JPH05264773A - Method for conducting heat - Google Patents

Method for conducting heat

Info

Publication number
JPH05264773A
JPH05264773A JP4355864A JP35586492A JPH05264773A JP H05264773 A JPH05264773 A JP H05264773A JP 4355864 A JP4355864 A JP 4355864A JP 35586492 A JP35586492 A JP 35586492A JP H05264773 A JPH05264773 A JP H05264773A
Authority
JP
Japan
Prior art keywords
space
container
medium
temperature
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4355864A
Other languages
Japanese (ja)
Inventor
Austin Neal
オースティン ニール
Fenemore Peter
フェネモア ピーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NNC Ltd
Original Assignee
NNC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NNC Ltd filed Critical NNC Ltd
Publication of JPH05264773A publication Critical patent/JPH05264773A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/12Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from pressure vessel; from containment vessel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: To obtain a method for improving heat conduction in a space between the walls of two containers where one is included in the other. CONSTITUTION: In this method to remove extra heat from the coolant in the first container 1 of a reactor through a space 5 between the walls of the first container 1 and the second container 3 which includes the first one, a bit of a thermal conductive medium which is solid at a temperature as high as or below the regular operation temperature of the coolant is placed in the space 5 and, when the temperature of the coolant excessively rises, the bit fuses and gets in contact with the walls of both containers, whereby heat conduction is improved. For example, aluminum particles are used as a medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱伝導、特にナトリウ
ム冷却型高速原子炉の冷却装置から余分の熱を取り去る
方法に関する。
FIELD OF THE INVENTION The present invention relates to heat transfer, and more particularly to a method of removing excess heat from a cooling system of a sodium cooled fast reactor.

【0002】[0002]

【従来の技術】高速原子炉の設計では原子炉の第1容器
を安全又は保護容器又はリークジャケットで取り囲むこ
とは一般常識である。第1容器と保護容器との空間には
アルゴンのような不活性ガスが満たされているので、第
1容器から空間内のナトリウム冷却材の漏れは、漏れた
ナトリウムの燃焼、又は腐食性のナトリウム化合物の形
成の危険もなく検出される。
BACKGROUND OF THE INVENTION In the design of fast reactors, it is common knowledge to surround the reactor primary vessel with a safety or protective vessel or leak jacket. Since the space between the first container and the protective container is filled with an inert gas such as argon, leakage of the sodium coolant in the space from the first container is caused by combustion of leaked sodium or corrosive sodium. Detected without risk of compound formation.

【0003】[0003]

【発明が解決しようとする課題】崩壊熱を取り去る正規
の原子炉冷却回路と予備回路の両方が滅多にありそうも
ない状況のもとで正常に作動しなくなったような場合
に、第1容器から余分な熱を奪い取って保護容器の外側
に逃がすことは非常に重要なことである。これに必要な
熱伝導は、第1容器と保護容器との空間で行われる熱伝
導が低いので妨害される。本発明の目的は、一方が他方
に内包される2つの容器壁の空間の熱伝導をよくする方
法を提供することにある。
When the normal reactor cooling circuit for removing decay heat and the standby circuit both fail to operate normally under an unlikely situation, the first container It is very important to take extra heat from the heat and let it escape to the outside of the protective container. The heat transfer required for this is impeded by the low heat transfer which takes place in the space between the first container and the protective container. An object of the present invention is to provide a method for improving heat conduction in the space between two container walls, one of which is contained in the other.

【0004】[0004]

【課題を解決するための手段】本発明によると、第1容
器を第2容器で内包し、その壁の1つの温度が設定レベ
ルを越えたとき、第1容器の壁と第2容器の壁との間の
空間を通して熱伝導をよくする方法が提供され、該方法
は設定レベル以下の温度で固体である熱伝媒体の小片を
前記空間に配置し、設定レベルを越えたとき、小片が溶
解して両方の壁に接触するように構成され、これにより
熱伝導がよくなるようにされている。本発明の他の態様
によると、第1容器の壁と第1容器を内包する第2容器
の壁との間の空間を通して熱を伝える原子炉の第1容器
内の冷却材から余分な熱を取り去る方法が提供でき、該
方法は冷却材の正規運転温度以下の温度で固体である熱
伝媒体の小片を前記空間に配置し、前記冷却材温度が過
度に上昇したとき小片が溶解して両方の壁に接触するよ
うに構成され、それにより熱伝導がよくなるようにされ
ている。
According to the present invention, a first container is enclosed by a second container, and when the temperature of one of its walls exceeds a set level, the walls of the first container and the wall of the second container. There is provided a method of improving heat conduction through the space between the said and said method, wherein a small piece of heat transfer medium which is solid at a temperature below a set level is arranged in said space, and when the set level is exceeded, said piece melts. Then, it is configured so as to contact both walls, thereby improving heat conduction. According to another aspect of the invention, excess heat is transferred from the coolant in the first vessel of the nuclear reactor which transfers heat through the space between the wall of the first vessel and the wall of the second vessel containing the first vessel. A method of removing can be provided, wherein a small piece of heat transfer medium that is solid at a temperature below the normal operating temperature of the coolant is placed in the space, and the piece melts when the coolant temperature rises excessively. Is configured to contact the wall of the, thereby improving heat transfer.

【0005】[0005]

【実施例】以下、本発明の実施例を添付図面を参照して
説明する。図1を参照して説明すると、原子炉の第1容
器1は保護容器3に内包され、第1容器の外面と保護容
器の内面との間に空間5が形成されている。これらの容
器はコンクリート製のケーシング7に納められている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Referring to FIG. 1, the first container 1 of the nuclear reactor is enclosed in a protective container 3, and a space 5 is formed between the outer surface of the first container and the inner surface of the protective container. These containers are housed in a concrete casing 7.

【0006】前述したように、空間の熱伝導率はかなり
限定されるので、崩壊熱の除去装置が故障したような場
合には十分でない。このような事故では、ナトリウムが
空間に満たされるようになっているので、熱が第1容器
の壁から保護容器に効果的に伝わる。しかし、このよう
な充填を行う装置が偶発的かつ不必要に作動したときは
長期間操業を停止してナトリウムを空間から除去する必
要があるので費用が掛かり過ぎる。しかも、残留ナトリ
ウムがあると、第1容器の運転中の定期検査の遂行を著
しく困難にさせる。この検査は遠隔制御される検査装置
を空間5内で操作することにより行われる。空間を充填
する、可能性のあるその他の熱交換材料はナトリウム/
カリウム合金であるが、ナトリウムに当てはまるのと同
じ異論がある。他の液体で、例えば水とか、有機流体を
使用してもよいが、仮にナトリウムが空間内に漏れる
と、このような液体はナトリウムと好ましくない反応を
起こす。更に、このような液体は沸騰するので、空間内
で圧力増加という不利な結果を招く。
As described above, the thermal conductivity of the space is considerably limited, and it is not sufficient when the decay heat removing device fails. In such an accident, the space is filled with sodium so that heat is effectively transferred from the wall of the first container to the protective container. However, if the device for performing such filling is accidentally and unnecessarily operated, it is necessary to stop the operation for a long time to remove sodium from the space, which is too expensive. Moreover, the presence of residual sodium makes it extremely difficult to perform the periodic inspection during operation of the first container. This inspection is performed by operating a remotely controlled inspection device in the space 5. Other potential heat exchange materials that fill the space are sodium /
It is a potassium alloy, but has the same objections as it applies to sodium. Other liquids such as water or organic fluids may be used, but if sodium leaks into the space, such liquids will react undesirably with sodium. Furthermore, the boiling of such liquids has the disadvantageous consequence of increasing the pressure in the space.

【0007】本発明によると、熱伝媒体は冷却材の温度
が過度に上昇したときに空間内に投入される。そこで媒
体は冷却材の正常な運転温度では固体であるが、第1容
器の温度が過度に上がると溶ける。溶融した媒体は空間
を満たし、容器壁間の熱交換を良好にする。媒体は第1
及び保護容器の材料とそれぞれ相溶性のあるものが選ば
れる。そのようにすることにより、空間内に漏れたナト
リウム冷却材と好ましくない反応が生じなくてすむ。媒
体の溶融温度は、原子炉の冷却材が沸騰し始める前で、
かつ第1容器の構造上の限界温度に達成する前の温度で
ある。それゆえに、次のような関係が生じる。 熱伝媒体は、THTM <TMPのとき、固体で、 THTM ≧TMPのとき、液体である。 ここで、THTM =熱伝媒体の温度 TMP=熱伝媒体の融点温度 TLIM =第1容器構造の限界温度で、TMP<TLIM 媒体は空間内に若干残ってもナトリウム又はナトリウム
/カリウム合金との関係で上述したような問題を起こさ
ない。それに相応しい媒体はアルミニウムである。
According to the invention, the heat transfer medium is introduced into the space when the temperature of the coolant rises excessively. There, the medium is solid at the normal operating temperature of the coolant, but melts if the temperature of the first container rises excessively. The molten medium fills the space and provides good heat exchange between the walls of the vessel. Medium is first
Also, materials that are compatible with the materials of the protective container are selected. By doing so, undesired reactions with the sodium coolant leaking into the space do not occur. The melting temperature of the medium, before the reactor coolant begins to boil,
It is the temperature before the structural limit temperature of the first container is reached. Therefore, the following relationships occur. The heat transfer medium is solid when T HTM <T MP and liquid when T HTM ≧ T MP . Here, T HTM = temperature of heat transfer medium T MP = melting point temperature of heat transfer medium T LIM = limit temperature of first container structure, T MP <T LIM medium or sodium or sodium even if a little remains in the space / It does not cause the above-mentioned problems in relation to the potassium alloy. A suitable medium is aluminum.

【0008】媒体は小球の形態で空間5内に投入される
が、これらの小球は過度の冷却材温度を感知してホッパ
9から送られる。ホッパ9からのアルミニウム球の搬送
はバルブ11により制御される。バルブは冷却材の温度
感知装置13の制御のもとで自動操作か、あるいは手動
操作が可能である。
The medium is thrown into the space 5 in the form of globules, which are sent from the hopper 9 by sensing an excessive coolant temperature. The transfer of the aluminum balls from the hopper 9 is controlled by the valve 11. The valve can be operated automatically or manually under the control of the coolant temperature sensing device 13.

【0009】空間の充填にこのような固体材料の粒子を
使用することは、非常に有益である。材料が不注意にか
つ不必要に空間内に投入されたとしても、空間内の温度
がアルミニウム(660℃)又はその外の選択材料の融
点よりも低くければ、粒子は吸引ホースにより比較的簡
単に取り除くことができる。他方、温度が過度に高けれ
ば、材料が溶けて空間が液体アルミニウム(あるひは他
の材料)で満たされ、容器1及び3間の熱伝導が良くな
って熱を外気に逃がすことができる。更に、溶解中、材
料は溶融潜熱によって熱を吸収する。
The use of such particles of solid material to fill a space is of great benefit. Even if the material is inadvertently and unnecessarily put into the space, if the temperature in the space is lower than the melting point of aluminum (660 ° C) or other selected material, the particles are relatively easy to draw with the suction hose. Can be removed. On the other hand, if the temperature is excessively high, the material is melted and the space is filled with liquid aluminum (or some other material), and the heat conduction between the containers 1 and 3 is improved so that the heat can escape to the outside air. Further, during melting, the material absorbs heat due to latent heat of fusion.

【0010】前述したような球状の材料を使用する代わ
りに、別の粒子形態、例えば微粒やペレット状のものを
使用してもよい。これとは別に材料はインゴット、バ
ー、シート又は別の小片の形態で空間5内に永久的に置
かれていてもよい。しかし、一般に漏れ検出ガスを小片
間の隙間で循環させる必要もあるので、材料を固体状で
永久充填することは適当ではない。容器の壁が空間5内
でシート状の材料で覆われるおそれもある。
Instead of using the spherical material as described above, other particle forms such as fine particles or pellets may be used. Alternatively, the material may be permanently placed in the space 5 in the form of an ingot, bar, sheet or another piece. However, since it is generally necessary to circulate the leak detection gas in the gap between the pieces, it is not appropriate to permanently fill the material in a solid state. The wall of the container may be covered with the sheet-shaped material in the space 5.

【0011】他の材料、例えばカルシウムや金属合金を
アルミニウムの代わりに使用してもよい。材料は、溶融
温度、熱伝達特性、溶融潜熱、容器構造物の使用材料と
の相溶性や他材料、例えば腐食性生成物を生じさせるナ
トリウムとの低活性反応を勘案して選択される。
Other materials such as calcium and metal alloys may be used in place of aluminum. The material is selected taking into account its melting temperature, heat transfer properties, latent heat of fusion, compatibility with the materials used for the container structure and low activity reactions with other materials, such as sodium which produces corrosive products.

【0012】空間5をこのような材料で満たすほか、更
に保護容器の外側とボールト・ライナー(図示せず)と
の間に形成された空間にも同様に満たしてもよい。
In addition to filling the space 5 with such a material, the space formed between the outside of the protective container and the vault liner (not shown) may be filled as well.

【0013】本発明は上述でナトリウム冷却高速原子炉
に関して述べたが、この他にも一方が他方に内包される
任意の2つの容器間の空間を通して熱を伝えるために使
用してもよい。熱伝導は2つの容器間のいずれの方向で
行ってもよい。
Although the present invention has been described above with respect to a sodium cooled fast reactor, it may be used to transfer heat through any other space between two vessels, one contained within the other. Heat transfer may occur in either direction between the two containers.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1容器を保護容器で内包した原子炉の1部の
断面図である。
FIG. 1 is a sectional view of a part of a nuclear reactor in which a first container is enclosed in a protective container.

【符号の説明】[Explanation of symbols]

1 第1容器 3 保護容器 5 空間 7 ケーシング 9 ホッパ 11 バルブ 13 温度感知装置 1 First Container 3 Protective Container 5 Space 7 Casing 9 Hopper 11 Valve 13 Temperature Sensing Device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月5日[Submission date] February 5, 1993

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ピーター フェネモア フランス国 リヨン 69006,ルー ボア ル 61,エタージュ 5 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Peter Fenemore Lyon 69006, Loubourg 61, Etage 5 France

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第1容器を第2容器で内包し、その壁の
1つの温度が設定レベルを越えたとき、第1容器の壁と
第2容器の壁との間の空間を通して熱伝導をよくする方
法であって、該方法は設定レベル以下の温度で固体であ
る熱伝媒体の小片を前記空間に配置し、設定レベルを越
えたとき、小片が溶解して両方の壁に接触することによ
り熱伝導をよくすることを特徴とする方法。
1. A first container is enclosed by a second container, and when the temperature of one of the walls exceeds a set level, heat conduction is conducted through a space between the wall of the first container and the wall of the second container. A method for improving, wherein a piece of a heat transfer medium which is solid at a temperature below a set level is placed in the space, and when the set level is exceeded, the piece melts and contacts both walls. The method is characterized by improving heat conduction by.
【請求項2】 前記媒体は、固体のとき、粒子状である
ことを特徴とする請求項1記載の方法。
2. The method of claim 1, wherein the medium, when solid, is particulate.
【請求項3】 前記媒体は、壁の温度が設定レベルを越
えたときにのみ前記空間内に投入されることを特徴とす
る請求項1又は2記載の方法。
3. The method according to claim 1, wherein the medium is introduced into the space only when the temperature of the wall exceeds a set level.
【請求項4】 第1容器の壁と第1容器を内包する第2
容器の壁との間の空間を通して熱を伝える原子炉の第1
容器内の冷却材から余分な熱を取り去る方法であって、
該方法は冷却材の正規運転温度以下の温度で固体である
熱伝媒体の小片を前記空間に配置し、前記冷却材温度が
過度に上昇したとき小片が溶解して両方の壁に接触する
ことにより熱伝導をよくすることを特徴とする方法。
4. A wall of the first container and a second container containing the first container.
First reactor to transfer heat through the space between it and the wall of the vessel
A method of removing excess heat from the coolant in the container,
The method comprises placing a small piece of heat transfer medium in the space that is solid at a temperature below the normal operating temperature of the coolant, and melts the small piece into contact with both walls when the coolant temperature rises excessively. The method is characterized by improving heat conduction by.
【請求項5】 前記媒体は、固体のとき、粒子状である
ことを特徴とする請求項4記載の方法。
5. The method of claim 4, wherein the medium is particulate when solid.
【請求項6】 前記媒体は前記冷却材温度を越えたとき
のみ空間内に投入されることを特徴とする請求項4又は
5記載の方法。
6. A method according to claim 4, wherein the medium is introduced into the space only when the temperature of the coolant is exceeded.
【請求項7】 前記媒体は送り出し弁の付いたホッパに
収容され、該送り出し弁は前記冷却材温度が過度に上昇
したとき制御手段により開にされて前記媒体を空間内に
投入することを特徴とする請求項6記載の方法。
7. The medium is contained in a hopper equipped with a delivery valve, and the delivery valve is opened by a control means to throw the medium into the space when the coolant temperature rises excessively. The method according to claim 6, wherein
【請求項8】 前記媒体の小片は永久的に空間内に配置
されていることを特徴とする請求項1又は4記載の方
法。
8. A method according to claim 1 or 4, characterized in that the medium pieces are permanently arranged in space.
【請求項9】 前記媒体はアルミニウム、カルシウム又
は金属合金であることを特徴とする前項いずれか1記載
の方法。
9. The method according to claim 1, wherein the medium is aluminum, calcium or a metal alloy.
【請求項10】本質的に添付図面を参照して記述された
ような熱伝導をよくする方法。
10. A method of enhancing heat transfer essentially as described with reference to the accompanying drawings.
【請求項11】前項いずれかの方法に従って実施される
原子炉。
11. A nuclear reactor implemented according to the method of any of the preceding claims.
JP4355864A 1992-01-13 1992-12-18 Method for conducting heat Pending JPH05264773A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9200625A GB2263188A (en) 1992-01-13 1992-01-13 Heat transfer
GB9200625.3 1992-01-13

Publications (1)

Publication Number Publication Date
JPH05264773A true JPH05264773A (en) 1993-10-12

Family

ID=10708498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355864A Pending JPH05264773A (en) 1992-01-13 1992-12-18 Method for conducting heat

Country Status (3)

Country Link
JP (1) JPH05264773A (en)
CZ (1) CZ390392A3 (en)
GB (1) GB2263188A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132612A1 (en) * 2010-04-21 2011-10-27 株式会社 東芝 Liquid metal cooled reactor and heat removal method for same
CN105551541A (en) * 2015-12-16 2016-05-04 中国核电工程有限公司 Core melt grouping trapping and cooling system
JP2017538940A (en) * 2014-12-16 2017-12-28 ジョイント ストック カンパニー アトムエネルゴプロエクトJoint Stock Company Atomenergoproekt System for cooling and confining the molten core of a pressurized water reactor
WO2018208431A1 (en) * 2017-05-09 2018-11-15 Westinghouse Electric Company Llc Small nuclear reactor containment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276602A (en) * 2009-04-27 2010-12-09 Toshiba Corp Fast reactor
CN108224865A (en) * 2018-03-15 2018-06-29 四川海盛杰低温科技有限公司 A kind of contact metal heat transfer cooler
CN111916232B (en) * 2020-08-13 2022-03-01 中国核动力研究设计院 Light water nuclear reactor structure
FR3143827A1 (en) 2022-12-15 2024-06-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nuclear reactor cooled with liquid metal or molten salt(s) integrating a residual power evacuation system (EPuR) through the primary reactor vessel, comprising a module of pivoting fins with passive or active triggering, located in the inter-tank space.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH664037A5 (en) * 1984-07-17 1988-01-29 Sulzer Ag SYSTEM WITH A NUCLEAR HEATING REACTOR.
US4767593A (en) * 1987-06-15 1988-08-30 Wedellsborg Bendt W Multiple shell pressure vessel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132612A1 (en) * 2010-04-21 2011-10-27 株式会社 東芝 Liquid metal cooled reactor and heat removal method for same
JP2011226955A (en) * 2010-04-21 2011-11-10 Toshiba Corp Liquid metal cooling type reactor and heat removal method thereof
CN102782768A (en) * 2010-04-21 2012-11-14 株式会社东芝 Liquid metal cooled reactor and heat removal method for same
US8873697B2 (en) 2010-04-21 2014-10-28 Kabushiki Kaisha Toshiba Liquid metal cooled nuclear reactor and heat removal method for the same
JP2017538940A (en) * 2014-12-16 2017-12-28 ジョイント ストック カンパニー アトムエネルゴプロエクトJoint Stock Company Atomenergoproekt System for cooling and confining the molten core of a pressurized water reactor
CN105551541A (en) * 2015-12-16 2016-05-04 中国核电工程有限公司 Core melt grouping trapping and cooling system
WO2018208431A1 (en) * 2017-05-09 2018-11-15 Westinghouse Electric Company Llc Small nuclear reactor containment system
US10460844B2 (en) 2017-05-09 2019-10-29 Westinghouse Electric Company Llc Small nuclear reactor containment system
CN110603604A (en) * 2017-05-09 2019-12-20 西屋电气有限责任公司 Small nuclear reactor containment system
CN110603604B (en) * 2017-05-09 2023-06-09 西屋电气有限责任公司 Small nuclear reactor containment system

Also Published As

Publication number Publication date
GB9200625D0 (en) 1992-03-11
GB2263188A (en) 1993-07-14
CZ390392A3 (en) 1993-09-15

Similar Documents

Publication Publication Date Title
US4272683A (en) Transport and storage vessel for radioactive materials
JP2012525596A (en) Cask apparatus, system, and method for transporting and / or storing high levels of waste.
JPH05264773A (en) Method for conducting heat
US11476010B2 (en) Cooling method for reactor molten core melt and cooling control system for reactor molten core
US4197900A (en) Furnace for vacuum arc melting of highly reactive metals
US3037924A (en) Jacketed body
US3133197A (en) Apparatus utilizing liquid metal coolant for transporting thermally hot intensely radioactive material
US3354043A (en) Fuel element for nuclear reactors
US3732423A (en) Shipping container for radioactive material
KR20150069421A (en) a system for reducing steam and hydrogen exploision at LOCA(loos-Of-Coolant Accident)
WO2015089662A1 (en) Nuclear reactor safety system
JPH0778551B2 (en) Liquid metal cooling reactor
JP2002131459A (en) Metallic fuel element for nuclear reactor
JPS5930474Y2 (en) Container for transporting spent nuclear fuel
JPS6130237B2 (en)
RU2070346C1 (en) Method for protecting reactor structures from molten efflux metal
JPH0298690A (en) Cooler for pressurized water reactor
Fisher et al. Feasibility studies on molten metal reactor components
US3060108A (en) Non-corrosive plutonium fuel systems
RU2025798C1 (en) Nuclear reactor with natural circulation of heat carrier
JPS63222295A (en) Nuclear reactor
JPH08129089A (en) Water immersion type marine nuclear reactor
CA3066230A1 (en) Cooling method for reactor molten core melt and cooling control system for reactor molten core
JP3198134B2 (en) Self-actuated furnace shutdown device
McCauley Startup of Experimental Lithium System