JPH05264483A - Method and device for measuring x-ray intensity for quantitative analysis in epma and the like - Google Patents

Method and device for measuring x-ray intensity for quantitative analysis in epma and the like

Info

Publication number
JPH05264483A
JPH05264483A JP4062069A JP6206992A JPH05264483A JP H05264483 A JPH05264483 A JP H05264483A JP 4062069 A JP4062069 A JP 4062069A JP 6206992 A JP6206992 A JP 6206992A JP H05264483 A JPH05264483 A JP H05264483A
Authority
JP
Japan
Prior art keywords
ray
spectroscope
characteristic
smoothed
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4062069A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nagatsuka
長塚義隆
Masayuki Otsuki
大槻正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP4062069A priority Critical patent/JPH05264483A/en
Publication of JPH05264483A publication Critical patent/JPH05264483A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure X-ray intensity in a short time and accurately by continuously driving a spectral range of an X-ray spectroscope which can detect characteristic X ray of a specified element and then performing X-ray measurement for a certain amount of time within a certain drive interval. CONSTITUTION:An electron beam 2 is converged and applied onto a sample 5 by an objective lens 4 and a wavelength dissipation type X-ray spectroscope 7 detects a generated characteristic X ray. A spectroscope drive control device 12 controls a spectroscope drive motor 9 which drives a spectral crystal 8. On the other hand, an X-ray measurement device 11 controls detection operation of a detector 10. The device 12 is controlled by a computer 14 and at the same time sends a drive speed signal of the spectroscope 7 to the computer 14. Also, X-ray measurement value which is measured by the X-ray measurement device 11 is input to the computer 14. The obtained X-ray measurement value is stored in a storage device 13 and the values are displayed 15 graphically. Then, the obtained intensity distribution data are smoothed to obtain a secondary differential curve, thus obtaining a net characteristic X-ray intensity value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、EPMA等における定
量分析のためのX線強度測定方法及びそのための装置に
関し、特に、特性X線強度を短時間にかつ精度よく測定
する方法及びそのための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray intensity measuring method and a device therefor for quantitative analysis in EPMA, and more particularly to a method and a device therefor for measuring characteristic X-ray intensity accurately in a short time. Regarding

【0002】[0002]

【従来の技術】従来、電子プローブマイクロアナライザ
ー(以下、EPMAと言う。)等の波長分散型X線分光
器を用いた定量分析においては、まず、未知試料につい
て、対象となる元素の特性X線が検出できる分光器位置
前後において検出信号のピーク検出を行い、次いで、そ
のピーク位置、及び、その位置から前後一定の距離離れ
たバックグラウンド位置において、既知濃度の標準試料
と未知濃度の未知試料について一定時間のX線計測を行
い、その結果から単位時間当たりの正味のX線強度を求
め、それらの比(k−value)を算出して定量分析
の第一近似としていた。
2. Description of the Related Art Conventionally, in quantitative analysis using a wavelength dispersive X-ray spectrometer such as an electron probe microanalyzer (hereinafter referred to as EPMA), a characteristic X-ray of a target element is first measured for an unknown sample. The peak of the detection signal is detected before and after the position of the spectroscope where it can be detected, and then at the peak position and at the background position at a certain distance before and after that position, for the standard sample of known concentration and the unknown sample of unknown concentration. The X-ray measurement was performed for a certain period of time, the net X-ray intensity per unit time was calculated from the results, and the ratio (k-value) thereof was calculated and used as the first approximation of the quantitative analysis.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、元素
(特に、軽元素)によっては、上記のようにして求めた
正味のX線強度比は、定量分析の第一近似として必ずし
も正確な値を与えるとは限らず、また、ピーク位置は物
質の化合状態によって多少ともずれることがあるという
問題があった。
However, depending on the element (particularly, the light element), the net X-ray intensity ratio obtained as described above does not always give an accurate value as the first approximation of the quantitative analysis. However, there is a problem that the peak position may be slightly shifted depending on the compounding state of the substance.

【0004】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、EPMA等における定量分析
のために、特性X線強度を短時間にかつ精度よく測定す
る方法及びそのための装置を提供することである。
The present invention has been made in view of such a situation, and an object thereof is a method for accurately measuring a characteristic X-ray intensity for a quantitative analysis in EPMA or the like and an apparatus therefor. Is to provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明のEPMA等における定量分析のためのX線強度測定
方法は、離散的なX線強度分布データから指定された元
素の特性X線強度を測定する方法において、得られた強
度分布データを平滑化し、平滑化された強度分布曲線の
二次微分曲線を求め、特性X線の理論ピーク位置とそれ
から前後の一定間隔離れた分光位置の間に二次微分値の
極大値が存在しない場合、理論ピーク位置から一定間隔
離れた分光位置をバックグラウンド位置とし、理論ピー
ク位置とそれから一定間隔離れた分光位置の間に二次微
分値の極大値が存在する場合、その極大値に対応する平
滑化されたX線分布曲線の極小値位置をバックグラウン
ド位置とし、求められた2つのバックグラウンド位置に
おける平滑化された強度分布曲線上の2点を直線で結
び、この直線と平滑化された強度分布曲線とで囲まれる
面積を求めることにより、正味の特性X線強度値を求め
ることを特徴とする方法である。
An X-ray intensity measuring method for quantitative analysis in EPMA or the like of the present invention which achieves the above-mentioned object is a characteristic X-ray intensity of an element designated from discrete X-ray intensity distribution data. In the method of measuring, the obtained intensity distribution data is smoothed, the second derivative curve of the smoothed intensity distribution curve is obtained, and the characteristic peak position of the characteristic X-ray and the spectral position at a certain distance before and after the theoretical peak position. If there is no maximum value of the second derivative value in the background position, the spectral position distant from the theoretical peak position by a certain distance is set as the background position, and the maximum value of the second derivative value is between the theoretical peak position and the spectral position distant by a certain distance. Is present, the minimum value position of the smoothed X-ray distribution curve corresponding to the maximum value is set as the background position, and smoothing is performed at the two calculated background positions. The two points on the intensity distribution curve connected by a straight line, by determining the area surrounded by the straight line and the smoothed intensity distribution curve is a method characterized by obtaining the characteristic X-ray intensity values of the net.

【0006】また、上記方法を実施する本発明の装置
は、X線分光器を備え、指定された元素の特性X線が検
出可能な該分光器の分光範囲を連続的に駆動し、かつ、
該分光器の所定一定駆動間隔毎にX線計測開始信号を送
る分光器駆動制御手段と、該所定一定駆動間隔内で一定
時間のX線計測を行うX線計測手段とを有し、分光器の
駆動速度が前記所定一定駆動間隔内において前記一定時
間のX線計測が完了するよう設定されていることを特徴
とするものである。
The apparatus of the present invention for carrying out the above method further comprises an X-ray spectroscope, continuously drives the spectroscopic range of the spectroscope capable of detecting the characteristic X-ray of a designated element, and
The spectroscope has a spectroscope drive control means for sending an X-ray measurement start signal at each predetermined constant drive interval of the spectroscope, and an X-ray measurement means for performing X-ray measurement for a predetermined time within the predetermined constant drive interval. Is set so that the X-ray measurement for the constant time is completed within the predetermined constant drive interval.

【0007】[0007]

【作用】本発明の方法とそれを実施する装置において
は、ピーク検出を行わない分測定時間が短縮でき、ま
た、特性X線スペクトルの近傍にピークが存在する場
合、単にピーク位置から前後一定距離の位置をバックグ
ラウンドと見なす場合に比較して、バックグラウンド値
をより正しく、小さく見積もることができる。さらに、
実際のピーク位置が理論位置より多少ずれて検出されて
も、測定される正味のX線強度値は安定しており、X線
ピーク位置に敏感な元素の定量分析の精度が向上する。
In the method of the present invention and the apparatus for carrying out the method, the measurement time can be shortened by the absence of peak detection, and when there is a peak in the vicinity of the characteristic X-ray spectrum, it is simply a constant distance before and after the peak position. The background value can be more correctly and underestimated than when the position of is regarded as the background. further,
Even if the actual peak position is detected with a slight deviation from the theoretical position, the measured net X-ray intensity value is stable, and the accuracy of quantitative analysis of the element sensitive to the X-ray peak position is improved.

【0008】[0008]

【実施例】以下、図面を参照にして、本発明のEPMA
等における定量分析のためのX線強度測定方法及びその
ための装置の実施例について説明する。図1は本発明に
基づくEPMAの構成を示す図であり、電子銃1から出
た電子線2は、収束レンズ3及び対物レンズ4によりス
テージ6上に載置された試料5上に収束照射される。試
料5から発生する特性X線は波長分散型X線分光器7に
より検出される。波長分散型X線分光器7は、分光結晶
8、分光器駆動モータ9、検出器10からなり、分光結
晶8を駆動する分光器駆動モータ9は、分光器駆動制御
装置12により移動制御が行われる。以下、説明の簡単
のため、駆動モータ9はパルスモータとし、分光器駆動
制御装置12は駆動パルスを発生させてこのパルスモー
タ9を駆動するものとする。一方、検出器10は、X線
計測装置11によりその検出動作が制御されるようにな
っており、また、X線計測装置11には、分光器駆動制
御装置12から駆動パルスの一定個数毎に1個のパルス
信号が入力するようになっている。分光器駆動制御装置
12は、コンピュータ14により制御されると共に、コ
ンピュータ14に分光器7の駆動速度(パルス発生時間
間隔)信号を送る。また、X線計測装置11によって計
測されたX線計測値もコンピュータ14に入力する。得
られたX線計測値は記憶装置13に格納され、それらの
値をグラフ化して表示出力装置15に表示できるように
なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The EPMA of the present invention will now be described with reference to the drawings.
Examples of the X-ray intensity measurement method for quantitative analysis and the apparatus therefor will be described. FIG. 1 is a diagram showing a configuration of an EPMA according to the present invention, in which an electron beam 2 emitted from an electron gun 1 is convergently irradiated onto a sample 5 placed on a stage 6 by a converging lens 3 and an objective lens 4. It The characteristic X-ray generated from the sample 5 is detected by the wavelength dispersive X-ray spectroscope 7. The wavelength dispersive X-ray spectroscope 7 includes a dispersive crystal 8, a spectroscope drive motor 9, and a detector 10. The spectroscope drive motor 9 that drives the dispersive crystal 8 is controlled by a spectroscope drive controller 12. Be seen. Hereinafter, for simplicity of explanation, it is assumed that the drive motor 9 is a pulse motor, and the spectroscope drive control device 12 drives the pulse motor 9 by generating a drive pulse. On the other hand, the detection operation of the detector 10 is controlled by the X-ray measuring device 11, and the X-ray measuring device 11 is controlled by the spectroscope drive control device 12 at every constant number of drive pulses. One pulse signal is input. The spectroscope drive controller 12 is controlled by the computer 14 and sends a drive speed (pulse generation time interval) signal of the spectroscope 7 to the computer 14. Further, the X-ray measurement value measured by the X-ray measurement device 11 is also input to the computer 14. The obtained X-ray measurement values are stored in the storage device 13, and those values can be graphed and displayed on the display output device 15.

【0009】さて、X線分光器7の1回の移動によりス
ペクトルを検出する場合、その移動領域で等間隔で収集
するデータ点数をN点とし、各データ点毎の検出器10
による一定のX線収集時間(ドウェルタイム)をT、こ
の1点のデータを収集する間に分光器7を移動させるモ
ータ9のパルスステップ数をnとすると、1点のデータ
を収集するためのタイミングチャート(1サイクル)は
図2に示すようになる。N点のデータを収集するために
は、図2のサイクルがN回繰り返すことになる。なお、
分光器7の1サイクルの移動中に1点のデータ収集が終
わるためには、分光器7のパルス数で計測した駆動速度
vはn/T以下である必要があり、1サイクル中にデー
タ収集(X線計測)をせずに分光器7が移動するダミー
時間tが生ずる。このダミー時間tは、図2に示すよう
に、前サイクルのnステップ駆動終了パルスから検出器
10のゲートオンに要する時間g、検出器10のゲート
オフから計測X線データのメモリへの取り込み時間m、
及び、計測X線データのメモリへの取り込みから次のn
ステップ駆動終了パルスがくるまでの時間uの和で与え
られるが、これらの時間は何れも小さくすることが可能
である。そのため、このダミー時間t小さく抑えて、X
線計測時間Tに比べ事実上無視できる程度にすることが
可能となる(図2では分りやすさのために、ダミー時間
は大きくとってある。)。
When detecting a spectrum by moving the X-ray spectroscope 7 once, the number of data points collected at equal intervals in the moving region is N points, and the detector 10 for each data point is detected.
Is a constant X-ray collection time (dwell time) by T, and n is the number of pulse steps of the motor 9 that moves the spectroscope 7 while collecting data for one point. The timing chart (1 cycle) is as shown in FIG. In order to collect N points of data, the cycle of FIG. 2 is repeated N times. In addition,
In order to complete the data collection at one point during the movement of the spectroscope 7 for one cycle, the driving speed v measured by the number of pulses of the spectroscope 7 needs to be n / T or less. A dummy time t occurs when the spectroscope 7 moves without performing (X-ray measurement). The dummy time t is, as shown in FIG. 2, a time g required for turning on the gate of the detector 10 from the n-step driving end pulse of the previous cycle, a time m for taking the measured X-ray data into the memory from turning off the gate of the detector 10,
Also, the next n from the acquisition of the measured X-ray data into the memory
It is given by the sum of the time u until the step drive end pulse arrives, but any of these times can be shortened. Therefore, the dummy time t is kept small and X
It is possible to make it practically negligible compared to the line measurement time T (the dummy time is set large in FIG. 2 for the sake of clarity).

【0010】このようにすることにより、分光器がnス
テップ移動した後に止まってX線を計測する従来の場合
よりも、全データ収集時間を短くすることができること
になる。また、全データ収集時間中に占めるダミー時間
を小さくすれば、分光器7の駆動中にX線が計測されて
いない時間はそれだけ小さくなり、この間にX線ピーク
プロファイルのピークを逃がす確率が小さくなって、よ
り正確なスペクトルのデータ収集が可能になる。さら
に、駆動パルスが等間隔でなく、例えば、速度が立ち上
がり時に徐々に増え、中間位置で一定で、停止時に徐々
に減らして行くような移動制御をする時にも、X線収集
時間Tを一定にしさえすれば、速度変化に係わらず正確
な検出ができる。
By doing so, the total data acquisition time can be made shorter than in the conventional case in which the spectroscope stops after moving n steps and measures X-rays. Further, if the dummy time occupied in the entire data acquisition time is reduced, the time during which the X-ray is not measured during the driving of the spectroscope 7 is reduced accordingly, and the probability of escaping the peak of the X-ray peak profile is reduced during this time. Therefore, more accurate spectrum data collection becomes possible. Further, the X-ray acquisition time T is kept constant even when the drive pulses are not evenly spaced, for example, when the movement control is such that the speed gradually increases at the rising, is constant at the intermediate position, and gradually decreases at the stop. Then, accurate detection can be performed regardless of speed changes.

【0011】なお、上記においては、分光器駆動手段を
パルスモータとしたが、これに限らず、極微小ステップ
で駆動するマイクロステップモータでもよく、また、パ
ルス電流によらない直流モータでもよい。ただし、直流
モータの場合は、一定駆動間隔毎にX線計測開始の信号
を与えるために、エンコーダ等の手段によって位置検出
を行うことが必要である。
In the above description, the spectroscope driving means is a pulse motor, but the spectroscopic driving means is not limited to this, and may be a microstepping motor that drives in very small steps, or a DC motor that does not depend on a pulse current. However, in the case of a DC motor, it is necessary to perform position detection by means such as an encoder in order to give an X-ray measurement start signal at constant drive intervals.

【0012】次に、以上のようなX線強度測定装置を用
いて、X線スペクトルのピークプロファイルを収集し、
定量分析のための特性X線強度を求める方法を以下に示
す。まず、指定された元素の特性X線の波長からそのX
線が検出できる分光器位置を求め、その分光器位置の前
後のデータを収集し、得られたX線強度をI1 、I2
・・・、IN とする。これら強度をグラフ上にプロット
すると、図3(a)に×印で示したようになる。次に、
これらのデータを移動式最小二乗法による高次多項式へ
の近似等の手法によって平滑化する。得られた曲線Aを
図3(a)中に示す。次に、この曲線Aを二次微分す
る。この二次微分した曲線Bを図3(b)に示す。次い
で、分光器状態、化合状態等を考慮して特性X線波長か
ら計算した特性X線の理論ピーク位置cから前後一定距
離LB-、LB+(LB-=LB+)の位置のバックグラウンド
と見られる分光器位置を求め、理論ピーク位置cからそ
の前後のバックグラウンドと見られる位置までの間に正
の二次微分値が存在するかどうかを判定する。もし存在
しなければ(+方向)、上記のバックグラウンドと見ら
れる位置dをバックグラウンド位置と見なす。もし存在
すれば(−方向)、その正の極大位置に相当する位置が
元の平滑化したX線強度分布曲線Aの極小値の位置であ
るので、その点eを真のパックグラウンド位置とする。
理論ピークの前後のこのようにして定めたバックグラウ
ンド位置d、eの平滑化されたX線強度分布曲線A上の
点を直線で結んで、バックグラウンド直線Fを作成す
る。ピークプロファイルAとバックグラウンド直線Fで
囲まれた領域の面積を求め、これを正味のX線強度値と
する。以上は未知試料についてのX線強度値を求める方
法であるが、標準試料と対比する場合は、以上によって
求めたバックグラウンド位置d、eを採用し、同様にバ
ックグラウンド直線を引き、その場合のピークプロファ
イルとバックグラウンド直線で囲まれた領域の面積を標
準試料の正味のX線強度値とする。
Next, the peak profile of the X-ray spectrum is collected by using the above X-ray intensity measuring apparatus,
The method for obtaining the characteristic X-ray intensity for quantitative analysis is shown below. First, from the characteristic X-ray wavelength of the designated element,
A spectroscope position where a ray can be detected is obtained, data before and after the spectroscope position are collected, and the obtained X-ray intensities are I 1 , I 2 ,
..., I N. When these intensities are plotted on the graph, it becomes as shown by the mark X in FIG. next,
These data are smoothed by a method such as approximation to a higher-order polynomial by the moving least square method. The obtained curve A is shown in FIG. Next, this curve A is secondarily differentiated. This second-order differentiated curve B is shown in FIG. Next, the back of the position of a fixed front and rear distance L B− , L B + (L B− = L B + ) from the theoretical peak position c of the characteristic X-ray calculated from the characteristic X-ray wavelength in consideration of the spectroscopic state, the combination state, etc. The spectroscope position that is considered to be the ground is obtained, and it is determined whether or not there is a positive second-order differential value between the theoretical peak position c and the positions that are considered to be the background before and after it. If it does not exist (+ direction), the position d that is considered to be the above background is regarded as the background position. If it exists (in the negative direction), the position corresponding to the positive maximum position is the position of the minimum value of the original smoothed X-ray intensity distribution curve A, so that point e is set as the true packed ground position. ..
A background straight line F is created by connecting the points on the smoothed X-ray intensity distribution curve A at the background positions d and e thus determined before and after the theoretical peak with a straight line. The area of the region surrounded by the peak profile A and the background straight line F is obtained and used as the net X-ray intensity value. The above is the method of obtaining the X-ray intensity value of an unknown sample. However, in the case of comparison with a standard sample, the background positions d and e obtained above are adopted, and a background straight line is drawn in the same manner. The area surrounded by the peak profile and the background straight line is taken as the net X-ray intensity value of the standard sample.

【0013】このようにして特性X線の正味のX線強度
値を求めると、従来の方法と比較して、ピーク検出を行
わない分測定時間が短縮でき、また、図3に図示したよ
うに、特性X線スペクトルの近傍にピークが存在する場
合、単にピーク位置から前後一定距離の位置をバックグ
ラウンドと見なす場合に比較して、バックグラウンド値
をより正しく、小さく見積もることができる。さらに、
実際のピーク位置が理論位置より多少ずれて検出されて
も、測定される正味のX線強度値は安定しており、X線
ピーク位置に敏感な元素の定量分析の精度が向上する。
When the net X-ray intensity value of the characteristic X-ray is obtained in this manner, the measurement time can be shortened by the amount that peak detection is not performed, as compared with the conventional method, and as shown in FIG. When there is a peak in the vicinity of the characteristic X-ray spectrum, the background value can be estimated more correctly and smaller than when the position at a certain distance in front and behind the peak position is simply regarded as the background. further,
Even if the actual peak position is detected with a slight deviation from the theoretical position, the measured net X-ray intensity value is stable, and the accuracy of quantitative analysis of the element sensitive to the X-ray peak position is improved.

【0014】以上、本発明のX線強度測定方法と装置を
実施例に基づいて説明してきたが、本発明はこれら実施
例に限定されず種々の変形が可能である。
Although the X-ray intensity measuring method and apparatus of the present invention have been described based on the embodiments, the present invention is not limited to these embodiments and various modifications can be made.

【0015】[0015]

【発明の効果】以上の説明から明らかなように、本発明
のEPMA等における定量分析のためのX線強度測定方
法及びそのための装置によると、ピーク検出を行わない
分測定時間が短縮でき、また、特性X線スペクトルの近
傍にピークが存在する場合、単にピーク位置から前後一
定距離の位置をバックグラウンドと見なす場合に比較し
て、バックグラウンド値をより正しく、小さく見積もる
ことができる。さらに、実際のピーク位置が理論位置よ
り多少ずれて検出されても、測定される正味のX線強度
値は安定しており、X線ピーク位置に敏感な元素の定量
分析の精度が向上する。
As is apparent from the above description, according to the X-ray intensity measuring method for quantitative analysis in EPMA and the like and the apparatus therefor of the present invention, the measuring time can be shortened by the absence of peak detection. When there is a peak in the vicinity of the characteristic X-ray spectrum, the background value can be estimated more correctly and smaller than when the position at a certain distance in front and behind the peak position is simply regarded as the background. Further, even if the actual peak position is detected with a slight deviation from the theoretical position, the measured net X-ray intensity value is stable, and the accuracy of quantitative analysis of the element sensitive to the X-ray peak position is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づくEPMAの構成を示す図であ
る。
FIG. 1 is a diagram showing the configuration of an EPMA according to the present invention.

【図2】本発明の装置により1点のデータを収集するた
めのタイミングチャートの1例を示す図である。
FIG. 2 is a diagram showing an example of a timing chart for collecting one point of data by the device of the present invention.

【図3】本発明に基づくX線強度測定方法を説明するた
めの図である。
FIG. 3 is a diagram for explaining an X-ray intensity measuring method based on the present invention.

【符号の説明】[Explanation of symbols]

1…電子銃 2…電子線 3…収束レンズ 4…対物レンズ 5…試料 6…ステージ 7…波長分散型X線分光器 8…分光結晶 9…分光器駆動モータ 10…検出器 11…X線計測装置 12…分光器駆動制御装置 13…記憶装置 14…コンピュータ 15…表示出力装置 DESCRIPTION OF SYMBOLS 1 ... Electron gun 2 ... Electron beam 3 ... Converging lens 4 ... Objective lens 5 ... Sample 6 ... Stage 7 ... Wavelength dispersive X-ray spectroscope 8 ... Spectroscopic crystal 9 ... Spectrometer drive motor 10 ... Detector 11 ... X-ray measurement Device 12 ... Spectrometer drive control device 13 ... Storage device 14 ... Computer 15 ... Display output device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 離散的なX線強度分布データから指定さ
れた元素の特性X線強度を測定する方法において、得ら
れた強度分布データを平滑化し、平滑化された強度分布
曲線の二次微分曲線を求め、特性X線の理論ピーク位置
とそれから前後の一定間隔離れた分光位置の間に二次微
分値の極大値が存在しない場合、理論ピーク位置から一
定間隔離れた分光位置をバックグラウンド位置とし、理
論ピーク位置とそれから一定間隔離れた分光位置の間に
二次微分値の極大値が存在する場合、その極大値に対応
する平滑化されたX線分布曲線の極小値位置をバックグ
ラウンド位置とし、求められた2つのバックグラウンド
位置における平滑化された強度分布曲線上の2点を直線
で結び、この直線と平滑化された強度分布曲線とで囲ま
れる面積を求めることにより、正味の特性X線強度値を
求めることを特徴とするEPMA等における定量分析の
ためのX線強度測定方法。
1. A method for measuring the characteristic X-ray intensity of an element designated from discrete X-ray intensity distribution data, wherein the obtained intensity distribution data is smoothed, and a second derivative of the smoothed intensity distribution curve is obtained. If there is no maximum value of the second derivative between the theoretical peak position of the characteristic X-ray and the spectral position separated by a certain distance before and after the curve, the spectral position separated by a certain distance from the theoretical peak position is set as the background position. If there is a local maximum of the second derivative between the theoretical peak position and the spectral position separated from the theoretical peak position by a certain distance, the local minimum position of the smoothed X-ray distribution curve corresponding to the local maximum is set to the background position. Then, connect the two points on the smoothed intensity distribution curve at the two obtained background positions with a straight line, and find the area enclosed by this straight line and the smoothed intensity distribution curve. An X-ray intensity measuring method for quantitative analysis in EPMA or the like, characterized in that a net characteristic X-ray intensity value is obtained by
【請求項2】 X線分光器を備え、指定された元素の特
性X線が検出可能な該分光器の分光範囲を連続的に駆動
し、かつ、該分光器の所定一定駆動間隔毎にX線計測開
始信号を送る分光器駆動制御手段と、該所定一定駆動間
隔内で一定時間のX線計測を行うX線計測手段とを有
し、分光器の駆動速度が前記所定一定駆動間隔内におい
て前記一定時間のX線計測が完了するよう設定されてい
ることを特徴とする請求項1記載のX線強度測定方法を
実施するための装置。
2. An X-ray spectroscope is provided, which continuously drives a spectroscopic range of the spectroscope in which characteristic X-rays of a designated element can be detected, and X is measured at predetermined constant drive intervals of the spectroscope. A spectroscope drive control means for sending a line measurement start signal and an X-ray measurement means for performing X-ray measurement for a fixed time within the predetermined constant drive interval are provided, and the drive speed of the spectroscope is within the predetermined constant drive interval. The apparatus for performing the X-ray intensity measurement method according to claim 1, wherein the X-ray measurement for a certain period of time is set to be completed.
JP4062069A 1992-03-18 1992-03-18 Method and device for measuring x-ray intensity for quantitative analysis in epma and the like Withdrawn JPH05264483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062069A JPH05264483A (en) 1992-03-18 1992-03-18 Method and device for measuring x-ray intensity for quantitative analysis in epma and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4062069A JPH05264483A (en) 1992-03-18 1992-03-18 Method and device for measuring x-ray intensity for quantitative analysis in epma and the like

Publications (1)

Publication Number Publication Date
JPH05264483A true JPH05264483A (en) 1993-10-12

Family

ID=13189438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062069A Withdrawn JPH05264483A (en) 1992-03-18 1992-03-18 Method and device for measuring x-ray intensity for quantitative analysis in epma and the like

Country Status (1)

Country Link
JP (1) JPH05264483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127874A (en) * 2008-12-01 2010-06-10 Jeol Ltd Method for setting measurement conditions for x-ray analysis and x-ray analyzer
CN112394079A (en) * 2019-08-19 2021-02-23 株式会社岛津制作所 Electron beam micro-area analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127874A (en) * 2008-12-01 2010-06-10 Jeol Ltd Method for setting measurement conditions for x-ray analysis and x-ray analyzer
CN112394079A (en) * 2019-08-19 2021-02-23 株式会社岛津制作所 Electron beam micro-area analyzer

Similar Documents

Publication Publication Date Title
US4591984A (en) Radiation measuring device
KR960012331B1 (en) Method and apparatus for background correction in analysis of a specimen surface
US7215421B2 (en) Fluorescence lifetime measurement apparatus
EP3611543B1 (en) X-ray analyzer and method for correcting counting rate
JPH05264483A (en) Method and device for measuring x-ray intensity for quantitative analysis in epma and the like
JPH05264484A (en) Method and device for detecting peak position and background position of characteristic x-ray in epma and the like
Becker et al. Flexible instrument for time‐correlated single‐photon counting
JP3123860B2 (en) Elemental analyzer using wavelength dispersive spectrometer and energy dispersive spectrometer
JP3790643B2 (en) Surface analyzer with energy dispersive X-ray detector
JP3146195B2 (en) X-ray mapping device
JPH0515718Y2 (en)
JPS62285048A (en) Element density distribution measurement
JP3040242B2 (en) How to create a sensitivity calibration curve for an electron multiplier
JP2876672B2 (en) Surface analyzer
JP3021933B2 (en) X-ray data measurement device
JPH08271213A (en) Edge detector
JPH05340897A (en) X-ray spectrometer
JPS6168579A (en) X ray analyzer
KR100345321B1 (en) Control method of synchrotron X-ray samll-angle scattering measurement
JPS6126846A (en) Method for analyzing sample by x-ray microanalyzer
JPH03285153A (en) Quantitative analyser with x-rays
Yoshimura et al. A Derivative Mössbauer Spectrometer Stabilized by Digital Method
JPS62282443A (en) Stroboscopic electron beam device
JPS631534B2 (en)
JPH0735709A (en) Quantitative analytic/measuring method employing wavelength dispersive spectrometer and energy dispersive spectrometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518