JPH05264891A - Range finder and camera using the same - Google Patents

Range finder and camera using the same

Info

Publication number
JPH05264891A
JPH05264891A JP6192292A JP6192292A JPH05264891A JP H05264891 A JPH05264891 A JP H05264891A JP 6192292 A JP6192292 A JP 6192292A JP 6192292 A JP6192292 A JP 6192292A JP H05264891 A JPH05264891 A JP H05264891A
Authority
JP
Japan
Prior art keywords
light
light receiving
distance
peak value
receiving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6192292A
Other languages
Japanese (ja)
Other versions
JP3074504B2 (en
Inventor
Shinji Nagaoka
伸治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP6192292A priority Critical patent/JP3074504B2/en
Publication of JPH05264891A publication Critical patent/JPH05264891A/en
Application granted granted Critical
Publication of JP3074504B2 publication Critical patent/JP3074504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To calculate an accurate focal distance in a short time without increasing the number of light projecting and light receiving elements, and to attain the miniaturization and the reduction of a cost. CONSTITUTION:When a light projecting means 2 and a light receiving means 3 are moved in a forward direction in front of an object by a scanning driving means (stepping motor) 4 which is controlled by a control circuit 6, light reflected on the object is received by the light receiving means 3 and the peak value of light intensity is detected by a peak detection circuit 8. A position where the peak value is detected is confirmed by counting the driving pulse of the scanning means 4 by a counter 7 and so on, and then, the position is stored in a storage circuit 9. The movement of the light receiving means 3 in a backward direction is stopped at the position where the peak value is detected, a distance to the object is measured by a distance calculation circuit 10. A focusing means 11 is driven so as to feed out a lens and so as to focus by a distance signal measured by such a range finder, and then, an exposure means 12 is driven so as to photograph the object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投光式測距装置及びこ
れを用いた自動焦点カメラにに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type distance measuring device and an automatic focusing camera using the same.

【0002】[0002]

【従来の技術】被写体に向けて赤外光を照射し、被写体
からの反射光をPSD(位置検出素子)等で受光し、三
角測量方式によって被写体までの距離を測定する方法は
広く知られている。この方法では、赤外光を投光レンズ
でビーム状に絞って投光するために、人物が2人並んで
いる場合などにいわゆる中抜け現象を生じて、背景にピ
ントが合ってしまう問題があった。そこで、この問題を
解決するために各種の提案がなされている。
2. Description of the Related Art A method of irradiating a subject with infrared light, receiving reflected light from the subject with a PSD (position detecting element), etc., and measuring the distance to the subject by a triangulation method is widely known. There is. In this method, since infrared light is focused into a beam by a projection lens and projected, a so-called hollow phenomenon occurs when two people are lined up, and there is a problem that the background is in focus. there were. Therefore, various proposals have been made to solve this problem.

【0003】第1には、撮影画面内を走査する方式で、
米国特許第4470681号及び特開平2−12441
9号などである。これらは共に、走査しながら測距演算
を行なっていくものである。第2の方式は、マルチビー
ム測距方式と呼ばれているもので、特開昭62−223
734号に開示されるように、赤外光を発光する素子を
3〜5個備えているものである。
The first is a method of scanning the inside of the photographing screen,
U.S. Pat. No. 4,470,681 and JP-A-2-12441
No. 9 and so on. Both of these perform distance measurement calculation while scanning. The second method is called a multi-beam distance measuring method, and is disclosed in JP-A-62-223.
As disclosed in Japanese Patent No. 734, 3 to 5 elements for emitting infrared light are provided.

【0004】[0004]

【発明が解決しようとする課題】上記従来の第1の方式
では、中抜け現象を防止するために走査中に測距点を多
くすればする程、全行程の測距時間が長くなってしまう
という欠点を有している。また特開平2−124419
号ではさらに、測距ユニット全体を回動させるために、
スペースを必要とし、カメラの小型化の動向に対して
は、逆行する不都合がある。
In the above-mentioned first conventional method, the more the distance measuring points are increased during the scanning in order to prevent the hollow defect, the longer the distance measuring time of the entire stroke becomes. It has the drawback. In addition, JP-A-2-124419
In addition, in order to rotate the entire ranging unit,
It requires space and is inconvenient to go against the trend of miniaturization of cameras.

【0005】上記従来の第2の方式によると、特開昭6
2−223734号に例示される様に、受光するための
素子が特殊形状となり、大きくなってしまう。このため
に、高輝度時の測距性能が不利となったり、高価になる
という問題がある。また、本質的に赤外発光素子を限り
なく多く用いなければ中抜け現象の解決にはならないと
いう欠点を有している。
According to the above-mentioned second conventional method, Japanese Patent Laid-Open No.
As illustrated in No. 2-223734, the element for receiving light has a special shape and becomes large. Therefore, there is a problem that the distance measuring performance at high brightness becomes disadvantageous or expensive. In addition, there is a drawback that the hollowing-out phenomenon cannot be solved unless an infrared light-emitting element is used infinitely many.

【0006】そこで本発明は、上記の問題を解決し、測
距時間を著しく長くすることもなく、スペースも大きく
ならずに、且つどの様な被写体に対しても高輝度で、中
抜け現象を防止したカメラの測距装置を提供することを
目的とするものである。
Therefore, the present invention solves the above-mentioned problems, does not significantly lengthen the distance measuring time, does not increase the space, and has high brightness for any object, and prevents the hollow defect phenomenon. An object of the present invention is to provide a distance measuring device for a camera which is prevented.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の測距装置は、被写体に向けて投光する投光手
段と、被写体からの反射光を受光するための受光手段
と、投光手段に含まれる投光素子及び受光手段に含まれ
る受光素子を互いに連結して撮影画面内で往復移動させ
る走査手段と、受光手段の往方向への移動中に受光した
反射光強度のピーク値を検出するピーク検出回路と、ピ
ーク値の検出位置を記憶する記憶回路と、受光手段の復
方向への移動をピーク値検出位置にて停止させる制御回
路と、受光手段がピーク値検出位置にて停止したときに
被写体までの距離を測定する距離演算回路とを有してい
る。
To achieve the above object, a distance measuring apparatus of the present invention comprises a light projecting means for projecting light toward a subject, and a light receiving means for receiving reflected light from the subject. A scanning unit that connects the light projecting element included in the light projecting unit and the light receiving unit included in the light receiving unit to each other to reciprocate within the photographing screen, and the peak of the reflected light intensity received during the forward movement of the light receiving unit. The peak detection circuit that detects the value, the storage circuit that stores the peak value detection position, the control circuit that stops the backward movement of the light receiving unit at the peak value detection position, and the light receiving unit at the peak value detection position. And a distance calculation circuit that measures the distance to the subject when the camera is stopped.

【0008】また本発明のカメラは、上記の測距装置
と、測距装置による距離信号によりレンズを繰り出して
合焦する合焦手段と、被写体を撮影する露光手段とを有
している。
Further, the camera of the present invention comprises the above distance measuring device, a focusing device for focusing the lens by moving the lens according to a distance signal from the distance measuring device, and an exposure device for photographing a subject.

【0009】[0009]

【実施例】図面を参照して本発明の一実施例を説明す
る。図2に示すように、1つの基板1上に、固定の投光
レンズ2aを通過して被写体に向けて赤外線を投光する
投光素子(以下「IRED」という。)2bと、被写体
からの光を固定の受光レンズ3aを通過して受光する受
光素子(以下「PSD」という。)3bとが、所定の間
隔で支持してある。基板1は走査手段であるステッピン
グモータ4(図1図示)によって、図示しないガイドピ
ンとガイド溝とにより左右及び前後に往復移動するよう
に駆動される。図3に示すように、PSD3bは、その
受光位置(ハッチングにより図示)に応じて、1対の電
極から電流i1 ,i2 が流れるものである。
An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2, on one substrate 1, a light projecting element (hereinafter referred to as “IRED”) 2b that passes a fixed light projecting lens 2a and projects infrared rays toward a subject, and a light projecting element from the subject. A light receiving element (hereinafter referred to as “PSD”) 3b that receives light through a fixed light receiving lens 3a is supported at a predetermined interval. The substrate 1 is driven by a stepping motor 4 (shown in FIG. 1) which is a scanning means so as to reciprocate left and right and front and back by a guide pin and a guide groove (not shown). As shown in FIG. 3, the PSD 3b has currents i1 and i2 flowing from a pair of electrodes according to its light receiving position (illustrated by hatching).

【0010】図1及び図6に示すように、ステッピング
モータ4はレリーズスイッチ5によりオン状態となる制
御回路(以下「CPU」という。)6に制御され、その
駆動パルスがカウンタ7でカウントされる。モータ4の
正転駆動により、基板1が図2の右から左へ往方向へ移
動する第1次走査の間に、IRED2bから被写体に向
けて発せられた光により、図4左から右への走査ライン
Aに沿う光走査が行われる。被写体からの反射光はPS
D3bにより受光される。反射光に基いてPSD3bか
ら出力する電流i1 とi2 とは、加算(i=i1 +i2
)される。光電流iは光強度と比例し、図5に示すよ
うに、IRED2bと被写体との間の距離によって時間
tにつれて変化する。そこで光電流iのピーク値をピー
ク検出回路8で検出する。ピーク値は、走査ラインA上
で最も基板に近接した対象物の位置、すなわち撮影に際
して焦点距離を合わせるべき点O(図4図示)で得られ
る。ピーク値の検出位置を、例えばステッピングモータ
4の駆動パルス数(点Oの位置まで6パルス)の形で記
憶回路9に記憶する。
As shown in FIGS. 1 and 6, the stepping motor 4 is controlled by a release switch 5 by a control circuit (hereinafter referred to as “CPU”) 6 which is turned on, and its drive pulse is counted by a counter 7. .. By the forward rotation of the motor 4, the board 1 moves from the right to the left in FIG. 2 in the forward direction, and the light emitted from the IRED 2b toward the subject moves from the left to the right in FIG. Optical scanning is performed along the scan line A. The reflected light from the subject is PS
The light is received by D3b. The currents i1 and i2 output from the PSD 3b based on the reflected light are added (i = i1 + i2
) Will be done. The photocurrent i is proportional to the light intensity, and as shown in FIG. 5, changes with time t depending on the distance between the IRED 2b and the subject. Therefore, the peak value of the photocurrent i is detected by the peak detection circuit 8. The peak value is obtained at the position of the object closest to the substrate on the scan line A, that is, at the point O (shown in FIG. 4) to which the focal length should be adjusted during imaging. The detection position of the peak value is stored in the storage circuit 9 in the form of, for example, the number of drive pulses of the stepping motor 4 (6 pulses to the position of the point O).

【0011】第1次走査を終ってステッピングモータ4
が逆転駆動され、基板1が図2左から右へ復方向へ移動
する第2次走査の時は、先に記憶回路9に記憶されてい
るピーク値の検出位置である駆動パルス数“6”の位置
まで基板1が戻された時に、モータ4は制御回路6に制
御されて停止する。この位置が焦点を合わせる被写体を
捕えた図4の点Oの位置である。
After the primary scanning is completed, the stepping motor 4
2 is driven in the reverse direction and the substrate 1 moves in the backward direction from the left to the right in FIG. 2, the number of drive pulses “6” which is the peak value detection position previously stored in the memory circuit 9 is detected. When the substrate 1 is returned to the position of, the motor 4 is controlled by the control circuit 6 and stops. This position is the position of the point O in FIG. 4 that captures the subject to be focused.

【0012】ここで通常の測距動作を行う。即ち、投光
手段2のIRED2bから被写体に投光し、その反射光
を受光手段3のPSD3bで受光し、それに基いて出力
される電流i1 とi2 とから距離演算回路10により距
離演算{k×(i1 −i2 )/(i1 +i2 )}を行っ
て距離を測定する。
Here, a normal distance measuring operation is performed. In other words, the distance calculation circuit 10 calculates the distance from the current i1 and i2, which is obtained by projecting an object from the IRED 2b of the light projecting means 2 and receiving the reflected light by the PSD 3b of the light receiving means 3. (I1 -i2) / (i1 + i2)} is performed to measure the distance.

【0013】CPU6からこの距離信号が合焦手段11
に与えられ、距離信号に対応したレンズの繰出し量が決
定されてレンズが駆動され、合焦状態となる。
This distance signal is sent from the CPU 6 to the focusing means 11
The lens feed amount is determined in accordance with the distance signal, the lens is driven, and the in-focus state is achieved.

【0014】最後にCPU6から露光手段12に露光命
令が出され、被写体の撮影が完了する。
Finally, the CPU 6 issues an exposure command to the exposure means 12 to complete the photographing of the subject.

【0015】ピーク検出回路8によりピーク値を検出す
るには、PSD3bからの出力電流i1 , i2 を加算す
るだけでよいので、その演算に要する時間は極めて短か
い。これに対し、距離演算回路10により被写体までの
距離を求めるには、三角測量の原理に基づいて係数kを
用い、k×(i1 −i2 )/(i1 +i2 )という演算
が必要であり、長時間を要する。従って、従来のように
投光素子および受光素子の走査中にずっと距離演算を行
なっていると、測距工程に長時間を要する。しかし本発
明によると、第1次走査はi1 +i2 の計算を行なうの
みで短時間で行なえ、第2次走査では1回のみの距離演
算(上記実施例では駆動パルス“6”の位置における距
離演算)を行なうだけなので、測距工程にかかる時間を
従来の20〜40%程度に短縮でき、写真撮影動作の高
速化が可能になる。
In order to detect the peak value by the peak detection circuit 8, it is sufficient to add the output currents i1 and i2 from the PSD 3b, so the time required for the calculation is extremely short. On the other hand, in order to obtain the distance to the subject by the distance calculation circuit 10, it is necessary to use the coefficient k based on the principle of triangulation and to calculate k × (i1 −i2) / (i1 + i2). It takes time. Therefore, if the distance calculation is performed during the scanning of the light projecting element and the light receiving element as in the prior art, it takes a long time for the distance measuring process. However, according to the present invention, the first scan can be performed in a short time by only calculating i1 + i2, and the distance calculation is performed only once in the second scan (the distance calculation at the position of the drive pulse "6" in the above embodiment). However, the time required for the distance measuring process can be shortened to about 20 to 40% of the conventional time, and the speed of the photography operation can be increased.

【0016】上記の実施例において、走査ラインのパタ
ーンをV字形にしているが、その他ガイド溝の形状を適
宜設定して、走査ラインをジグザグ状や円弧状などの適
宜のパターンにしても良い。また、ステッピングモータ
でなく、DCモータとエンコーダの組み合わせでも同様
な作用効果が得られる。
Although the scanning line pattern is V-shaped in the above embodiment, the shape of the guide groove may be appropriately set to make the scanning line an appropriate pattern such as a zigzag shape or an arc shape. Further, the same action and effect can be obtained by using a combination of a DC motor and an encoder instead of the stepping motor.

【0017】[0017]

【発明の効果】以上の構成を有する本発明の測距装置
は、受光手段の往方向への移動中に受光した光強度のピ
ーク値を検出してその検出位置を記憶し、復方向への移
動をピーク値検出位置にて停止し、ここで被写体までの
距離を測定するので、正確な焦点距離を短い時間で算出
できる。また投,受光素子の数を増加させることがな
く、更に測距ユニット全体を回動させることも要しない
ので、カメラの小型化及びコストの低減を達成できる。
According to the distance measuring apparatus of the present invention having the above-described structure, the peak value of the light intensity received during the movement of the light receiving means in the forward direction is detected, the detected position is stored, and the backward direction is detected. Since the movement is stopped at the peak value detection position and the distance to the subject is measured here, the accurate focal length can be calculated in a short time. Further, since it is not necessary to increase the number of light projecting and light receiving elements and further to rotate the entire distance measuring unit, it is possible to achieve downsizing of the camera and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測距装置を使用したカメラの構成を示
すブロック図である。
FIG. 1 is a block diagram showing a configuration of a camera using a distance measuring device of the present invention.

【図2】本発明の測距装置における投光素子と受光素子
の移動構成を示す一部断面正面図である。
FIG. 2 is a partial cross-sectional front view showing a moving configuration of a light projecting element and a light receiving element in the distance measuring device of the present invention.

【図3】本発明の測距装置における受光素子の平面図で
ある。
FIG. 3 is a plan view of a light receiving element in the distance measuring device of the present invention.

【図4】撮影範囲内の光の走査ラインと受光した光強度
のピーク位置を示す正面図である。
FIG. 4 is a front view showing a scanning line of light within an imaging range and a peak position of received light intensity.

【図5】第1次走査により受光された光強度とステップ
モータの駆動パルスとを示すグラフである。
FIG. 5 is a graph showing the light intensity received by the primary scanning and the drive pulse of the step motor.

【図6】本発明に係るカメラの写真撮影動作のフローチ
ャートである。
FIG. 6 is a flowchart of a photograph taking operation of the camera of the present invention.

【符号の説明】[Explanation of symbols]

2 投光手段 2b 投光素子(IRED) 3 受光手段 3b 受光素子(PSD) 4 走査手段(ステッピングモータ) 6 制御回路 8 ピーク検出回路 9 記憶回路 10 距離演算回路 11 合焦手段 12 露光手段 2 light emitting means 2b light emitting element (IRED) 3 light receiving means 3b light receiving element (PSD) 4 scanning means (stepping motor) 6 control circuit 8 peak detection circuit 9 memory circuit 10 distance calculation circuit 11 focusing means 12 exposure means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被写体に向けて投光する投光手段と、 上記被写体からの反射光を受光するための受光手段と、 上記投光手段に含まれる投光素子及び上記受光手段に含
まれる受光素子を互いに連結して撮影画面内で往復移動
させる走査手段と、 上記受光手段の往方向への移動中に受光した反射光強度
のピーク値を検出するピーク検出回路と、 上記ピーク値の検出位置を記憶する記憶回路と、 上記受光手段の復方向への移動を上記ピーク値検出位置
にて停止させる制御回路と、 上記受光手段が上記ピーク値検出位置にて停止したとき
に、上記被写体までの距離を測定する距離演算回路とを
有することを特徴とする測距装置。
1. A light projecting means for projecting light toward a subject, a light receiving means for receiving reflected light from the subject, a light projecting element included in the light projecting means, and a light receiving included in the light receiving means. Scanning means for connecting the elements to each other to reciprocate within the photographing screen, a peak detection circuit for detecting a peak value of reflected light intensity received while the light receiving means is moving in the forward direction, and a position for detecting the peak value. And a control circuit for stopping the movement of the light receiving means in the backward direction at the peak value detection position, and when the light receiving means stops at the peak value detection position A distance measuring device having a distance calculating circuit for measuring a distance.
【請求項2】請求項1における測距装置と、上記測距装
置による距離信号によりレンズを繰り出して合焦手段
と、被写体を撮影する露光手段とを有することを特徴と
するカメラ。
2. A camera comprising: the distance measuring device according to claim 1; a focusing device that extends a lens according to a distance signal from the distance measuring device; and an exposure device that photographs a subject.
JP6192292A 1992-03-18 1992-03-18 Distance measuring device and camera using the same Expired - Fee Related JP3074504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6192292A JP3074504B2 (en) 1992-03-18 1992-03-18 Distance measuring device and camera using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6192292A JP3074504B2 (en) 1992-03-18 1992-03-18 Distance measuring device and camera using the same

Publications (2)

Publication Number Publication Date
JPH05264891A true JPH05264891A (en) 1993-10-15
JP3074504B2 JP3074504B2 (en) 2000-08-07

Family

ID=13185143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6192292A Expired - Fee Related JP3074504B2 (en) 1992-03-18 1992-03-18 Distance measuring device and camera using the same

Country Status (1)

Country Link
JP (1) JP3074504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293009A (en) * 2005-04-11 2006-10-26 Olympus Imaging Corp Automatic focusing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293009A (en) * 2005-04-11 2006-10-26 Olympus Imaging Corp Automatic focusing device and method
JP4576280B2 (en) * 2005-04-11 2010-11-04 オリンパスイメージング株式会社 Automatic focus adjustment device and focus adjustment method

Also Published As

Publication number Publication date
JP3074504B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US4827303A (en) Distance measuring device
JP2516203B2 (en) Camera auto focus device
US5939705A (en) Image information detection system and optical equipment using the system
EP0437966A2 (en) Automatic focusing device
JP3074504B2 (en) Distance measuring device and camera using the same
JPH0313565B2 (en)
US5617174A (en) Active range finding device
JPH0581007B2 (en)
JPH0524486B2 (en)
JP2622305B2 (en) Electronic still camera
JPH01307711A (en) Camera with automatic zooming function
JP3035370B2 (en) Distance measuring device
JP3140491B2 (en) Automatic focusing device
JPH11337813A (en) Autofocus camera
JP3431200B2 (en) camera
JP2741593B2 (en) Auxiliary light emitting device for auto focus camera
JP3009513B2 (en) Distance measuring device for camera
JP3045561B2 (en) Camera ranging device
JP3437242B2 (en) Camera ranging device
JP3519782B2 (en) Distance measuring device
JP2801016B2 (en) camera
JPH03119872A (en) Autofocusing device
JPH01199113A (en) Distance measuring apparatus
JP3050949B2 (en) Auto focus camera
JPH0534573A (en) Automatic focusing camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees