroidsの䜜甚で埗られるネむテブ・デキ
ストランは分子量が玄400䞇〜玄1000䞇のオヌダ
ヌずいわれおいる。 曎に、この提案には、粘液質物質の投䞎量ずし
お50〜500mgKg−䜓重日の投䞎量が䟋瀺され
おおり、又、〜30gKg−食物の範囲量での粘
液質物質の食物ぞの添加によ぀お、血䞭コレステ
ロヌルの最倧の䜎䞋が助長されるず蚘茉されおい
るが、䞊蚘䟋瀺量の劂き量でのネむテブ・デキス
トラン投䞎には䞋痢、腹痛などの副䜜甚を䌎う恐
れがある。 又曎に、この提案には、トリグリセラむドに察
するデキストランおよびその他の粘液質物質の䜜
甚に぀いおは党く蚀及されおいない。 そしお、この提案においおも、本発明においお
特定された極限粘床〔η〕の郚分分解デキストラ
ンに぀いおは、党然、蚀及されおいないし、埓぀
おたた、圓然のこずながら、脂質に察する郚分分
解デキストランの䜜甚ず該デキストランの分子量
もしくは極限粘床ずの関係に぀いおの劂䜕なる知
芋も瀺唆も開瀺されおいない。 本発明者等は、毒性の点で安党なデキストラン
を利甚しお、長期投䞎や投䞎量による副䜜甚のな
い脂質䜎䞋剀を開発すべく研究を行぀おきた。 その結果、脂質に察するデキストランの䜜甚ず
該デキストランの極限粘床〔η〕ずの間には密接
な盞関関係が存圚するこずを発芋した。この発芋
に基いお曎に研究を進めた結果、特定範囲の極限
粘床〔η〕を有する郚分分解デキストランは、長
期投䞎や投䞎量による副䜜甚を生ずるこずなし
に、䜎投䞎量で、血䞭トリグリセリド及びコレス
テロヌルの䜎䞋乃至増加抑制に顕著に優れた効果
を発揮するこずを発芋した。 本発明者等の研究によれば、前述したような埓
来提案におけるデキストランの極限粘床〔η〕領
域ずは異な぀た極限粘床〔η〕が0.29〜1.1の領
域に属する郚分分解デキストランは、䟋えば〜
40mgKg−䜓重日、奜たしくは〜30mgKg−
䜓重日の䜎投䞎量で経口投䞎するず、血液䞭の
トリグリセラむド及びコレステロヌルの䜎䞋乃至
増加抑制に、顕著に優れた効果を瀺し䞔぀長期投
䞎によ぀おも副䜜甚を生ずるおそれがなく、曎
に、肝脂質の䜎䞋にも優れた効果を発揮するナニ
ヌクな脂質䜎䞋剀であるこずを発芋した。 埓぀お、本発明の目的は優れた脂質䜎䞋剀を提
䟛するにある。 本発明の䞊蚘目的及び曎に倚くの他の目的なら
びに利点は、以䞋の蚘茉から䞀局明らかずなるで
あろう。 本発明の脂質䜎䞋剀は、極限粘床〔η〕が0.29
〜1.1の郚分分解デキストランを有効成分ずしお
含有する。このような郚分分解デキストランそれ
自䜓は知られおおり、䟋えば、Leuconostoc
mecenteroidsLeuconostoc dextranicumなど
の劂き公知strainを利甚しお、それ自䜓公知の手
法により、シペ糖から生成されたネむテブ・デキ
ストランを、それ自䜓公知の手法により郚分氎解
凊理しお埗るこずができるし、又、垂堎で入手す
るこずもできる。 本発明においおは、このような郚分分解デキス
トランであ぀お、極限粘床〔η〕が0.29〜1.1分
子量玄10䞇〜玄150䞇に盞圓するの郚分分解デ
キストランを遞択しお利甚する。このような郚分
分解デキストランの毒性LD50は、経口投䞎
マりスで10gKg以䞊ず極めお䜎毒性であ぀
お、安党に利甚するこずができる。 尚、本発明に斌お、郚分分解デキストランの極
限粘床〔η〕は、䞋蚘により枬定算出される。 極限粘床〔η〕の枬定算出− 0.05〜0.2gのデキストランを氎に溶かし、正確
に100mlずし、詊料溶液ずする。りベロヌデ型粘
床蚈を甚いお、該詊料溶液及び䜿甚した氎のそれ
ぞれに぀いお25℃±0.02℃における流䞋時間を枬
定し、䞋蚘匏によ぀お極限粘床〔η〕を算出決定
する。 極限粘床〔η〕ln詊料溶液の流䞋時間
秒氎の流䞋時間秒詊料の量 なお、䞊蚘極限粘床から詊料デキストランの重
量平均分子量は䞊蚘匏によ぀お求めるこ
ずができる。 〔η〕9.00×104 w0.50 本発明の極限粘床〔η〕が0.29〜1.1、奜たし
くは0.3〜1.06の郚分分解デキストランを有効成
分ずする脂質䜎䞋剀は、䜎投䞎量でトリグリセラ
むド及びコレステロヌルに察しお、認め埗る䜕等
の副䜜甚も䌎うこずなしに、優れた䜎䞋効果を発
揮するこずができる。該投䞎量ずしおは、該有効
成分量ずしお、〜40mgKg−䜓重日、奜たし
くは〜30mgKg−䜓重日の䜎投䞎量経口投
䞎を䟋瀺するこずができる。曎に、本発明有効
成分は、血䞭のコレステロヌルの他にトリグリセ
ラむドに察しおも優れた䜎䞋効果を瀺すのに加え
お、肝脂質の䜎䞋に察しおも泚目すべき䜎䞋効果
を瀺す。本発明者等の怜蚎によれば、ネむテブ・
デキストラン分子量玄400䞇〜玄1000䞇のオヌ
ダヌはトリグリセラむドに察しお実甚性ある䜎
䞋効果を䜎投䞎量で発揮しないし、投䞎量を増す
ず䞋痢、腹痛などの䞍郜合な副䜜甚が珟われる恐
れがあるが、本発明有効成分は、前述の劂き䜎投
䞎量で血䞭トリグリセラむド及びコレステロヌル
に察しお優れた䜎䞋効果を発揮し、曎に、肝脂質
に察しおも優れた䜎䞋効果を瀺し、加えお、䜕等
副䜜甚を䌎わない利点を有する。 本発明の脂質䜎䞋剀は、任意の経口投䞎剀型で
あるこずができ、䟋えば、軟カプセル剀soft
capsulae、硬カプセル剀hard capsulae、顆
粒剀granula、䞞剀pilulae、散剀
pulveces、錠剀tabellae、シロツプ剀
syrupi、トロヌチ剀trochisi、゚リキシル剀
elixiriaなどの劂き剀型を䟋瀺するこずができ
る。このような剀型ぞの調補手段は圓業者によく
知られおおり、本発明で利甚できる。 本発明の脂質䜎䞋剀は、極限粘床〔η〕が0.29
〜1.1の郚分分解デキストランを有効成分ずしお
含有するほかに、薬孊的に蚱容し埗る皀釈剀乃至
担䜓を曎に含有した組成物の圢態であるこずがで
きる。このような圢態においお、該有効成分の含
有量は適圓に遞択するこずができる。該含有量は
剀型によ぀おも適圓に遞択倉曎できるが、䟋えば
組成物重量に基いお、玄〜玄99重量、奜たし
くは玄〜玄95重量の劂き含有量を䟋瀺するこ
ずができる。 このような組成物に利甚する皀釈剀乃至担䜓の
䟋ずしおは、カラダゎム、アラビアゎム、トラガ
ント、グアガム、カラギニン、アルギン酞ナトリ
りム、カれむン、れラチン、グルテン、バレむシ
ペでんぷん、コムギでんぷん、トりモロコシでん
ぷん、米でんぷん、サツマむモでんぷん、寒倩、
セラツク、グルコマンナン、ポリビニルピロリド
ン、ポリビニルアルコヌル、ポリビニルアセテヌ
ト、ポリ゚チレングリコヌル、メチルセルロヌ
ス、゚チルセルロヌス、カルボキシメチルセルロ
ヌス、ヒドロキシ゚チルセルロヌス、ヒドロキシ
プロピルセルロヌス、ヒドロキシプロピルスタヌ
チ、カルボキシメチルスタヌチ、酢酞フタル酞セ
ルロヌス、ヒドロキシプロピルメチルセルロヌス
フタレヌト、炭酞氎玠ナトリりム、酞化マグネシ
りム、乳酞カルシりム、炭酞カルシりム、リン酞
カルシりム、合成ケむ酞アルミニりム、ステアリ
ン酞マグネシりム、メタケむ酞アルミン酞マグネ
シりム、ケむ酞、タルク、ホり酞、硫酞カルシり
ム、安息銙酞、ク゚ン酞、コハク酞、酒石酞、グ
ルコン酞、グリセリン、シペ糖、マンニトヌル、
ブドり糖、゜ルビトヌル、乳糖、果糖、サツカリ
ン、氎、゚タノヌル、などを䟋瀺するこずができ
る。 本発明の脂質䜎䞋剀は、高脂血症もしくはその
おそれのある人間に察しお、前蚘の量で経口投䞎
するこずができる。 高脂血症ずしおは家族性あるいは特発性におこ
る䞀次性のもので、䟋えば冠動脈硬化症虚血性
心疟患、心筋梗塞、脳動脈硬化症脳梗塞、脳
血栓などの動脈硬化症及び脂肪肝などの原因ず
なるものであ぀おもよく、たた、肥満症、糖尿
病、糖代謝異垞症、高むンスリン血症などにより
誘発される二次性の高脂血症であ぀おもよい。曎
に、二次性の高脂血症を誘発する恐れのある䞊蚘
各疟患及び高脂血症の恐れのある人間健垞人を
包含するに察しお予防のために本発明の郚分分
解デキストランを投䞎するこずもできる。 次にデキストランの脂質䜎䞋効果に぀いお瀺
す。 詊隓䟋  䜓重105g前埌のりむスタヌWistar系雄性
ラツトに、極限粘床〔η〕が0.11〜1.72のデキス
トランをそれぞれ配合した高シペ糖食高シペ糖
食察デキストラン500察を自由摂取させお、
14日間飌育した埌、垞法により、血枅トリグリセ
ラむドTG、血枅総コレステロヌルTC及
び血糖を定量した。 結果を第衚に瀺す。
The present invention relates to a lipid-lowering agent that is useful for lowering (reducing or inhibiting increase in) lipids such as triglycerides (neutral fats) and cholesterol, and in particular, does not cause side effects when administered for a long period of time, and does not cause diarrhea, abdominal pain, etc. when administered in large doses. The present invention relates to a lipid-lowering agent that can exhibit an outstanding blood lipid-lowering effect at a low dosage without causing side effects, and also exhibits a hepatic lipid-lowering effect. More specifically, the present invention has an intrinsic viscosity [η] of 0.29.
The present invention relates to a lipid-lowering agent characterized by containing a partially degraded dextran of ~1.1 as an active ingredient. In recent years, hyperlipidemia due to an increase in blood lipids has attracted attention as one of the important factors related to arteriosclerosis, which has become a problem as an adult disease, and the need to lower blood lipids has been recognized. has been done. Recently, many dietary fibers have been used to lower lipid levels, and it is known that this effect is particularly strong with water-soluble dietary fibers such as pectin, glucomannan, and guar gum. However, the effective amount of these dietary fibers is generally 10 to 30 g/Kg in animal experiments.
Body weight/day, 50-500mg/Kg- even in clinical applications
body weight per day, resulting in nausea,
In addition to side effects such as diarrhea and abdominal pain,
At present, these dietary fibers cannot necessarily be said to be satisfactory lipid-lowering agents because of the risk of vitamin and mineral deficiencies. Hitherto, a proposal has been made for a hypoglycemic agent characterized by containing as an active ingredient a saccharide selected from the group consisting of indigestible polysaccharides, oligosaccharides, and derivatives thereof, including dextran (Japanese Patent Application Laid-Open No. 1983-1999).
No. 146713) is known. In addition to native dextran, this proposal also discloses the use of partially decomposed dextran, with a molecular weight of 60,000 (intrinsic viscosity [η] approximately
0.22) ~ 90000 (intrinsic viscosity [η] approx.
It has been disclosed that dextran (equivalent to 0.275) showed hypoglycemic effects. However, the proposal in JP-A-57-146713 does not mention the blood sugar-lowering effect of partially decomposed dextrans with molecular weights other than dextrans with molecular weights of 60,000 to 90,000, and also does not mention the effect of lowering blood sugar levels on lipids such as triglycerides and cholesterol in the blood. There is no mention of the effect of dextran on. Therefore, as a matter of course, no knowledge or suggestion is disclosed regarding the relationship between the effect of dextran on lipids and the molecular weight or intrinsic viscosity of the dextran. Furthermore, New Food Industry, Vol.25, No.3
(1983), pp. 13-15, also reports on α-1,6-linked polysaccharides including dextran under the title ``Development of sugars containing substances that control blood sugar levels''. This literature states that the molecular weight of approx.
70,000 (corresponding to an intrinsic viscosity [η] of approximately 0.23) added to sugar and administered to rats suppresses the rise in blood sugar, and the most effective amount of dextran to be added to sugar is 1/1000. is listed. However, this document does not mention partially decomposed dextran with a molecular weight other than the above-mentioned molecular weight, and furthermore, the effect of dextran on lipids in the blood, the effect of dextran on lipids, and the molecular weight or limit of the dextran. There is no mention or suggestion of any relationship with viscosity. On the other hand, US Pat. No. 3,148,114 (published September 8, 1964) discloses a method for lowering blood cholesterol. This proposal lists a large number of mucilaginous substances that are chemically significantly different as mucilaginous substances that exhibit blood cholesterol-lowering effects. The dextran produced is illustrated. However, in this proposal, there is no mention of the molecular weight or intrinsic viscosity [η] of the dextran used, but for example,
Native dextran such as dextran produced by the action of sucrose by Leuconostoc dextranicum is exemplified.
Usually Leuconostoc dextranicum or Leuconostoc
Native dextran obtained by the action of mecenteroids is said to have a molecular weight on the order of about 4 million to about 10 million. Furthermore, this proposal exemplifies the dosage of mucilaginous substances in doses ranging from 50 to 500 mg/Kg - body weight/day, and also the administration of mucilaginous substances to food in amounts ranging from 5 to 30 g/Kg - food. Although it is stated that the addition of native dextran promotes the maximum reduction in blood cholesterol, administration of native dextran in amounts such as those exemplified above may be accompanied by side effects such as diarrhea and abdominal pain. Furthermore, this proposal makes no mention of the effect of dextran and other mucilaginous substances on triglycerides. Also, in this proposal, there is no mention at all of the partially decomposed dextran with the intrinsic viscosity [η] specified in the present invention. No knowledge or suggestion regarding the relationship between the molecular weight or intrinsic viscosity of dextran is disclosed. The present inventors have conducted research to develop a lipid-lowering agent that does not have side effects due to long-term administration or dosage by using dextran, which is safe in terms of toxicity. As a result, it was discovered that there is a close correlation between the action of dextran on lipids and the intrinsic viscosity [η] of the dextran. Further research based on this discovery revealed that partially degraded dextran with a specific range of intrinsic viscosity [η] can reduce blood triglycerides and cholesterol levels at low doses without causing long-term administration or dose-related side effects. It has been discovered that it exhibits a remarkable effect in suppressing the decrease or increase in . According to the research conducted by the present inventors, partially decomposed dextrans which belong to a region with an intrinsic viscosity [η] of 0.29 to 1.1, which is different from the region of intrinsic viscosity [η] of dextran proposed in the prior art as described above, have a
40mg/Kg-body weight/day, preferably 4-30mg/Kg-
When administered orally at a low dose per body weight per day, it shows a remarkable effect on lowering or suppressing the increase in triglycerides and cholesterol in the blood, and there is no risk of side effects even with long-term administration. The researchers discovered that it is a unique lipid-lowering agent that is also highly effective in lowering blood pressure. Therefore, an object of the present invention is to provide an excellent lipid-lowering agent. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. The lipid-lowering agent of the present invention has an intrinsic viscosity [η] of 0.29.
Contains ~1.1 partially degraded dextran as an active ingredient. Such partially degraded dextrans are known per se, for example Leuconostoc
Native dextran produced from sucrose can be obtained by partial hydrolysis using known strains such as mecenteroids, Leuconostoc dextranicum, etc., by a method known per se. , also available on the market. In the present invention, a partially decomposed dextran having an intrinsic viscosity [η] of 0.29 to 1.1 (corresponding to a molecular weight of about 100,000 to about 1,500,000) is selected and used. The toxicity (LD 50 ) of such partially degraded dextran is extremely low at 10 g/Kg or more when administered orally (in mice), and it can be used safely. In the present invention, the intrinsic viscosity [η] of partially decomposed dextran is measured and calculated as follows. Measurement and calculation of intrinsic viscosity [η]: - Dissolve 0.05 to 0.2 g of dextran in water to make exactly 100 ml and use it as the sample solution. Using an Ubbelohde viscometer, measure the flow time at 25°C ± 0.02°C for each of the sample solution and the water used, and calculate and determine the limiting viscosity [η] using the following formula. Intrinsic viscosity [η] = ln Sample solution flow time (seconds) / Water flow time (seconds) / Sample amount (g) From the above intrinsic viscosity, the weight average molecular weight ( M w) of the sample dextran can be calculated using the above formula. You can ask for it. [η] = 9.00×10 4 M w 0.50 The lipid-lowering agent of the present invention containing partially decomposed dextran having an intrinsic viscosity [η] of 0.29 to 1.1, preferably 0.3 to 1.06 as an active ingredient can reduce triglyceride and cholesterol at low doses. It is possible to exhibit an excellent lowering effect on , without any observable side effects. Examples of the dosage include a low dosage (oral administration) of 3 to 40 mg/Kg body weight/day, preferably 4 to 30 mg/Kg body weight/day of the active ingredient. Furthermore, the active ingredient of the present invention not only exhibits an excellent lowering effect on not only blood cholesterol but also triglycerides, it also exhibits a remarkable lowering effect on hepatic lipids. According to the study by the present inventors, native
Dextran (molecular weight on the order of about 4 million to about 10 million) does not have a practical lowering effect on triglycerides at low doses, and when the dose is increased, there is a risk of untoward side effects such as diarrhea and abdominal pain. However, the active ingredient of the present invention exhibits an excellent lowering effect on blood triglycerides and cholesterol at a low dose as mentioned above, and also shows an excellent lowering effect on liver lipids. It has the advantage of having no side effects. The lipid-lowering agent of the present invention can be in any oral dosage form, such as soft capsules.
capsulae, hard capsules, granules, pills, pulveces, tabellae, syrupi, trochis, elixiria The following dosage forms can be exemplified. Means for preparing such dosage forms are well known to those skilled in the art and can be utilized in the present invention. The lipid lowering agent of the present invention has an intrinsic viscosity [η] of 0.29.
In addition to containing the partially degraded dextran of ~1.1 as an active ingredient, it can be in the form of a composition that further contains a pharmaceutically acceptable diluent or carrier. In such a form, the content of the active ingredient can be appropriately selected. The content can be suitably selected and changed depending on the dosage form, but for example, the content may be about 1 to about 99% by weight, preferably about 5 to about 95% by weight, based on the weight of the composition. I can do it. Examples of diluents or carriers utilized in such compositions include karaya gum, acacia, tragacanth, guar gum, carrageenin, sodium alginate, casein, gelatin, gluten, potato starch, wheat starch, corn starch, rice starch, and sweet potato. starch, agar,
Shellac, glucomannan, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl acetate, polyethylene glycol, methylcellulose, ethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, carboxymethylstarch, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, carbonic acid Sodium hydrogen, magnesium oxide, calcium lactate, calcium carbonate, calcium phosphate, synthetic aluminum silicate, magnesium stearate, magnesium aluminate metasilicate, silicic acid, talc, boric acid, calcium sulfate, benzoic acid, citric acid, succinic acid, tartaric acid , gluconic acid, glycerin, sucrose, mannitol,
Examples include glucose, sorbitol, lactose, fructose, saccharin, water, and ethanol. The lipid-lowering agent of the present invention can be orally administered in the above-mentioned amount to humans who have or are at risk of hyperlipidemia. Hyperlipidemia can be primary, familial or idiopathic, such as arteriosclerosis (ischemic heart disease, myocardial infarction), cerebral arteriosclerosis (cerebral infarction, cerebral thrombosis), and hyperlipidemia. It may be a cause of liver disease, or it may be secondary hyperlipidemia induced by obesity, diabetes, abnormal glucose metabolism, hyperinsulinemia, etc. Furthermore, the partially degraded dextran of the present invention can be administered to the above-mentioned diseases that may induce secondary hyperlipidemia and to humans (including healthy individuals) who may be at risk of hyperlipidemia. It can also be administered. Next, the lipid-lowering effect of dextran will be described. Test Example 1 Male Wistar rats weighing around 105 g were fed ad libitum with a high sucrose diet (high sucrose diet vs. dextran = 500:1) containing dextran with an intrinsic viscosity [η] of 0.11 to 1.72. Let me,
After rearing for 14 days, serum triglyceride (TG), serum total cholesterol (TC), and blood sugar were determined by standard methods. The results are shown in Table 1.

【衚】 第衚に瀺すごずく、デキストラン配合高シペ
糖食を䞎えた詊隓矀では、デキストラン未配合の
高シペ糖食を䞎えた察照矀に比べ、TG及びTC
の増加抑制がみられた。特に極限粘床〔η〕が
0.30〜1.06のデキストランを配合した矀ではTG
及びTCの増加が有意に抑制された。䞀方、血糖
に察する圱響は党くみられなか぀た。 詊隓䟋  䜓重105g前埌のりむスタヌWistar系雄性
ラツトに、極限粘床〔η〕が0.63のデキストラン
を皮々の割合でそれぞれ配合した高シペ糖食を自
由摂取させお、14日間飌育した埌、TG、TC及
び肝脂質を定量した。結果を第衚に瀺す。 なお、肝脂質は肝湿重量に察し30倍量のアセト
ンを加えホモゞネヌトし、その遠心䞊枅を蒞発也
固しお、その重量を秀るこずにより求めた。
[Table] As shown in Table 1, the test group fed a high-sucrose diet containing dextran had higher TG and TC compared to the control group fed a high-sucrose diet without dextran.
The increase was suppressed. In particular, the intrinsic viscosity [η]
TG in the group containing 0.30-1.06 dextran
and the increase in TC was significantly suppressed. On the other hand, no effect on blood sugar was observed. Test Example 2 Male Wistar rats weighing around 105 g were fed ad libitum with a high sucrose diet containing various proportions of dextran with an intrinsic viscosity [η] of 0.63, and after being reared for 14 days, TG , TC and hepatic lipids were quantified. The results are shown in Table 2. The liver lipids were determined by adding 30 times the amount of acetone to the liver wet weight and homogenizing the liver, evaporating the centrifuged supernatant to dryness, and weighing it.

【衚】 第衚に瀺す劂く、高シペ糖食Kgに察し、極
限粘床〔η〕が0.63のデキストランを0.5〜5g配
合した飌料を䞎えた各詊隓矀では、デキストラン
未配合の高シペ糖食を䞎えた察照矀に比べ、
TGTC及び肝脂質の増加が有意に抑制された。 なお、詊隓䟋及びにおいお甚いた高シペ糖
食の組成は次の通りである。 高シペ糖食の組成 シペ糖 69.9 カれむン 25 混合ビタミンパンビタン末 0.85 混合塩ハヌパヌ塩  塩化コリン 0.15 コヌン油 0.1 詊隓䟋  䜓重110g前埌のりむスタヌWistar系雄性
ラツトに、極限粘床〔η〕が0.53のデキストラン
を配合した高脂肪食高脂肪食察デキストラン
500察を自由摂取させお、14日間飌育した埌、
垞法によりTG及びTCを定量した。結果を第
衚に瀺す。
[Table] As shown in Table 2, in each test group fed feed containing 0.5 to 5 g of dextran with an intrinsic viscosity [η] of 0.63 per 1 kg of high sucrose diet, the high sucrose diet without dextran Compared to the control group given
Increases in TG, TC, and hepatic lipids were significantly suppressed. The composition of the high sucrose diet used in Test Examples 1 and 2 is as follows. Composition of high sucrose diet Sucrose 69.9% Casein 25% Mixed vitamins (Panvitan powder) 0.85% Mixed salt (Harper's salt) 4% Choline chloride 0.15% Corn oil 0.1% Test example 3 Wistar male weighing around 110g Rats were fed a high-fat diet containing dextran with an intrinsic viscosity [η] of 0.53 (high-fat diet vs. dextran =
After breeding for 14 days with ad libitum intake of 500:1),
TG and TC were quantified by conventional methods. 3rd result
Shown in the table.

【衚】 第衚に瀺す劂く、極限粘床〔η〕が0.53のデ
キストランを配合した高脂肪食を䞎えた詊隓矀で
は、デキストラン未配合の高脂肪食を䞎えた察照
矀に比べTG及びTCの増加が有意に抑制された。 なお、詊隓䟋においお甚いた高脂肪食の組成
は次の通りである。 高脂肪食の組成 シペ糖 61 カれむン 22 混合ビタミンパンビタン末 0.85 混合塩ハヌパヌ塩 4.0 塩化コリン 0.15 コヌン油 1.0 コレステロヌル 1.0 ラヌド 10 実斜䟋  䞋蚘組成の錠剀400mg錠を、通垞の方法
で補造した。 デキストラン〔η〕0.53 25 シペ糖 25 乳糖 48.5 ヒドロキシプロピルセルロヌス 0.5 ステアリン酞マグネシりム  実斜䟋  䞋蚘組成の成分を混合し、No.のれラチンカプ
セルに充填しお、カプセル剀200mgカプセル
ずした。 デキストラン〔η〕0.63 80 リン酞氎玠カルシりム 19 ステアリン酞マグネシりム  実斜䟋  䞋蚘組成の顆粒剀を、通垞の方法で補造した。 デキストラン〔η〕0.75 50 乳糖 48 ヒドロキシプロピルセルロヌス  実斜䟋  䞋蚘組成の錠剀250mg錠を、通垞の方法
で糖衣錠ずした。 デキストラン〔η〕0.80 40 小麊でんぷん 4.5 結晶セルロヌス 10 10バレむシペでんぷん糊 45 タルク 0.5 実斜䟋  䞋蚘組成の溶液を適圓な容噚に分泚しお滅菌し
お液剀ずした。 デキストラン〔η〕0.30 15 シペ糖  グルコヌス  蒞留氎 77 実斜䟋  䞋蚘組成のトロヌチ剀1g錠を、通垞の
方法で補造した。 デキストラン〔η〕1.06 15 氎风 25 シペ糖 57 アラビアゎム末  蒞留氎 適 量 実斜䟋  䞋蚘組成の散剀を通垞の方法で補造した。 デキストラン〔η〕0.41 70 トりモロコシでんぷん 19 乳糖 20 ステアリン酞マグネシりム  実斜䟋  デキストラン〔η〕0.53を、No.のれラチ
ンカプセルに200mgず぀充填しお、カプセル剀ず
した。 臚床䟋  高トリグリセラむド血症患者10名に察し、カプ
セルに充填したデキストラン〔η〕0.53を毎
食前、日回、週間服甚させた。デキストラ
ン服甚前埌のTGは第衚の通りであ぀た。
[Table] As shown in Table 3, the test group fed a high-fat diet containing dextran with an intrinsic viscosity [η] of 0.53 had lower TG and TC levels compared to the control group fed a high-fat diet containing no dextran. The increase was significantly suppressed. The composition of the high-fat food used in Test Example 3 is as follows. Composition of high-fat diet Sugar 61% Casein 22% Mixed vitamins (Panvitan powder) 0.85% Mixed salt (Harper's salt) 4.0% Choline chloride 0.15% Corn oil 1.0% Cholesterol 1.0% Lard 10% Example 1 Tablets with the following composition ( 400 mg/tablet) was prepared in a conventional manner. Dextran ([η] = 0.53) 25% Cane sugar 25% Lactose 48.5% Hydroxypropyl cellulose 0.5% Magnesium stearate 1% Example 2 Mix the ingredients with the following composition, fill it into No. 1 gelatin capsule, and make a capsule. Agent (200mg/capsule)
And so. Dextran ([η]=0.63) 80% Calcium hydrogen phosphate 19% Magnesium stearate 1% Example 3 Granules having the following composition were produced by a conventional method. Dextran ([η]=0.75) 50% Lactose 48% Hydroxypropylcellulose 2% Example 4 Tablets (250 mg/tablet) having the following composition were made into sugar-coated tablets by a conventional method. Dextran ([η] = 0.80) 40% Wheat starch 4.5% Crystalline cellulose 10% 10% potato starch paste 45% Talc 0.5% Example 5 A solution with the following composition was dispensed into a suitable container and sterilized to form a liquid. . Dextran ([η]=0.30) 15% Cane sugar 3% Glucose 5% Distilled water 77% Example 6 A lozenge (1 g/tablet) having the following composition was produced by a conventional method. Dextran ([η]=1.06) 15% Starch syrup 25% Cane sugar 57% Gum arabic powder 3% Distilled water Appropriate amount Example 7 A powder having the following composition was produced by a conventional method. Dextran ([η] = 0.41) 70% Corn starch 19% Lactose 20% Magnesium stearate 1% Example 8 Dextran ([η] = 0.53) was filled into No. 1 gelatin capsules at 200 mg each to form capsules. And so. Clinical Example 1 Ten patients with hypertriglyceridemia were given dextran ([η] = 0.53) filled in capsules before each meal, three times a day for 4 weeks. TG before and after taking dextran was as shown in Table 4.

【衚】 第衚に瀺す劂く、10名の高トリグリセラむド
血症患者に察し、極限粘床〔η〕が0.53のデキス
トランを〜50mgKg−䜓重日服甚させたずこ
ろ、〜50mgKg−䜓重日服甚させた患者の
TGは䜎䞋し、特に〜30mgKg−䜓重日服甚
させた患者では倧巟に䜎䞋した。 たた、〜30mgKg−䜓重日服甚患者ではデ
キストラン服甚による副䜜甚は党く認められなか
぀たが、50mgKg・䜓重日服甚患者では軟䟿傟
向を認めるものがあ぀た。
[Table] As shown in Table 4, when dextran with an intrinsic viscosity [η] of 0.53 was administered to 10 patients with hypertriglyceridemia at 2 to 50 mg/Kg - body weight/day, the results were 4 to 50 mg/Kg. - body weight/day of patients taken
TG decreased, particularly in patients taking 4-30 mg/Kg body weight/day. Furthermore, in patients taking 2 to 30 mg/Kg body weight/day, no side effects were observed due to taking dextran, but in some patients taking 50 mg/Kg body weight/day, a tendency towards loose stools was observed.

Claims (1)

【特蚱請求の範囲】  極限粘床ηが0.29〜1.1の郚分分解デキ
ストランを有効成分ずしお含有するこずを特城ず
する脂質䜎䞋剀。  極限粘床ηが0.29〜1.1の郚分分解デキ
ストランず薬孊的に蚱容し埗る皀釈剀乃至担䜓よ
りなる特蚱請求の範囲第項蚘茉の脂質䜎䞋剀。
[Scope of Claims] 1. A lipid-lowering agent characterized by containing partially decomposed dextran having an intrinsic viscosity [η] of 0.29 to 1.1 as an active ingredient. 2. The lipid-lowering agent according to claim 1, comprising a partially decomposed dextran having an intrinsic viscosity [η] of 0.29 to 1.1 and a pharmaceutically acceptable diluent or carrier.
JP4490284A 1984-03-09 1984-03-09 Agent and method for reducing lipid level Granted JPS60190717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4490284A JPS60190717A (en) 1984-03-09 1984-03-09 Agent and method for reducing lipid level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4490284A JPS60190717A (en) 1984-03-09 1984-03-09 Agent and method for reducing lipid level

Publications (2)

Publication Number Publication Date
JPS60190717A JPS60190717A (en) 1985-09-28
JPH052652B2 true JPH052652B2 (en) 1993-01-13

Family

ID=12704398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4490284A Granted JPS60190717A (en) 1984-03-09 1984-03-09 Agent and method for reducing lipid level

Country Status (1)

Country Link
JP (1) JPS60190717A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118449A (en) * 1991-05-13 1992-06-02 Glitsch, Inc. Method of and apparatus for cartridge tray sealing
EP1060673B1 (en) * 1999-05-20 2004-07-14 Société des Produits Nestlé S.A. Method for increasing the production of propionate in the gastro-intestinal tract
NL1013175C2 (en) * 1999-09-29 2001-03-30 Nutricia Nv Food compositions containing non-digestible polysaccharides and use thereof for reducing transport through tight junctions.

Also Published As

Publication number Publication date
JPS60190717A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
Cézard et al. Efficacy and tolerability of racecadotril in acute diarrhea in children
TW518222B (en) Pharmaceutical composition comprising a combination of metformin and fibrate, and its use for the preparation of medicines intended to reduce hyperglycaemia
US8679549B2 (en) Electrolyte purgative
US4965252A (en) Cholesterol-lowering combination compositions of guar gum and niacin
JP2016065069A (en) Prebiotic formulations and methods of use
US8017652B2 (en) Activators of peroxisome proliferator-activated receptors
WO1995017889A1 (en) Therapeutic composition for hyperparathyroidism of patient subjected to artificial dialysis
JP2014037422A (en) Use of water-soluble cellulose derivative for prevention or treatment of metabolic syndrome
FR2904774A1 (en) SOLID PHARMACEUTICAL COMPOSITION CONTAINING A COMBINATION OF A REGULATOR AGENT FOR INTESTINAL MOTILITY AND AN ANTIFLATULENT.
AU2012203730B2 (en) Composition and method for preventing or reducing the risk of developing a syndrome
JP3055948B2 (en) Agent for improving skin pruritus associated with renal failure
US6509035B1 (en) Oral preparation of coenzyme a useful for lowering blood lipid and a method producing for same
JPH052652B2 (en)
JPS6299323A (en) Agent for hyperlipemia
KR20060037408A (en) Carbostyril derivatives for accelerating salivation
JP3455633B2 (en) Agent for preventing or treating ulcerative colitis
CA2062091C (en) Pharmaceutical compositions and uses of water-soluble, high-viscosity grade cellulose ethers
JPS6210013A (en) Remedy and preventive for gastritis
JPS60120812A (en) Remedy for diabetic osteopenia
JPH05294837A (en) Sebum-secretion promoting agent
JPS59175425A (en) Vessel strengthening agent
JPS6260369B2 (en)
JP3035328B2 (en) Blood lipid lowering agent
EP2288342A1 (en) Magnesium system and use thereof in the cosmetics industry
JP3889456B2 (en) Glycerophosphate dehydrogenase inhibitor