JPH05264705A - Measuring apparatus for permeability - Google Patents

Measuring apparatus for permeability

Info

Publication number
JPH05264705A
JPH05264705A JP3819892A JP3819892A JPH05264705A JP H05264705 A JPH05264705 A JP H05264705A JP 3819892 A JP3819892 A JP 3819892A JP 3819892 A JP3819892 A JP 3819892A JP H05264705 A JPH05264705 A JP H05264705A
Authority
JP
Japan
Prior art keywords
coil
output voltage
magnetic field
magnetic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3819892A
Other languages
Japanese (ja)
Other versions
JP3144871B2 (en
Inventor
Atsushi Itagaki
篤 板垣
Osamu Goto
治 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOWA DENSHI KK
Original Assignee
RYOWA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOWA DENSHI KK filed Critical RYOWA DENSHI KK
Priority to JP03819892A priority Critical patent/JP3144871B2/en
Publication of JPH05264705A publication Critical patent/JPH05264705A/en
Application granted granted Critical
Publication of JP3144871B2 publication Critical patent/JP3144871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To provide an apparatus wherein a specimen is always arranged in a definite measur ing position and the permeability of the specimen can be measured surely and quickly so as not to cause a measuring error. CONSTITUTION:The title apparatus is provided with the following: a coil 28, for excitation use, which is installed in a substrate and which generates a nearly uniform alternating magnetic field; a coil 48, for magnetic-field detection use, which is arranged and installed in the coil 28 for excitation use; a differential coil 44 for measurement use; and a sliding and moving member which can be advanced freely into the differential coil 44 for measurement use. A permeability is measured from the following: the output voltage of the differential coil 44 for measurement use when a permeability-measuring specimen is inserted into a coil part one side of the differential coil 44 for measurement use; and the output voltage of the coil 48 for magnetic-field detection use. At this time, the following are used: a correction and operation means 80e which corrects the output voltage of the differential coil 44 for measurement use in an air core state that the permeability-measuring specimen has been inserted by vector-subtracting the output voltage from the output voltage of the differential coil 44 for measurement use in a state that the permeability-measuring specimen has been inserted. The permeability is measured from the ratio of the output voltage of the differential coil 44 for measurement use after its correction to the output voltage of the coil 48 for magnetic-field detection use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜磁性材料の高周波に
おける実効透磁率およびその実数部と虚数部を可及的に
少ない誤差で求めることを可能とする透磁率測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic permeability measuring device capable of obtaining the effective magnetic permeability of a thin film magnetic material at high frequencies and its real part and imaginary part with as few errors as possible.

【0002】[0002]

【従来の技術】従来、磁性材料の透磁率測定方法とし
て、インダクタンス法、ヨーク法などが利用されてい
る。これらの方法ではコイルの分布容量に起因する自己
共振のために、高周波での測定は困難であった。これら
に代わる方法として差動コイルを用いた透磁率測定方法
が知られている。
2. Description of the Related Art Heretofore, an inductance method, a yoke method and the like have been used as a method of measuring the magnetic permeability of a magnetic material. With these methods, measurement at high frequencies was difficult because of self-resonance caused by the distributed capacitance of the coil. A magnetic permeability measuring method using a differential coil is known as an alternative method.

【0003】差動コイルを用いた透磁率測定装置の検出
部の構造は、特開昭61−57871号公報に開示され
ている。すなわち、図6に示すように、この透磁率測定
装置は、断面が矩形状の磁界発生用コイル2に励磁用の
高周波電源4からの電圧を印加して交番磁界を発生さ
せ、磁界発生用コイル2によって発生させられた交番磁
界に対して面が直交するように、該磁界発生用コイル2
内に8字状に巻回する測定用差動コイル6および磁界検
出用コイル8を設け、測定用差動コイル6の一方のコイ
ル部中に透磁率測定試料(以下、単に試料とも記す)9
を挿入し、測定用差動コイル6の出力電圧EB と磁界検
出用コイル8の出力電圧EH との比、μ=(EB
H )・(SH /SB )から透磁率を測定する。ここ
で、SH は磁界検出用コイル8の実効面積、SB は試料
9の断面積である。
The structure of the detecting portion of the magnetic permeability measuring device using a differential coil is disclosed in Japanese Patent Laid-Open No. 61-57871. That is, as shown in FIG. 6, in this magnetic permeability measuring apparatus, a voltage from a high-frequency power source 4 for excitation is applied to a magnetic field generating coil 2 having a rectangular cross section to generate an alternating magnetic field, and the magnetic field generating coil is generated. The magnetic field generating coil 2 so that its surface is orthogonal to the alternating magnetic field generated by
A measurement differential coil 6 and a magnetic field detection coil 8 that are wound in an 8-character shape are provided inside, and a magnetic permeability measurement sample (hereinafter, also simply referred to as a sample) 9 is provided in one coil portion of the measurement differential coil 6.
Insert the ratio between the output voltage E H of the output voltage E B and the magnetic field detecting coil 8 of the measuring differential coil 6, μ = (E B /
The magnetic permeability is measured from (E H ) · (S H / S B ). Here, S H is the effective area of the magnetic field detection coil 8, and S B is the cross-sectional area of the sample 9.

【0004】前記の従来技術において、磁界発生用コイ
ル2内に配設される測定用差動コイル6および磁界用検
出コイル8は、例えば、透磁率の小さいガラス材料等で
形成された枠体に細い導線を巻回することにより得てい
る。
In the above-mentioned prior art, the measuring differential coil 6 and the magnetic field detecting coil 8 arranged in the magnetic field generating coil 2 are, for example, a frame body made of a glass material having a low magnetic permeability. It is obtained by winding a thin wire.

【0005】[0005]

【発明が解決しようとする課題】然しながら、前記構成
では、寸法精度がさほどに向上することなく、従って、
製品としてばらつきが出て、正確な透磁率の測定が困難
である。
However, in the above-mentioned structure, the dimensional accuracy does not improve so much, and therefore,
As products vary, it is difficult to measure the magnetic permeability accurately.

【0006】しかも、試料の挿入度合によって異なる透
磁率が測定されることになり、測定結果に信頼性が得ら
れない難点がある。
Moreover, since the magnetic permeability varies depending on the insertion degree of the sample, there is a problem that the measurement result cannot be reliable.

【0007】本発明は前記の不都合を克服するためにな
されたものであって、簡単な構成で確実に、すなわち、
測定誤差が少なく且つ迅速に透磁率を測定することが可
能であり、しかも測定部の寸法精度に優れた透磁率測定
装置を提供することを目的とする。
The present invention has been made in order to overcome the above-mentioned inconveniences, and has a simple structure, that is,
It is an object of the present invention to provide a magnetic permeability measuring device which has a small measurement error and can measure the magnetic permeability quickly and which is excellent in dimensional accuracy of a measuring portion.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、ほぼ一様な交番磁界を発生する磁界発
生用コイルと、前記磁界発生用コイル中に配設された磁
界検出用コイル並びに測定用差動コイルとを備え測定用
差動コイルの出力電圧と磁界検出用コイルの出力電圧と
から透磁率を測定する透磁率測定装置において、前記磁
界検出用コイルと測定用差動コイルとは単一の基板上に
巻回形成されていることを特徴とする。
To achieve the above object, the present invention provides a magnetic field generating coil for generating a substantially uniform alternating magnetic field, and a magnetic field detecting device disposed in the magnetic field generating coil. In the magnetic permeability measuring apparatus, which comprises a measuring coil and a measuring differential coil, and measures the magnetic permeability from the output voltage of the measuring differential coil and the output voltage of the magnetic field detecting coil, the magnetic field detecting coil and the measuring differential The coil is characterized in that it is wound around a single substrate.

【0009】[0009]

【作用】基板上に形成された測定用差動コイルに対して
試料を接近させ、その出力電圧を得る。一方、前記測定
用差動コイルが空心状態の時の出力電圧を得て、両出力
電圧の差を求め、誤差によって前記測定用差動コイルの
出力電圧の値を補正して磁界検出用コイルの出力電圧と
の比から透磁率を測定する。この時、測定用差動コイル
と磁界検出用コイルとは基板上に設けられているため
に、寸法精度が向上し、正確且つ迅速に透磁率の測定が
達成される。
The sample is brought close to the differential coil for measurement formed on the substrate, and the output voltage thereof is obtained. On the other hand, the output voltage when the measurement differential coil is in the air-core state is obtained, the difference between both output voltages is obtained, and the value of the output voltage of the measurement differential coil is corrected by an error to correct the magnetic field detection coil. The magnetic permeability is measured from the ratio with the output voltage. At this time, since the measuring differential coil and the magnetic field detecting coil are provided on the substrate, the dimensional accuracy is improved, and the magnetic permeability can be measured accurately and quickly.

【0010】[0010]

【実施例】以下本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0011】図1において、参照符号10は、本発明に
係る透磁率測定装置を示す。この透磁率測定装置10
は、基本的には、基台12と前記基台12にボルト14
によって固定される案内部材16と、前記案内部材16
が臨む磁気検出回路18とから基本的に構成されてい
る。
In FIG. 1, reference numeral 10 indicates a magnetic permeability measuring apparatus according to the present invention. This magnetic permeability measuring device 10
Is basically the base 12 and the bolts 14 on the base 12.
Member 16 fixed by the guide member 16 and the guide member 16
And a magnetic detection circuit 18 facing the above.

【0012】案内部材16は、図1から容易に諒解され
る通り、その長手方向中央部に沿って蟻溝20が設けら
れており、前記蟻溝20には摺動部材22が摺動自在に
嵌合されている。摺動部材22の先端部は試料Wの固着
部位として利用する。この場合、摺動部材22を変位さ
せるために、把手24が設けられている。なお、参照符
号26は前記蟻溝20の一方の端部に設けられた摺動部
材22のそれ以上の変位を阻止するためのストッパを示
している。
As is easily understood from FIG. 1, the guide member 16 is provided with a dovetail groove 20 along the longitudinal central portion thereof, and a sliding member 22 is slidable in the dovetail groove 20. It is fitted. The tip portion of the sliding member 22 is used as a fixed portion of the sample W. In this case, a handle 24 is provided to displace the sliding member 22. The reference numeral 26 indicates a stopper for preventing further displacement of the sliding member 22 provided at one end of the dovetail groove 20.

【0013】前記案内部材16は磁気検出回路18に臨
む。磁気検出回路18はCチャンネル上に折曲形成され
た励磁用コイル28と前記励磁用コイル28の、図にお
いて、垂直方向中央に配設されるプリント基板30と、
前記プリント基板30に設けられる8の字状コイル(後
述)の出力を外部へと取り出すためのターミナル部32
とから構成される。
The guide member 16 faces the magnetic detection circuit 18. The magnetic detection circuit 18 includes an exciting coil 28 formed by bending on a C channel, and a printed circuit board 30 disposed at the center of the exciting coil 28 in the vertical direction in the drawing.
A terminal portion 32 for taking out the output of an 8-shaped coil (described later) provided on the printed circuit board 30 to the outside.
Composed of and.

【0014】励磁用コイル28とプリント基板30とは
固着されており、さらに前記プリント基板30に穿設さ
れた孔部にボルト34を挿通して前記案内部材16の螺
溝に螺合することにより磁気検出回路18と一体化され
ている。
The exciting coil 28 and the printed circuit board 30 are fixed to each other, and the bolt 34 is inserted into the hole formed in the printed circuit board 30 and screwed into the screw groove of the guide member 16. It is integrated with the magnetic detection circuit 18.

【0015】図3並びに図4に前記プリント基板30の
配線構造を示す。図3から容易に諒解される通り、プリ
ント基板30の一方の面には一本の導体42を実質的に
8字状に湾曲乃至屈曲形成して測定用差動コイル44が
形成され、また、図4に示すように、プリント基板30
の他方の面に導体46を湾曲乃至屈曲させて磁界検出用
コイル48として形成している。測定用差動コイル44
の出力側は図示しない導線を介して第1ターミナル50
に接続され、磁界検出用コイル48の出力側は、同様に
第2ターミナル52に接続されている。また、励磁用コ
イル28の出力側は第3ターミナル54に接続される。
なお、図中、参照符号56a、56bはスルーホールを
示し、また、参照符号57はプリント基板30に画成さ
れた矩形状の第1のスペースを示すとともに、さらに参
照符号58は前記第1スペース57の下方に画成された
試料挿入用の第2スペースを示す。
3 and 4 show the wiring structure of the printed circuit board 30. As shown in FIG. As is easily understood from FIG. 3, one conductor 42 is curved or bent in a substantially 8-shape on one surface of the printed circuit board 30 to form a measurement differential coil 44. As shown in FIG.
The conductor 46 is curved or bent on the other surface of the above to form a magnetic field detection coil 48. Differential coil 44 for measurement
The output side of the first terminal 50
The output side of the magnetic field detection coil 48 is similarly connected to the second terminal 52. The output side of the exciting coil 28 is connected to the third terminal 54.
In the figure, reference numerals 56a and 56b indicate through holes, reference numeral 57 indicates a rectangular first space defined on the printed circuit board 30, and reference numeral 58 indicates the first space. 57 shows a second space defined below 57 for sample insertion.

【0016】次に、前記のように構成される透磁率測定
装置10の回路構成について、図5以降を参照して説明
する。
Next, the circuit configuration of the magnetic permeability measuring device 10 configured as described above will be described with reference to FIG.

【0017】該透磁率測定装置10は磁界発生のための
高周波電源としての発振器60を備えて、発振器60か
らの発振出力はフィルタ・アッテネータ62に供給して
波形整形し、かつレベルを発振器60の発振周波数に比
例して減衰させ、高周波電力増幅器64に供給して電力
増幅し、該高周波電力増幅器64の出力電圧を励磁用コ
イル28に印加して、ほぼ均一な交番磁界を発生させ
る。
The magnetic permeability measuring apparatus 10 is provided with an oscillator 60 as a high frequency power source for generating a magnetic field, and an oscillation output from the oscillator 60 is supplied to a filter attenuator 62 for waveform shaping and a level of the oscillator 60. It is attenuated in proportion to the oscillation frequency, supplied to the high frequency power amplifier 64 for power amplification, and the output voltage of the high frequency power amplifier 64 is applied to the exciting coil 28 to generate a substantially uniform alternating magnetic field.

【0018】励磁用コイル28によって発生した交番磁
界と鎖交して発生した測定用差動コイル44の出力電圧
および磁界検出用コイル48の出力電圧は夫々第2ター
ミナル52、第1ターミナル50を介して2チャンネル
高周波増幅器66に供給され、それぞれ各別に増幅され
る。2チャンネル高周波増幅器66によって増幅された
測定用差動コイル44の出力電圧および磁界検出用コイ
ル48の出力電圧は2チャンネルミキサ68に供給され
て、発振器70からの発振周波数とそれぞれ各別に周波
数混合され中間周波信号に周波数変換される。
The output voltage of the measuring differential coil 44 and the output voltage of the magnetic field detecting coil 48, which are generated by interlinking with the alternating magnetic field generated by the exciting coil 28, are passed through the second terminal 52 and the first terminal 50, respectively. Are supplied to a 2-channel high frequency amplifier 66, and are individually amplified. The output voltage of the measurement differential coil 44 and the output voltage of the magnetic field detection coil 48 amplified by the 2-channel high frequency amplifier 66 are supplied to the 2-channel mixer 68 and mixed with the oscillation frequency from the oscillator 70. The frequency is converted into an intermediate frequency signal.

【0019】中間周波信号に変換された測定用差動コイ
ル44の出力電圧および磁界検出用コイル48の出力電
圧は2チャンネル中間周波増幅器72に供給して、それ
ぞれ各別に中間周波数成分のみを選択増幅する。2チャ
ンネル中間周波増幅器72によって増幅された測定用差
動コイル44の出力電圧および磁界検出用コイル48の
出力電圧は2チャンネルA/D変換器およびメモリ74
に供給してデジタルデータに各別に変換し、発振器60
の発振周波数f1 で励磁されたときの振幅データとして
それぞれ2チャンネルA/D変換器およびメモリ74の
メモリに一旦格納する。
The output voltage of the measuring differential coil 44 and the output voltage of the magnetic field detecting coil 48, which have been converted into the intermediate frequency signal, are supplied to a two-channel intermediate frequency amplifier 72 to selectively amplify only the intermediate frequency component. To do. The output voltage of the measurement differential coil 44 and the output voltage of the magnetic field detection coil 48 amplified by the 2-channel intermediate frequency amplifier 72 are the 2-channel A / D converter and the memory 74.
To the oscillator 60 and convert it into digital data separately.
Are temporarily stored in the memory of the 2-channel A / D converter and the memory 74 as amplitude data when excited at the oscillation frequency f 1 .

【0020】2チャンネル中間周波増幅器72によって
増幅された測定用差動コイル44の出力電圧および磁界
検出用コイル48の出力電圧は位相検波器およびA/D
変換器76に供給し、2チャンネル中間周波増幅器72
で増幅された磁界検出用コイル48の出力位相を基準と
して2チャンネル中間周波増幅器72で増幅された測定
用差動コイル44の出力位相と2チャンネル中間周波増
幅器72で増幅された磁界検出用コイル48の出力位相
との位相差を位相検波して直流電圧として取り出し、デ
ジタルデータに変換して出力する。この場合、A/D変
換は低い周波数をサンプルパルスとして位相検波出力を
サンプリングし、デジタルデータに変換しているため、
位相検波器およびA/D変換器76は一時的なメモリと
しても作用している。
The output voltage of the measuring differential coil 44 and the output voltage of the magnetic field detecting coil 48 amplified by the 2-channel intermediate frequency amplifier 72 are the phase detector and the A / D.
The two-channel intermediate frequency amplifier 72 is supplied to the converter 76.
The output phase of the measurement differential coil 44 amplified by the 2-channel intermediate frequency amplifier 72 and the magnetic field detection coil 48 amplified by the 2-channel intermediate frequency amplifier 72 with reference to the output phase of the magnetic field detecting coil 48 amplified by The phase difference from the output phase of is detected, extracted as a DC voltage, converted to digital data, and output. In this case, the A / D conversion uses the low frequency as the sample pulse to sample the phase detection output and convert it into digital data.
The phase detector and A / D converter 76 also function as a temporary memory.

【0021】2チャンネルA/D変換器およびメモリ7
4に格納した測定用差動コイル44の出力電圧振幅デー
タおよび磁界検出用コイル48の出力電圧振幅データ、
位相検波器およびA/D変換器76で変換された位相差
データは、入/出力装置78を介してマイクロコンピュ
ータ80に供給して、マイクロコンピュータ80に読み
込む。
2-channel A / D converter and memory 7
4, the output voltage amplitude data of the measurement differential coil 44 and the output voltage amplitude data of the magnetic field detection coil 48, which are stored in FIG.
The phase difference data converted by the phase detector and the A / D converter 76 is supplied to the microcomputer 80 via the input / output device 78 and is read by the microcomputer 80.

【0022】マイクロコンピュータ80はプログラムを
格納したROM、作業領域を有するRAM等を含み、外
部メモリ82と接続されており、ROMに格納されたプ
ログラムおよび外部メモリ82と協働して、機能的に所
定期間毎に発振器60の発振周波数を、例えば、1MH
zずつ順次変化させる発振周波数制御手段80a、中間
周波数を、例えば、100kHzとしたとき、発振器6
0の発振周波数+100kHzの発振周波数に発振器7
0の発振周波数を制御する発振周波数制御手段80b、
発振器60の発振周波数に比例して入力レベルを減衰さ
せるフィルタ・アッテネータ62におけるアッテネータ
の減衰率制御手段80c、2チャンネルA/D変換器お
よびメモリ74のメモリに格納した測定用差動コイル4
4の出力電圧振幅データおよび磁界検出用コイル48の
出力電圧振幅データ、位相検波器およびA/D変換器7
6で変換された位相差データを読み込んで外部メモリ8
2に格納するメモリ制御手段80dを備えている。
The microcomputer 80 includes a ROM storing a program, a RAM having a work area, etc., and is connected to an external memory 82. In cooperation with the program stored in the ROM and the external memory 82, the microcomputer 80 functionally functions. The oscillation frequency of the oscillator 60 is set to, for example, 1 MH every predetermined period.
When the oscillation frequency control unit 80a that sequentially changes by z and the intermediate frequency is, for example, 100 kHz, the oscillator 6
Oscillator 7 to the oscillation frequency of 0 + the oscillation frequency of 100 kHz
Oscillation frequency control means 80b for controlling the oscillation frequency of 0,
Attenuator attenuation rate control means 80c in the filter attenuator 62 for attenuating the input level in proportion to the oscillation frequency of the oscillator 60, the measurement differential coil 4 stored in the memory of the 2-channel A / D converter and the memory 74.
4 output voltage amplitude data and magnetic field detection coil 48 output voltage amplitude data, phase detector and A / D converter 7
The phase difference data converted in 6 is read and the external memory 8
2 is provided with a memory control means 80d.

【0023】さらに、マイクロコンピュータ80は、機
能的に、外部メモリ82に格納された空心状態のときの
測定用差動コイル44の出力電圧振幅データ、試料Wを
挿入したときにおける測定用差動コイル44の出力電圧
振幅データ、空心状態のときの測定用差動コイル44の
出力電圧の位相差データ、および試料Wを挿入したとき
における測定用差動コイル44の出力電圧の位相差デー
タに基づいて、試料Wを挿入時の測定用差動コイル44
の出力電圧から空心状態のときの測定用差動コイル44
の出力電圧をベクトル減算して補正された測定用差動コ
イル44の出力電圧を得る補正演算手段80e、補正さ
れた測定用差動コイル44の出力電圧と磁界検出用コイ
ル48の出力電圧との比を演算して透磁率を演算する透
磁率演算手段80fを備えている。
Further, the microcomputer 80 functionally stores the output voltage amplitude data of the measurement differential coil 44 stored in the external memory 82 in the air-core state and the measurement differential coil when the sample W is inserted. 44 based on the output voltage amplitude data, the output voltage phase difference data of the measurement differential coil 44 in the air-core state, and the measurement differential coil 44 output voltage phase difference data when the sample W is inserted. , Differential coil 44 for measurement when inserting the sample W
Differential coil 44 from the output voltage of
Of the corrected output voltage of the measuring differential coil 44 and the corrected output voltage of the magnetic field detecting coil 48. A magnetic permeability calculating unit 80f for calculating the ratio to calculate the magnetic permeability is provided.

【0024】さらに、マイクロコンピュータ80は、必
要に応じて演算した結果を出力するための出力手段とし
てのプリンタ・ディスプレイ装置84を制御して、透磁
率等を提示する表示制御手段80gも備えている。
Further, the microcomputer 80 is also provided with a display control means 80g for controlling the printer / display device 84 as an output means for outputting the result of calculation as required, and presenting the magnetic permeability and the like. ..

【0025】本発明に係る透磁率測定装置10は基本的
に以上のように構成されるものであり、次にその作用並
びに効果について説明する。
The magnetic permeability measuring apparatus 10 according to the present invention is basically constructed as described above. Next, its operation and effect will be explained.

【0026】先ず、摺動部材22の先端部に、図1に示
すように、薄板状の磁性体からなる試料Wを、例えば、
セロテープ等で貼着する。そして、把手24を介して摺
動部材22を蟻溝20に沿ってプリント基板30方向へ
と移動させ、前記摺動部材22の先端部のストッパ26
が当接すると、試料Wはその長手方向の中央部分がプリ
ント基板30の第2スペース58に進入した状態にな
る。ここで、透磁率の測定が開始される。
First, as shown in FIG. 1, a sample W made of a thin plate-shaped magnetic material is attached to the tip of the sliding member 22, for example, as shown in FIG.
Stick it with cellophane tape. Then, the sliding member 22 is moved along the dovetail groove 20 toward the printed circuit board 30 via the grip 24, and the stopper 26 at the tip of the sliding member 22 is moved.
When the sample W comes into contact, the center portion of the sample W in the longitudinal direction enters the second space 58 of the printed circuit board 30. Here, the measurement of magnetic permeability is started.

【0027】先ず、発振器60の発振周波数は発振周波
数制御手段80aによって1〜100MHzまで1MH
zおきにその周波数が制御されるものとして説明する。
試料Wを挿入前に、空心状態で発振周波数制御手段80
aおよび80bの制御のもとに所定時間間隔毎に同期し
て発振器60の発振周波数は1MHz、2MHz、3M
Hz、…に、発振器70の発振周波数は1.1MHz、
2.1MHz、3.1MHz…に制御され、発振器60
の発振周波数の変更と同期して減衰率制御手段80cの
制御のもとにフィルタ・アッテネータ62の減衰率が周
波数の逆数に比例するよう制御される。
First, the oscillation frequency of the oscillator 60 is 1 MHz from 1 to 100 MHz by the oscillation frequency control means 80a.
It is assumed that the frequency is controlled every z.
Before inserting the sample W, the oscillation frequency control means 80 in an air-core state
Under the control of a and 80b, the oscillation frequency of the oscillator 60 is 1MHz, 2MHz, 3M in synchronization with each predetermined time interval.
, The oscillation frequency of the oscillator 70 is 1.1 MHz,
Oscillator 60 controlled to 2.1 MHz, 3.1 MHz ...
In synchronism with the change of the oscillation frequency, the attenuation factor of the filter attenuator 62 is controlled so as to be proportional to the reciprocal of the frequency under the control of the attenuation factor control means 80c.

【0028】各コイルによって検出される電圧Vは磁界
の強さをH=A・exp jωt(Aは振幅定数、ωは発振
器60の発振出力の角周波数)とすると、V∝dH/d
t=jωHとなり、電圧Vは角周波数ωに比例する。し
たがって、各コイルの出力電圧レベルは角周波数に比例
して増大する。したがって、例えば、1MHzの場合に
比較して100MHzの場合は100倍の高電圧となる
ため、高周波電力増幅器64の利得を大きくとると、高
周波電力増幅器64が飽和してしまう。これを防止する
ため、減衰率を制御する。減衰率の制御に代わって高周
波電力増幅器64の利得を制御してもよい。
The voltage V detected by each coil is V∝dH / d, where H = Aexp jωt (A is an amplitude constant, ω is the angular frequency of the oscillation output of the oscillator 60).
Since t = jωH, the voltage V is proportional to the angular frequency ω. Therefore, the output voltage level of each coil increases in proportion to the angular frequency. Therefore, for example, when the frequency is 100 MHz, the voltage is 100 times higher than that in the case of 1 MHz. Therefore, when the gain of the high frequency power amplifier 64 is increased, the high frequency power amplifier 64 is saturated. In order to prevent this, the attenuation rate is controlled. Instead of controlling the attenuation rate, the gain of the high frequency power amplifier 64 may be controlled.

【0029】減衰された発振器60からの発振出力は高
周波電力増幅器64によって電力増幅され、励磁用コイ
ル28に印加されて、励磁用コイル28によって交番磁
界が発生させられる。測定用差動コイル44および磁界
検出用コイル48はこの交番磁界に鎖交し、測定用差動
コイル44および磁界検出用コイル48から電圧が発生
される。この両電圧は2チャンネル高周波増幅器66に
おいてそれぞれ増幅され、2チャンネルミキサ68にお
いて発振器70の発振周波信号と周波数混合されて、中
間周波信号に変換される。ここで、中間周波数は100
kHzである。
The oscillated output from the attenuated oscillator 60 is power-amplified by the high-frequency power amplifier 64 and applied to the exciting coil 28 to generate an alternating magnetic field by the exciting coil 28. The measurement differential coil 44 and the magnetic field detection coil 48 are linked to this alternating magnetic field, and a voltage is generated from the measurement differential coil 44 and the magnetic field detection coil 48. The two voltages are respectively amplified by a 2-channel high frequency amplifier 66, frequency-mixed with an oscillation frequency signal of an oscillator 70 by a 2-channel mixer 68, and converted into an intermediate frequency signal. Here, the intermediate frequency is 100
kHz.

【0030】中間周波数に変換された両信号は2チャン
ネル中間周波増幅器72において100kHzの信号が
それぞれ選択増幅され、増幅された両中間周波信号は2
チャンネルA/D変換器およびメモリ74において各別
にデジタル化されて、両振幅データが2チャンネルA/
D変換器およびメモリ74のメモリに発振器60の発振
周波数に対応して一旦格納される。
The two signals converted to the intermediate frequency are each selectively amplified by a 2-channel intermediate frequency amplifier 72 at a signal of 100 kHz, and the amplified intermediate frequency signals are converted into two signals.
Channel A / D converter and memory 74 digitize them separately, and both amplitude data are converted into 2 channels A / D.
It is temporarily stored in the memory of the D converter and the memory 74 in correspondence with the oscillation frequency of the oscillator 60.

【0031】また、位相検波器およびA/D変換器76
において、磁界検出用コイル48の出力電圧の位相を基
準に測定用差動コイル44の出力電圧の位相と磁界検出
用コイル48の出力電圧の位相との位相差が位相検波さ
れて、デジタル化されて出力される。
Further, the phase detector and A / D converter 76
, The phase difference between the phase of the output voltage of the measurement differential coil 44 and the phase of the output voltage of the magnetic field detection coil 48 is phase-detected and digitized with reference to the phase of the output voltage of the magnetic field detection coil 48. Is output.

【0032】ここで、2チャンネル高周波増幅器66の
入力レベルは大きくとも1mVP-P以下であり、これを
2チャンネルA/D変換器およびメモリ74、位相検波
器およびA/D変換器76の入力端で1VP-P の振幅レ
ベルとするには、70〜80dBの電圧利得が必要であ
るが、1MHz〜100MHzの範囲で振幅特性、位相
特性が共に良好な状態で実現するような2チャンネル高
周波増幅器66は実現困難である。従って、本実施例に
おいては、2チャンネル高周波増幅器66の電圧利得を
約40dBとし、他の利得は2チャンネル中間周波増幅
器72において得ている。
Here, the input level of the 2-channel high-frequency amplifier 66 is 1 mV PP or less at the most, and this is set at the input ends of the 2-channel A / D converter and memory 74, the phase detector and A / D converter 76. To obtain an amplitude level of 1 V PP , a voltage gain of 70 to 80 dB is required, but a 2-channel high frequency amplifier 66 that realizes good amplitude characteristics and phase characteristics in the range of 1 MHz to 100 MHz is realized. Have difficulty. Therefore, in this embodiment, the voltage gain of the 2-channel high frequency amplifier 66 is set to about 40 dB, and other gains are obtained in the 2-channel intermediate frequency amplifier 72.

【0033】上記の作用が発振器60の発振周波数変更
毎に行われて、測定用差動コイル44の出力電圧の振幅
データおよび位相差データがメモリ制御手段80dの制
御のもとに外部メモリ82に発振器60の発振周波数に
対応して格納される。これが1MHz間隔で1MHz〜
100MHzにわたって行われることになる。したがっ
て、アナログ的にいえば、空心状態のときの測定用差動
コイル44の出力電圧EB2sin (ωt+θ2 )が発振器
60の発振周波数に対応して外部メモリ82に格納され
た状態となる。
The above operation is performed every time the oscillation frequency of the oscillator 60 is changed, and the amplitude data and the phase difference data of the output voltage of the measuring differential coil 44 are stored in the external memory 82 under the control of the memory control means 80d. It is stored corresponding to the oscillation frequency of the oscillator 60. This is 1 MHz at 1 MHz intervals
It will take place over 100 MHz. Therefore, in analogy, the output voltage E B2 sin (ωt + θ 2 ) of the measurement differential coil 44 in the air-core state is stored in the external memory 82 in correspondence with the oscillation frequency of the oscillator 60.

【0034】次に、測定用差動コイル44の一方のコイ
ル部中に試料Wが挿入されて、試料Wが挿入された状態
において、上記と同様にして、測定用差動コイル44の
出力電圧の振幅データおよび位相差データと、磁界検出
用コイル48の出力電圧の振幅データとがメモリ制御手
段80dの制御のもとに外部メモリ82に発振器60の
発振周波数に対応して格納される。これが1MHz間隔
で1MHz〜100MHzにわたって行われることにな
る。この場合は、磁界検出用コイル48の出力電圧の振
幅データも格納されている。したがって、アナログ的に
いえば、試料Wが挿入された状態での測定用差動コイル
44の出力電圧EB1sin (ωt+θ1 )と、磁界検出用
コイル48の出力電圧EH sin ωtとが発振器60の発
振周波数に対応して外部メモリ82に格納された状態と
なる。
Next, the sample W is inserted into one coil portion of the measurement differential coil 44, and in the state where the sample W is inserted, the output voltage of the measurement differential coil 44 is measured in the same manner as above. The amplitude data and the phase difference data and the amplitude data of the output voltage of the magnetic field detection coil 48 are stored in the external memory 82 in correspondence with the oscillation frequency of the oscillator 60 under the control of the memory control means 80d. This will be done at 1 MHz intervals from 1 MHz to 100 MHz. In this case, amplitude data of the output voltage of the magnetic field detection coil 48 is also stored. Therefore, in terms of analog, the output voltage E B1 sin (ωt + θ 1 ) of the measurement differential coil 44 and the output voltage E H sin ωt of the magnetic field detection coil 48 with the sample W inserted are oscillators. Corresponding to the oscillation frequency of 60, the state is stored in the external memory 82.

【0035】発振器60の発振周波数が100MHzに
達するまで実行されたときは、補正演算手段80eの制
御のもとに試料Wが挿入された状態での測定用差動コイ
ル44の出力電圧の振幅データおよび位相差データか
ら、空心状態での測定用差動コイル44の出力電圧の振
幅データおよび位相差データがベクトル減算されること
によって補正演算がなされる。このベクトル減算は周波
数毎に行われる。
When it is executed until the oscillation frequency of the oscillator 60 reaches 100 MHz, the amplitude data of the output voltage of the measurement differential coil 44 with the sample W inserted under the control of the correction calculation means 80e. The correction calculation is performed by vector-subtracting the amplitude data and the phase difference data of the output voltage of the measurement differential coil 44 in the air-core state from the phase difference data and the phase difference data. This vector subtraction is performed for each frequency.

【0036】この補正演算をアナログ的に説明すれば、
次の如くである。
If this correction calculation is explained in an analog manner,
It is as follows.

【0037】試料Wが挿入された状態での測定用差動コ
イル44の出力電圧はEB1sin (ωt+θ1 )、空心状
態のときの測定用差動コイル44の出力電圧はEB2sin
(ωt+θ2 )、磁界検出用コイル48の出力電圧はE
H sin ωtであって、試料Wが挿入された状態での補正
された測定用差動コイル44の出力電圧をEB sin (ω
t+θ)とする。
The output voltage of the measurement differential coil 44 with the sample W inserted is E B1 sin (ωt + θ 1 ), and the output voltage of the measurement differential coil 44 with the air-core state is E B2 sin.
(Ωt + θ 2 ), the output voltage of the magnetic field detection coil 48 is E
H sin a .omega.t, the corrected output voltage of the measuring differential coil 44 in a state where the sample W is inserted E B sin (ω
t + θ).

【0038】ここで、θ1 、θ2 およびθは磁界検出用
コイル48の出力電圧EH sin ωtを基準としたときの
位相である。
Here, θ 1 , θ 2 and θ are phases with reference to the output voltage E H sin ωt of the magnetic field detecting coil 48.

【0039】上記から、補正演算は EB sin (ωt+θ)=EB1sin (ωt+θ1 )−EB2sin (ωt+θ2 ) である。From the above, the correction calculation is E B sin (ωt + θ) = E B1 sin (ωt + θ 1 ) −E B2 sin (ωt + θ 2 ).

【0040】左辺EB sin (ωt+θ)はEB (cos θ
sinωt+sin θ cosωt)と書ける。
The left side E B sin (ωt + θ) is E B (cos θ
It can be written as sin ωt + sin θ cos ωt).

【0041】一方、右辺は、 EB1sin (ωt+θ1 )−EB2sin (ωt+θ2 ) =(EB1cos θ1 −EB2cos θ2 )sin ωt +(EB1sin θ1 −EB2sin θ2 )cos ωt である。したがってEB は |EB |=√{EB1 2 +EB2 2 −2EB1B2cos (θ1 −θ2 )} となり、位相角θは θ=tan -1{(EB1sin θ1 −EB2sin θ2 )/ (EB1cos θ1 −EB2cos θ2 )} となって、補正される。On the other hand, the right side is E B1 sin (ωt + θ 1 ) −E B2 sin (ωt + θ 2 ) = (E B1 cos θ 1 −E B2 cos θ 2 ) sin ωt + (E B1 sin θ 1 −E B2 sin θ 2 ) cos ωt. Therefore, E B is | E B | = √ {E B1 2 + E B2 2 -2E B1 E B2 cos (θ 1 −θ 2 )}, and the phase angle θ is θ = tan −1 {(E B1 sin θ 1 − E B2 sin θ 2 ) / (E B1 cos θ 1 −E B2 cos θ 2 )}, which is corrected.

【0042】この補正に続いて透磁率演算手段80fの
制御のもとに、(EB /EH )の演算がなされて、透磁
率μが求まる。この演算は周波数毎に行われる。なお、
透磁率測定装置10が定まり、試料Wの断面積を常に一
定にしておけば(SH /SB)は一定であり、この演算
は省略してある。この透磁率演算の結果をプリンタ・デ
ィスプレイ装置84に提示することによって、測定透磁
率が周波数毎のテーブルとしても周波数に対するグラフ
としても提示できる。さらに、EB とEH との位相角δ
=θも演算されて、透磁率|μ|cos δから透磁率の実
数部が、|μ|sin δから透磁率の虚数部が演算され
る。さらに損失(tan δ)についても(sin δ/cos
δ)から演算される。これらの提示も勿論可能である。
Subsequent to this correction, under the control of the magnetic permeability calculating means 80f, (E B / E H ) is calculated to obtain the magnetic permeability μ. This calculation is performed for each frequency. In addition,
Sadamari permeability measuring device 10, if the cross-sectional area of the sample W always constant (S H / S B) is constant, this operation is omitted. By presenting the result of this magnetic permeability calculation to the printer / display device 84, the measured magnetic permeability can be presented as a table for each frequency or as a graph with respect to frequency. Furthermore, the phase angle δ between E B and E H
= Θ is also calculated, and the real part of the magnetic permeability is calculated from the magnetic permeability | μ | cos δ, and the imaginary part of the magnetic permeability is calculated from | μ | sin δ. Furthermore, the loss (tan δ) is also (sin δ / cos
Calculated from δ). Of course, these presentations are also possible.

【0043】なお、上記したように空心状態のときの測
定と試料Wを挿入状態での測定を1MHz毎に行うため
に、周波数によって測定用差動コイル44、磁界検出用
コイル48の浮遊容量および2チャンネル高周波増幅器
66の入力端の浮遊容量による影響を軽減させることが
できる。
As described above, in order to perform the measurement in the air-core state and the measurement in the inserted state of the sample W every 1 MHz, the stray capacitance of the measurement differential coil 44 and the magnetic field detection coil 48 depends on the frequency and It is possible to reduce the influence of the stray capacitance at the input end of the 2-channel high frequency amplifier 66.

【0044】なお、上記した一実施例において、空心状
態のときに1MHz〜100MHzまでの測定を行い、
次いで試料Wを挿入した状態で1MHz〜100MHz
までの測定を行う場合を例示したが、同一周波数で空心
状態のときと試料Wを挿入した状態のときとを交互に測
定して、1MHz〜100MHzまでの測定を行っても
よい。
In the above-mentioned embodiment, the measurement from 1 MHz to 100 MHz is performed in the air-core state,
Next, with the sample W inserted, 1 MHz to 100 MHz
However, the measurement from 1 MHz to 100 MHz may be performed by alternately measuring the time in the air-core state and the state in which the sample W is inserted at the same frequency.

【0045】また、空心状態のときの測定を1MHz毎
に行う場合を例示したが、空心状態のときの測定を試料
Wが挿入された状態での測定の周波数間隔に対し、数倍
の周波数間隔で行っても、充分な場合もある。この場合
は、空心状態のときの測定用差動コイル44の出力電圧
の振幅データおよび位相差データとして次の周波数での
測定まではその直前の測定値で補間することになる。
Although the case where the measurement in the air-core state is performed every 1 MHz is illustrated, the measurement in the air-core state is performed at a frequency interval several times that of the measurement in the state where the sample W is inserted. In some cases, it may be enough. In this case, the amplitude data and the phase difference data of the output voltage of the measuring differential coil 44 in the air-core state are interpolated by the immediately preceding measured value until the measurement at the next frequency.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、摺動部
材を介してワークを透磁率測定用のコイル内に挿入する
ことができる。そして、この場合、透磁率測定用の基板
は測定用差動コイルと磁界検出用コイルとを備えた単一
の基板から構成されているために、寸法誤差等を生ずる
ことがない。従って、安定した透磁率の測定ができる。
しかも、摺動部材は案内部材に対してストッパを介して
位置決めされるために、常に測定位置が定まった状態に
ある。従って、多数の試料を測定する場合であっても、
安定した測定誤差のない結果が得られる。しかも、該摺
動部材に試料としての薄膜磁性材料を固定して孔部に挿
入可能な固着部位を設けているので、試料の位置決めが
容易である。
As described above, according to the present invention, the work can be inserted into the coil for magnetic permeability measurement through the sliding member. In this case, since the magnetic permeability measuring substrate is composed of a single substrate provided with the measuring differential coil and the magnetic field detecting coil, no dimensional error or the like occurs. Therefore, stable magnetic permeability can be measured.
Moreover, since the sliding member is positioned with respect to the guide member via the stopper, the measurement position is always fixed. Therefore, even when measuring a large number of samples,
Stable measurement-free results are obtained. Moreover, since the thin film magnetic material as the sample is fixed to the sliding member and the fixing portion which can be inserted into the hole is provided, the positioning of the sample is easy.

【0047】さらに、本発明によれば、透磁率測定試料
が挿入されていない空心状態のときの測定用差動コイル
の出力電圧を透磁率測定試料が挿入された状態のときに
おける測定用差動コイルの出力電圧からベクトル減算し
て補正し、補正後の測定用差動コイルの出力電圧と磁界
検出用コイルの出力電圧との比から透磁率を測定するよ
うにしたため、測定用差動コイルの製作上の制約等か
ら、測定用差動コイルを形成する2つのコイル部の有効
面積を等しく形成することができない場合においても、
これが補正されて実質的に測定用差動コイルを形成する
2つのコイル部の有効面積を等しく形成したのと等価と
なって、透磁率を正確に測定することができる効果があ
る。
Further, according to the present invention, the output voltage of the measuring differential coil in the air-core state in which the magnetic permeability measuring sample is not inserted is determined by measuring the output voltage of the measuring differential coil in the state in which the magnetic permeability measuring sample is inserted. The vector is subtracted from the output voltage of the coil for correction, and the magnetic permeability is measured from the ratio of the corrected output voltage of the measurement differential coil and the output voltage of the magnetic field detection coil. Even when the effective areas of the two coil portions forming the measurement differential coil cannot be formed equal due to manufacturing restrictions or the like,
This is equivalent to being corrected so that the effective areas of the two coil portions forming the differential coil for measurement are substantially equalized, and the magnetic permeability can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の装置の分解斜視図である。FIG. 1 is an exploded perspective view of an apparatus according to an embodiment of the present invention.

【図2】図1に示す装置の斜視図である。2 is a perspective view of the device shown in FIG. 1. FIG.

【図3】図1並びに図2の装置に組み込まれる基板の正
面図である。
3 is a front view of a substrate incorporated in the apparatus of FIGS. 1 and 2. FIG.

【図4】図3に示す基板の背面図である。4 is a rear view of the substrate shown in FIG.

【図5】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 5 is a block diagram showing a configuration of an exemplary embodiment of the present invention.

【図6】本発明が適用される透磁率測定装置の検出部の
構成を示す斜視図である。
FIG. 6 is a perspective view showing a configuration of a detection unit of a magnetic permeability measuring apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10…透磁率測定装置 12…基台 16…案内部材 18…磁気検出回路 22…摺動部材 24…把手 28…励磁用コイル 44…測定用差動コイル 48…磁界検出用コイル 50、52、54…ターミナル 60…発振器 62…フィルタ・アッテネータ 64…高周波電力増幅器 66…2チャンネル高周波増幅器 68…2チャンネルミキサ 70…発振器 72…2チャンネル中間周波増幅器 74…2チャンネルA/D変換器およびメモリ 76…位相検波器およびA/D変換器 80…マイクロコンピュータ 80a、80b…発振周波数制御手段 80c…減衰率制御手段 80d…メモリ制御手段 80e…補正演算手段 80f…透磁率演算手段 80g…表示制御手段 82…外部メモリ 84…プリンタ・ディスプレイ装置 W…試料 DESCRIPTION OF SYMBOLS 10 ... Permeability measuring device 12 ... Base 16 ... Guide member 18 ... Magnetic detection circuit 22 ... Sliding member 24 ... Handle 28 ... Excitation coil 44 ... Measurement differential coil 48 ... Magnetic field detection coils 50, 52, 54 ... Terminal 60 ... Oscillator 62 ... Filter / Attenuator 64 ... High-frequency power amplifier 66 ... 2-channel high-frequency amplifier 68 ... 2-channel mixer 70 ... Oscillator 72 ... 2-channel intermediate frequency amplifier 74 ... 2-channel A / D converter and memory 76 ... Phase Detector and A / D converter 80 ... Microcomputer 80a, 80b ... Oscillation frequency control means 80c ... Attenuation rate control means 80d ... Memory control means 80e ... Correction calculation means 80f ... Permeability calculation means 80g ... Display control means 82 ... External Memory 84 ... Printer / display device W ... Sample

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ほぼ一様な交番磁界を発生する磁界発生用
コイルと、前記磁界発生用コイル中に配設された磁界検
出用コイル並びに測定用差動コイルとを備え測定用差動
コイルの出力電圧と磁界検出用コイルの出力電圧とから
透磁率を測定する透磁率測定装置において、 前記磁界検出用コイルと測定用差動コイルとは単一の基
板上に巻回形成されていることを特徴とする透磁率測定
装置。
1. A measuring differential coil comprising a magnetic field generating coil for generating a substantially uniform alternating magnetic field, a magnetic field detecting coil and a measuring differential coil arranged in the magnetic field generating coil. In a magnetic permeability measuring device that measures magnetic permeability from an output voltage and an output voltage of a magnetic field detection coil, the magnetic field detection coil and the measurement differential coil may be wound on a single substrate. Characteristic permeability measuring device.
【請求項2】請求項1記載の透磁率測定装置において、
前記基板の測定用差動コイルの中心部位を貫通して試料
挿入用の孔部が画成されていることを特徴とする透磁率
測定装置。
2. The magnetic permeability measuring device according to claim 1,
A magnetic permeability measuring device, characterized in that a hole for sample insertion is defined by penetrating a central portion of the measuring differential coil of the substrate.
【請求項3】請求項2記載の透磁率測定装置において、
試料挿入用の孔部に対して案内部材を近接配置し、前記
案内部材に摺動部材を係合させて該摺動部材に固定され
た試料を前記孔部に挿入することを特徴とする透磁率測
定装置。
3. The magnetic permeability measuring device according to claim 2, wherein
A guide member is disposed close to the sample insertion hole, and a sliding member is engaged with the guide member to insert the sample fixed to the sliding member into the hole. Magnetic susceptibility measuring device.
【請求項4】請求項3記載の透磁率測定装置において、
案内部材に前記摺動部材を所定位置で停止させるストッ
パを設けることを特徴とする透磁率測定装置。
4. The magnetic permeability measuring device according to claim 3,
A magnetic permeability measuring device, wherein a guide member is provided with a stopper for stopping the sliding member at a predetermined position.
【請求項5】請求項3または4記載の透磁率測定装置に
おいて、前記摺動部材に試料としての薄膜磁性材料の固
着部位を形成することを特徴とする透磁率測定装置。
5. The magnetic permeability measuring apparatus according to claim 3 or 4, wherein a fixed portion of a thin film magnetic material as a sample is formed on the sliding member.
JP03819892A 1992-02-25 1992-02-25 Permeability measuring device Expired - Fee Related JP3144871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03819892A JP3144871B2 (en) 1992-02-25 1992-02-25 Permeability measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03819892A JP3144871B2 (en) 1992-02-25 1992-02-25 Permeability measuring device

Publications (2)

Publication Number Publication Date
JPH05264705A true JPH05264705A (en) 1993-10-12
JP3144871B2 JP3144871B2 (en) 2001-03-12

Family

ID=12518657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03819892A Expired - Fee Related JP3144871B2 (en) 1992-02-25 1992-02-25 Permeability measuring device

Country Status (1)

Country Link
JP (1) JP3144871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126074A (en) * 2004-10-29 2006-05-18 Ichiro Sasada Sensor coil and magnetic sensor using the same
JP2008039409A (en) * 2006-08-01 2008-02-21 Nec Tokin Corp Buoyancy type magnetic azimuth detection element
JP2018173331A (en) * 2017-03-31 2018-11-08 国立大学法人 筑波大学 Method for measuring magnetic characteristic of magnetic material and device for measuring magnetic characteristic of magnetic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126074A (en) * 2004-10-29 2006-05-18 Ichiro Sasada Sensor coil and magnetic sensor using the same
JP4638713B2 (en) * 2004-10-29 2011-02-23 一郎 笹田 Coil for sensor and magnetic sensor using the same
JP2008039409A (en) * 2006-08-01 2008-02-21 Nec Tokin Corp Buoyancy type magnetic azimuth detection element
JP2018173331A (en) * 2017-03-31 2018-11-08 国立大学法人 筑波大学 Method for measuring magnetic characteristic of magnetic material and device for measuring magnetic characteristic of magnetic material

Also Published As

Publication number Publication date
JP3144871B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
JP3246727B2 (en) Inductive electronic caliper
US5028869A (en) Process and apparatus for the nondestructive measuring of magnetic properties of a test body, by detecting a tangential magnetic field and deriving harmonic components thereof
Stupakov et al. A system for controllable magnetic measurements of hysteresis and Barkhausen noise
US4625166A (en) Method for measuring magnetic potentials using hall probes
JP2001258865A (en) Method and system for measuring and compensating eddy current induced during nmr imaging operation
US5451877A (en) Method for the compensation of eddy currents caused by gradients in a nuclear magnetic resonance apparatus
US6586930B1 (en) Material thickness measurement using magnetic information
US4418316A (en) Nuclear magnetic resonance apparatus
JP3144871B2 (en) Permeability measuring device
US4972146A (en) Saturble core device with DC component elimination for measuring an external magnetic field
JPH11326284A (en) Method and apparatus for pulse eddy current examination
US4424488A (en) Nuclear magnetic resonance apparatus
JPH01272959A (en) Method and apparatus for controlling object by pulse eddy current
JP3651268B2 (en) Magnetic measurement method and apparatus
JPH0886773A (en) Method for detecting metal
JP3717753B2 (en) Magnetic sensor sensitivity calibration device
JPH05232203A (en) Measuring apparatus of permeability
GB2230341A (en) Apparatus for measuring magnetic flux density
JPS6323785B2 (en)
Hagedorn et al. A method for inductive measurement of magnetic flux density with high geometrical resolution
JP3019714B2 (en) Measuring device for incremental permeability of magnetic steel sheet
JP2812703B2 (en) Apparatus for measuring magnetization characteristics of magnetic thin films
RU2134428C1 (en) Sensor for measuring mechanical characteristics of ferromagnetic materials
RU2082076C1 (en) Method and device for displacement measurements
US3493851A (en) Vibration magnetometer for measuring tangential component of magnetic field on flat surface of ferromagnetic samples

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees