JPH0526436B2 - - Google Patents

Info

Publication number
JPH0526436B2
JPH0526436B2 JP58039433A JP3943383A JPH0526436B2 JP H0526436 B2 JPH0526436 B2 JP H0526436B2 JP 58039433 A JP58039433 A JP 58039433A JP 3943383 A JP3943383 A JP 3943383A JP H0526436 B2 JPH0526436 B2 JP H0526436B2
Authority
JP
Japan
Prior art keywords
value
calculation
phase
primary
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58039433A
Other languages
Japanese (ja)
Other versions
JPS59165981A (en
Inventor
Kohei Oonishi
Tadashi Ashikaga
Masayuki Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP58039433A priority Critical patent/JPS59165981A/en
Priority to US06/585,598 priority patent/US4509003A/en
Priority to KR1019840001163A priority patent/KR920011005B1/en
Priority to DE8484102581T priority patent/DE3480979D1/en
Priority to EP84102581A priority patent/EP0121792B1/en
Publication of JPS59165981A publication Critical patent/JPS59165981A/en
Publication of JPH0526436B2 publication Critical patent/JPH0526436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 本発明は、誘導電動機のベクトル制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vector control device for an induction motor.

近年、誘導電動機の速応性を向上する制御方式
として、電動機の一次電流を励磁電流と二次電流
とに分けて制御し、二次磁速と二次電流ベクトル
を常に直交させることで直流機と同等の応答性を
得ようとするベクトル制御方式が提案されてい
る。しかし、実際に使用する電力変換装置にパル
ス幅変調(PWM)方式インバータなどの電圧形
インバータを使用すると、一次電流を制御すると
言つても電圧が操作量となるため、周波数を高く
した高速運転時に設定通りの一次電流が流れなく
なつて応答性が悪くなり、精度良い可変速制御が
難しくなる問題があつた。
In recent years, as a control method to improve the quick response of induction motors, the primary current of the motor is controlled by dividing it into an exciting current and a secondary current, and the secondary magnetic velocity and secondary current vector are always orthogonal. A vector control method has been proposed that attempts to obtain equivalent responsiveness. However, when a voltage source inverter such as a pulse width modulation (PWM) inverter is used in the power converter that is actually used, the voltage becomes the manipulated variable even though the primary current is controlled. There was a problem in that the primary current did not flow as per the settings, resulting in poor response and making accurate variable speed control difficult.

本発明は、電動機の一次電圧制御において、二
次磁速分と二次電流分との間に互いの干渉分をキ
ヤンセルできるベクトル制御とすることにより、
従来の問題点を解消し、干渉分キヤンセルを含め
た演算回路を簡単化できるベクトル制御装置を提
供することを目的とする。
The present invention provides vector control that can cancel mutual interference between the secondary magnetic velocity component and the secondary current component in the primary voltage control of the electric motor.
It is an object of the present invention to provide a vector control device that solves conventional problems and can simplify an arithmetic circuit including interference cancellation.

以下、本発明の原理的な説明に続いて実施例を
詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, following the principle explanation of the present invention, embodiments will be explained in detail.

まず、誘導電動機を一次電圧に同期して回転す
るα−β軸で表わした電圧方程式は以下の第(1)式
になるし、発生トルクTは第(2)式になる。
First, the voltage equation expressed by the α-β axis that rotates the induction motor in synchronization with the primary voltage is the following equation (1), and the generated torque T is the equation (2).

T=3/2(λ′2〓i′2〓−λ′2〓i′2〓)…
…(2) ここで、各記号は以下に示す諸量である。
T=3/2(λ′ 2 〓i′ 2 〓−λ′ 2 〓i′ 2 〓)…
...(2) Here, each symbol is the quantity shown below.

e1;一次電圧(α、β成分) e′2;二次電圧(α、β成分) i1;一次電流(α、β成分) λ′2:磁速(α、β成分) r1;一次抵抗 r2;二次抵抗 M;励磁インダクタンス L2;二次インダクタンス L〓;等価漏れインダクタンス(L〓=
L1L2−M2/L2) L1;一次インダクタンス P;微分記号d/dt ωp;電源角周波数 ωr;ロータ角周波数 i′2;二次電流(α、β成分) 上述の(1)、(2)式はブロツク線図で表わすと第1
図に示すようになり、二相電圧e1〓,e1〓に対して
一次電流と二次磁速のα軸、β軸成分i1〓,i1〓,
λ′2〓,λ′2〓及びトルクTを発生する誘導電動機の
等価ブロツク図になる。
e 1 ; Primary voltage (α, β components) e′ 2 ; Secondary voltage (α, β components) i 1 ; Primary current (α, β components) λ′ 2 : Magnetic velocity (α, β components) r 1 ; Primary resistance r 2 ; Secondary resistance M; Excitation inductance L 2 ; Secondary inductance L〓; Equivalent leakage inductance (L〓=
L 1 L 2 −M 2 /L 2 ) L 1 ; Primary inductance P; Differential symbol d/dt ω p ; Power supply angular frequency ω r ; Rotor angular frequency i′ 2 ; Secondary current (α, β components) Equations (1) and (2) are expressed as the first block diagram.
As shown in the figure, for the two-phase voltages e 1 〓, e 1 〓, the α-axis and β-axis components of the primary current and secondary magnetic velocity i 1 〓, i 1 〓,
This is an equivalent block diagram of an induction motor that generates λ' 2 〓, λ' 2 〓 and torque T.

ここで、一次電圧に同期して回るα、β軸はど
のような位置に定めても良いが、α軸を二次磁速
の方向に定めると、二次電流がβ軸に一致する条
件すなわち、二次電流が磁速と直交する条件はベ
クトル制御理論で明らかにされているように、 λ′2〓=一定 λ′2〓=0 ……(3) であり、かつ一次周波数ωpは ωp=ωr+Mr2/L2λ′2〓・i1〓 ……(4) このように、α、β軸を定めると、一次電流i1
のα成分i1〓(=一定)は磁束λ′2に相当する一次電
流であり、β軸成分i1〓は二次電流i′2に相当する一
次電流となる。
Here, the α and β axes, which rotate in synchronization with the primary voltage, may be set at any position, but if the α axis is set in the direction of the secondary magnetic velocity, the condition that the secondary current matches the β axis, that is, , the condition that the secondary current is orthogonal to the magnetic velocity is λ′ 2 〓=constant λ′ 2 〓=0 ……(3), as clarified by vector control theory, and the primary frequency ω p is ω p = ω r + Mr 2 /L 2 λ′ 2 〓・i 1 〓 ……(4) In this way, when α and β axes are determined, the primary current i 1
The α component i 1 〓 (=constant) is a primary current corresponding to the magnetic flux λ′ 2 , and the β-axis component i 1 〓 is a primary current corresponding to the secondary current i′ 2 .

次に、上述の(3)、(4)式の条件を第1図のブロツ
ク線図に入れると第2図に示すブロツク線図にな
る。すなわち、第1図におけるa点は(4)式の関係
から零に制御される。c点はλ′2〓=0であるから
この点につながる量は全て零であり、同様にi′2
=0からd点につながる量も零であるしλ′2〓=一
定であるからその微分であるb点も零である。そ
して、第1図の破線ブロツクAの部分を同様の条
件下で計算すると、L2/r2=τ2、L〓=〔(L1L2
M2)/L2〕として、 (L〓+M/L2r2・L2/L2P+r2・M/L2)ωpi1〓=(L
〓+M2/L2/τ2P+1)ωpi1〓 =L〓τ2P+L1L2−M2/L2+M2/L2/τ2P+1ωpi1
=L〓/L1τ2P+1/τ2P+1L1ωpi1〓 ここでi1〓=一定であるからP=0とおいて =L1ω0i1〓 このようにして、第1図のブロツク線図は第2
図のブロツク線図になる。第2図から明らかなよ
うに、二次磁束λ′2〓はα相一次電圧e1〓によつて一
義的に設定できずにβ相一次電流i1〓による+L〓
ωpi1〓分の干渉があるし、二次電流i2〓はβ相一次
電圧e1〓によつて一義的に設定できずにα相一次
電流i1〓による−L1ω0i1〓分の干渉がある。そこで、
一次電流i1〓及びi1〓による干渉分を予め補償した
制御量になるよう一次電圧e1〓,e1〓を補正するこ
とにより磁束と二次電流を非干渉に制御できるこ
とになる。この補正は次の(5)式で示す演算回路を
用意することが実現される。
Next, when the conditions of equations (3) and (4) above are inserted into the block diagram of FIG. 1, the block diagram shown in FIG. 2 is obtained. That is, point a in FIG. 1 is controlled to zero from the relationship of equation (4). Since point c is λ′ 2 〓=0, all the quantities connected to this point are zero, and similarly i′ 2
The quantity connected from =0 to point d is also zero, and since λ' 2 = constant, its differential at point b is also zero. Then , when calculating the part of the broken line block A in FIG. 1 under the same conditions, L 2 /r 22 , L =
M 2 )/L 2 ], (L〓+M/L 2 r 2・L 2 /L 2 P+r 2・M/L 2p i 1 〓=(L
〓+M 2 /L 2 /τ 2 P+1)ω p i 1 〓 =L〓τ 2 P+L 1 L 2 −M 2 /L 2 +M 2 /L 2 /τ 2 P+1ω p i 1
=L〓/L 1 τ 2 P+1/τ 2 P+1L 1 ω p i 1 〓 Here, since i 1 〓=constant, let P=0 =L 1 ω 0 i 1 〓 In this way, Fig. The block diagram of
This becomes the block diagram shown in the figure. As is clear from Fig. 2, the secondary magnetic flux λ′ 2 〓 cannot be uniquely set by the α-phase primary voltage e 1 〓, but is set by +L 〓 by the β-phase primary current i 1 〓.
There is interference of ω p i 1 〓, and the secondary current i 2 〓 cannot be uniquely set by the β-phase primary voltage e 1 〓, but −L 1 ω 0 i due to the α-phase primary current i 1 〓. There is an interference of 1 〓. Therefore,
By correcting the primary voltages e 1 〓 and e 1 〓 so as to have control amounts that compensate in advance for the interference caused by the primary currents i 1 〓 and i 1 〓, it is possible to control the magnetic flux and the secondary current without interfering with each other. This correction can be realized by preparing an arithmetic circuit represented by the following equation (5).

e1〓 e1〓=r1i* 1〓 i* 1〓+ωp−L〓i* 1〓 L1i* 1〓 ……(5) すなわち、電圧e1〓の設定には電動機の二次磁
束λ′2を一定に制御するためのα相一次電流設定
値i* 1〓に一次抵抗r1の係数を乗算した値から、β相
一次電流i1〓による干渉分L〓ωpi1〓を見込んで二次
電流i′2を制御するためのβ相一次電流設定値i* 1〓に
電源角周波数ωp及び係数L〓を乗算した値を減算
する演算回路を用意し、同様に、電圧e1〓の設定
には設定値i* 1〓に係数r1を乗算した値から設定値i* 1
にωp及びL1を乗算した値を加算する演算回路を
用意することで干渉分をキヤンセルした制御が可
能となる。
e 1 〓 e 1 〓=r 1 i * 1 〓 i * 1 〓+ω p −L〓i * 1 〓 L 1 i * 1 〓 ……(5) In other words, the voltage e 1 〓 is set by From the value obtained by multiplying the α-phase primary current setting value i * 1 〓 by the coefficient of the primary resistance r 1 to control the secondary magnetic flux λ′ 2 at a constant level, the interference amount due to the β-phase primary current i 1 〓 is calculated as L〓ω p i 1 〓 to control the secondary current i′ 2 by preparing an arithmetic circuit that subtracts the value obtained by multiplying the β-phase primary current setting value i * 1 〓 by the power supply angular frequency ω p and the coefficient L〓, and similarly To set the voltage e 1 〓, set value i * 1 〓 multiplied by coefficient r 1 to set value i * 1 〓.
By providing an arithmetic circuit that adds a value obtained by multiplying ω p and L 1 by ω p and L 1 , it becomes possible to perform control in which interference is canceled.

本発明においては、前述の干渉分キヤンセル機
能を持たせながら演算回路の簡単化を図るもので
ある。この演算回路の簡単化を以下に原理的に説
明する。
The present invention aims to simplify the arithmetic circuit while providing the above-mentioned interference cancellation function. The principle of this simplification of the arithmetic circuit will be explained below.

まず、前述の第(5)式に基づいた演算回路から得
る一次電圧e1〓,e1〓は、角周波数ωpから得る三角
関数COSωpt、SINωptと共に相電圧演算回路
に取込み、次の(6)、(7)式による演算を施すことで
電圧形インバータのa,b,c相の3相電圧設定
値e* a,e* b,e* cを得ることができる。
First, the primary voltages e 1 〓, e 1 〓 obtained from the calculation circuit based on the above-mentioned equation (5) are taken into the phase voltage calculation circuit together with the trigonometric functions COSω p t and SINω p t obtained from the angular frequency ω p , By performing calculations according to the following equations (6) and (7), three-phase voltage setting values e * a , e * b, and e * c of the a, b , and c phases of the voltage source inverter can be obtained.

e1d e1q=COSωpt−SINωpt SINωpt+COSωpte1〓 e1〓 ……(6) 上述までのことから、電動機の一次電流i1〓,
i1〓による干渉分をキヤンセルした制御には前述
の(5)式に基づいた演算回路を用意し、(6)、(7)式に
基づいた相電圧演算回路を用意し、さらに角周波
数ωpの演算と該ωpからの三角関数発生回路を用
意して電圧形インバータの設定電圧e* a,e* b,e* c
得ることができる。
e 1d e 1q = COSω p t−SINω p t SINω p t+COSω p te 1 〓 e 1 〓 ……(6) From the above, the primary current of the motor i 1 〓,
For control that cancels the interference caused by i 1 Setting voltages e * a , e * b , and e * c of the voltage source inverter can be obtained by calculating p and preparing a trigonometric function generation circuit from ωp .

ここで、(6)式に(5)式を導入すると、e1dについ
ては e1d=(r1i* 1〓−ωpL〓i* 1〓)COSωpt−(r1i* 1〓−
ωpL,
i* 1〓)SINωpt ……(8) となり、上式中ラプラス演算子Sを使つた次の関
係より −ωpSINωpt=d/dt(COSωpt) =S・COSωpt ωpCOSωpt=d/dt(SINωpt) =S・SINωpt e1d=(r1+L1S)COSωpt・i* 1〓−(r1+L〓S)SIN
ωpt・i* 1〓……(9) となる。同様に、e1qについては次の(10)式に変換
される。
Here, when formula (5) is introduced into formula (6), for e 1d , e 1d = (r 1 i * 1 〓−ω p L〓i * 1 〓)COSω p t−(r 1 i * 1 〓−
ω p L,
i * 1 〓)SINω p t ...(8) From the following relationship using the Laplace operator S in the above equation, −ω p SINω p t=d/dt(COSω p t) =S・COSω p t ω p COSω p t=d/dt (SINω p t) = S・SINω p t e 1d = (r 1 +L 1 S) COSω p t・i * 1 〓−(r 1 +L〓S) SIN
ω p t・i * 1 〓……(9). Similarly, e 1q is converted to the following equation (10).

e1d=(r1+L1S)Sinωpt・i* 1〓+(r1+L〓S)COS
ωpt・i* 1〓……(10) こうした変換に着目し、本発明においは、干渉
分キヤンセルのための演算回路と相電圧演算回路
中の前述の(6)式に基づいた同期回転座標から固定
座標への変換演算回路とを用意する代りに、(9)、
(10)式に基づいた演算回路を用意することにより、
演算回路の簡単化を図る。
e 1d = (r 1 + L 1 S) Sinω p t・i * 1 〓 + (r 1 + L〓 S) COS
ω p t・i * 1 〓...(10) Focusing on such conversion, the present invention provides synchronous rotation based on the above-mentioned equation (6) in the calculation circuit for interference cancellation and the phase voltage calculation circuit. Instead of preparing a calculation circuit for converting coordinates to fixed coordinates, (9),
By preparing an arithmetic circuit based on equation (10),
Aim to simplify the arithmetic circuit.

第3図は本発明の一実施例を示すブロツク図で
ある。電動機1にPWM方式インバータ2から電
圧制御による一次電圧を供給して該電動機1に磁
束と二次電流とが互いに直交するよう制御するに
おいて、演算回路3は前述の(9)、(10)式に基づいた
演算機能を有してα、β相一次電流設定値i* 1〓,
i* 1〓に対して固定座標電圧設定値e* 1d,e* 1qを得る。
2相3相変換回路4は前述の(7)式に基づいた演算
機能を有して演算回路3の出力e* 1d,e* 1qに対して
3相座標電圧設定値e* a,e* b,e* cを得、この設定値
がインバータ2の電圧指令にされる。
FIG. 3 is a block diagram showing one embodiment of the present invention. In controlling the motor 1 by supplying a voltage-controlled primary voltage from the PWM inverter 2 so that the magnetic flux and the secondary current are orthogonal to each other, the arithmetic circuit 3 calculates the equations (9) and (10) described above. α, β phase primary current setting value i * 1 〓,
Obtain fixed coordinate voltage setting values e * 1d and e * 1q for i * 1 〓.
The two-phase three-phase conversion circuit 4 has an arithmetic function based on the above-mentioned equation (7), and calculates three-phase coordinate voltage set values e * a , e * for the outputs e * 1d , e * 1q of the arithmetic circuit 3. b , e * c are obtained, and this set value is used as the voltage command for the inverter 2.

β相一次電流設定値i* 1〓は速度設定値V* Sと電動
機1に結合する速度検出機5の検出値(ロータ角
周波数ωr)との偏差を比例積分演算(PI)する
速度調節器6の出力として得る。電源角周波数
ωpは角周波数演算回路7によつて得る。この演
算回路7は、設定値i* 1〓,i* 1〓の除算をする割算器
1と、この除算結果i* 1〓/i* 1〓に係数1/τ2を乗算
する係数器72とを有してすべり角周波数ωSを算
出し、このすべり角周波数ωSにロータ角周波数
ωrを加算して電源角周波数ωpを得る。この演算
器71と係数器72によるすべり角周波数ωSの算出
は、前述の(4)式右辺第2項中に前述の次の条件及
び第2図からλ′2a=i1〓・Mを代入してi* 1〓/(i* 1
〓・
τ2)に置換される。
The β-phase primary current set value i * 1 〓 is a speed adjustment that performs proportional integral calculation (PI) of the deviation between the speed set value V * S and the detected value (rotor angular frequency ω r ) of the speed detector 5 coupled to the motor 1. It is obtained as the output of the device 6. The power supply angular frequency ω p is obtained by the angular frequency calculation circuit 7. This arithmetic circuit 7 includes a divider 71 that divides the set values i * 1 〓, i * 1 〓, and a coefficient that multiplies the division result i * 1 〓/i * 1 〓 by a coefficient 1/τ 2. The rotor angular frequency ω r is added to the slip angular frequency ω S to obtain the power supply angular frequency ω p . Calculation of the slip angular frequency ω S by the calculator 7 1 and the coefficient unit 7 2 is based on the following conditions mentioned above in the second term on the right side of equation (4) and from FIG . Substitute M and get i * 1 〓/(i * 1
〓・
τ 2 ).

L〓=L1L2−M2/L2 τ2=L2/r2 三角関数発生回路8は電源角周波数ωpから正
弦波SINωpt及び余弦波COSωptを得て演算回
路3にその演算のための三角関数を与える。三角
波発生回路9は、角周波数ωpを使つて該ωpに同
期した案数倍の三角波を取出し、この三角波をイ
ンバータ2に与えて該インバータ2では三角波と
設定電圧e* a,e* b,e* cとのレベル比較によつて
PWM波形を得る。
L〓=L 1 L 2 −M 2 /L 2 τ 2 =L 2 /r 2 The trigonometric function generating circuit 8 obtains a sine wave SINω p t and a cosine wave COSω p t from the power supply angular frequency ω p , and the arithmetic circuit 3 gives the trigonometric functions for that operation. The triangular wave generation circuit 9 uses the angular frequency ω p to extract a triangular wave synchronized with the angular frequency ω p , and supplies this triangular wave to the inverter 2, which generates the triangular wave and set voltages e * a , e * b , by level comparison with e * c
Obtain PWM waveform.

第4図は第3図の要部回路図を示す。演算回路
3は、比例微分(PD)演算器31〜34を通した
正弦波SINωptと余弦波COSωptと、設定値i* 1〓,
i* 1〓とを乗算器35〜38の入力とし、これら乗算器
5〜38において第(9)、(10)式に基づいた乗算を
し、これら乗算結果を加減算して設定値e1d,e1q
を得る。演算器31〜34は、例えば第5図aに示
す演算回路で実現され、演算増幅器OAの帰還抵
抗Rf、入力抵抗Ri、入力容量Cで決まる伝達関
数が係数r1,L〓,L1に合わされる。ここで、演算
器31〜34には正弦波SINωpt、余弦波COSωp
を直接に入力するのではなく、積分器39,310
を介在させる。積分器39,310は、微分要素を
含む演算器31〜34が三角関数波に重畳するノイ
ズ等の高周波成分を増幅するのを抑制するための
一次遅れ要素として機能させるもので、第5図b
に示す回路で実現される。この一次遅れ積分回路
の時定数T(=CR)としては、三角関数波SINωp
t、COSωptの周期ωpに比して十分に小さく設
定し、電動機の制御周波数領域における一次遅れ
要素の影響を無視できる程度にしながらノイズ等
の高周波成分を除去するよう設定する。この積分
器39,310を設けることは、三角関数発生回路
8が正、余弦波をデイジタル回路で作成してその
D/A変換を施すデイジタル方式の場合に該正、
余弦波がノイズ成分の多い段階状成形となるもそ
のノイズ成分除去に一層効果的になる。
FIG. 4 shows a circuit diagram of the main part of FIG. 3. The calculation circuit 3 generates a sine wave SINω p t and a cosine wave COSω p t passed through proportional differential (PD) calculators 3 1 to 3 4 and a set value i * 1 〓,
i * 1 〓 is input to multipliers 35 to 38 , multiplication is performed in these multipliers 35 to 38 based on equations (9) and (10), and these multiplication results are added and subtracted to set Values e 1d , e 1q
get. The arithmetic units 3 1 to 3 4 are realized, for example , by the arithmetic circuit shown in FIG. It is set to 1 . Here, the computing units 3 1 to 3 4 have a sine wave SINω p t and a cosine wave COSω p t
Instead of directly inputting , the integrator 3 9 , 3 10
intervene. The integrators 3 9 and 3 10 function as first-order delay elements for suppressing the amplification of high frequency components such as noise superimposed on the trigonometric function waves by the arithmetic units 3 1 to 3 4 including differential elements. Figure 5b
This is realized by the circuit shown in . As the time constant T (=CR) of this first-order lag integrator circuit, the trigonometric function wave SINω p
t, COSω p is set to be sufficiently small compared to the period ω p of t, and is set so as to remove high frequency components such as noise while making the influence of first-order delay elements in the control frequency region of the motor negligible. The integrators 3 9 and 3 10 are provided when the trigonometric function generating circuit 8 is a digital system in which positive and cosine waves are created in a digital circuit and D/A conversion is performed.
Even if the cosine wave is shaped in stages with many noise components, it becomes more effective in removing the noise components.

次に、2相3相変換回路4は、前述の(7)式に基
づいた回路構成になる。すなわち、演算回路3で
求めた値e1dはそのまま設定値e* aとするほかに、
利得1/2の反転増幅器41を通した値にe1qを利得
√3/2の非反転増幅器42と反転増幅器43の継
続回路を通した値を加算して設定値e* bとする。ま
た、増幅器41の出力と増幅器42の出力を加算し
て設定値e* cとする。
Next, the two-phase three-phase conversion circuit 4 has a circuit configuration based on the above-mentioned equation (7). In other words, in addition to using the value e 1d obtained by the arithmetic circuit 3 as the set value e * a ,
Add e1q to the value passed through the inverting amplifier 41 with a gain of 1/2 and the value passed through the continuation circuit of the non-inverting amplifier 42 with a gain of √3/2 and the inverting amplifier 43 to obtain the set value e * b . do. Further, the output of the amplifier 4 1 and the output of the amplifier 4 2 are added to obtain a set value e * c .

こうして求められる設定値e* a,e* b,e* cはインバ
ータ2内のコンパレータ21,22,23によつて
夫々三角波発生回路9の出力とレベル比較されて
該インバータの主回路スイツチのPWM制御信号
Ba,a,Bb,b,Bc,cが作成される。
The set values e * a , e * b , e * c obtained in this way are compared in level with the output of the triangular wave generating circuit 9 by comparators 2 1 , 2 2 , and 2 3 in the inverter 2, respectively, and are then connected to the main circuit of the inverter. Switch PWM control signal
Ba, a, Bb, b, Bc, c are created.

以上のとおり、本発明によれば、電圧形インバ
ータを使つて誘導電動機をベクトル制御するにお
いて、電動機の励磁電流設定値i* 1〓と二次電流設
定値i* 1〓からインバータの設定電圧e1〓,e1〓を得る
のに電動機の一次電流i1〓,i1〓による相互干渉分
をキヤンセルする補正をすることにより、電源角
周波数ωpによる干渉分変動も含めて磁束と二次
電流ベクトルを常に直交させる制御を可能とし、
しかも干渉分キヤンセルのための演算回路として
は、相電圧変換のための同期回転座標から固定座
標への変換(第6式)を含めた一括演算とするた
め干渉分キヤンセル演算と座標変換演算とを個別
にする場合に比べて演算回路構成を大幅に簡単化
できる効果がある。
As described above, according to the present invention, when performing vector control of an induction motor using a voltage source inverter, the inverter set voltage e is determined from the motor excitation current set value i * 1 〓 and the secondary current set value i * 1 〓. 1 〓, e 1 〓, by canceling the mutual interference due to the motor's primary currents i 1 〓, i 1 , the magnetic flux and secondary Enables control to always make the current vector orthogonal,
Furthermore, the arithmetic circuit for interference cancellation is capable of performing interference cancellation calculation and coordinate conversion calculation in order to perform a batch calculation including conversion from synchronous rotating coordinates to fixed coordinates (Equation 6) for phase voltage conversion. This has the effect of greatly simplifying the arithmetic circuit configuration compared to the case where they are separate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2相電圧e1〓,e1〓に対する誘導電動機
の等価ブロツク図、第2図は誘導電動機のベクト
ル制御における等価ブロツク図、第3図は本発明
の一実施例を示す制御装置ブロツク図、第4図は
第3図の要部回路図、第5図は第4図における比
例微分演算器の具体的回路図aと積分器の具体的
回路図bである。 1……誘導電動機、2……電圧形インバータ、
3……演算回路、4……2相3相変換器、5……
速度検出器、6……速度調節器、7……角周波数
演算回路、8……三角関数発生回路、9……三角
波発生回路。
Fig. 1 is an equivalent block diagram of an induction motor with respect to two-phase voltages e 1 〓, e 1 〓, Fig. 2 is an equivalent block diagram of vector control of an induction motor, and Fig. 3 is a control device showing an embodiment of the present invention. 4 is a circuit diagram of the main part of FIG. 3, and FIG. 5 is a specific circuit diagram a of the proportional differential calculator and a specific circuit diagram b of the integrator in FIG. 4. 1...Induction motor, 2...Voltage type inverter,
3... Arithmetic circuit, 4... 2-phase 3-phase converter, 5...
Speed detector, 6... Speed adjuster, 7... Angular frequency calculation circuit, 8... Trigonometric function generation circuit, 9... Triangular wave generation circuit.

Claims (1)

【特許請求の範囲】 1 誘導電動機を電圧形インバータで駆動し、誘
導電動機の磁束分を設定するα相一次電流設定値
i1〓*と二次電流分を設定するβ相一次電流設定
値i1〓*から上記電圧形インバータのa,b,c
相3相電圧設定値ea*,eb*,ec*を得る誘導電
動機のベクトル制御装置において、上記電圧形イ
ンバータの角周波数設定値ω0を持つ正弦波を一
次抵抗r1に比例しかつ等価漏れインダクタンスL〓
の微分係数を持つて比例微分演算しこの演算結果
に上記設定値i1〓*を乗算した第1の演算値を求
め、上記設定値ω0を持つ余弦波を一次抵抗r1に比
例しかつ一次インダクタンスL1の微分係数を持
つて比例微分演算しこの演算結果に上記設定値
i1〓*を乗算した第2の演算値を求め、上記正弦
波を一次抵抗r1に比例しかつ一次インダクタンス
L1の微分係数を持つて比例微分演算しこの演算
結果に上記設定値i1〓を乗算した第3の演算値を
求め、上記余弦波を一次抵抗r1に比例しかつ等価
漏れインダクタンスL〓の微分係数を持つて比例
微分演算しこの演算結果に上記設定値i1〓*を乗
算した第4の演算値を求め、上記第2の演算値か
ら第1の演算値を減算した値e1dと上記第3の演
算値に第4の演算値を加算した値e1qを求める演
算回路と、上記値e1dとe1qから2相3相変換によ
つて上記設定値ea*,eb*,ec*を求める2相3
相変換器を備えたことを特徴とする誘導電動機の
ベクトル制御装置。 2 上記設定値i1〓*を設定値i1〓*で割算した値
を等価二次インダクタンスL2と二次抵抗r2の比
r2/L2に設定する係数器を通した値に誘導電動機
のロータ角周波数検出値ωrを加算して上記角周
波数設定値ω0を求める角周波数演算回路を備え
たことを特徴とする特許請求の範囲第1項記載の
誘導電動機のベクトル制御装置。 3 上記正弦波及び余弦波は夫々上記角周波数設
定値ω0の周期よりも十分に小さい時定数Tを持
つ積分器を通して上記演算回路に供することを特
徴とする特許請求の範囲第1項、第2項のうちの
いずれか1つに記載の誘導電動機のベクトル制御
装置。
[Claims] 1. α-phase primary current setting value for driving the induction motor with a voltage-type inverter and setting the magnetic flux of the induction motor.
From i 1 〓* and the β-phase primary current setting value i 1 〓*, which sets the secondary current component, a, b, c of the above voltage type inverter
In a vector control device for an induction motor that obtains three-phase voltage settings e a *, e b *, e c *, a sine wave having an angular frequency setting value ω 0 of the voltage source inverter described above is proportional to the primary resistance r 1 . and equivalent leakage inductance L〓
Calculate the proportional differential using the differential coefficient of , multiply this calculation result by the above setting value i 1 〓* to obtain the first calculation value, and calculate the cosine wave with the above setting value ω 0 proportional to the primary resistance r 1 and Calculate the proportional differential using the differential coefficient of the primary inductance L 1 , and use the above set value as the result of this calculation.
Find the second calculated value multiplied by i 1 〓*, and make the above sine wave proportional to the primary resistance r 1 and the primary inductance
Calculate proportional differentiation with the differential coefficient of L 1 , multiply this calculation result by the above set value i 1 〓 to obtain the third calculation value, and calculate the above cosine wave in proportion to the primary resistance r 1 and the equivalent leakage inductance L 〓 Calculate the proportional differential using the differential coefficient of , multiply this calculation result by the above set value i 1 〓 * to find the fourth calculation value, and subtract the first calculation value from the second calculation value to find the value e 1d and a calculation circuit that calculates the value e 1q obtained by adding the fourth calculation value to the third calculation value, and the set values e a *, e b by performing two-phase and three-phase conversion from the above values e 1d and e 1q . 2-phase 3 to find *, e c *
A vector control device for an induction motor, characterized by comprising a phase converter. 2 The value obtained by dividing the above setting value i 1 〓* by the setting value i 1 〓* is the ratio of the equivalent secondary inductance L 2 and the secondary resistance r 2
The present invention is characterized by comprising an angular frequency calculation circuit that calculates the angular frequency set value ω 0 by adding the detected rotor angular frequency ω r of the induction motor to the value passed through a coefficient unit set to r 2 /L 2 . A vector control device for an induction motor according to claim 1. 3. The sine wave and the cosine wave are each provided to the arithmetic circuit through an integrator having a time constant T that is sufficiently smaller than the period of the angular frequency setting value ω 0 . 2. A vector control device for an induction motor according to any one of Item 2.
JP58039433A 1983-03-10 1983-03-10 Vector control system of induction motor Granted JPS59165981A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58039433A JPS59165981A (en) 1983-03-10 1983-03-10 Vector control system of induction motor
US06/585,598 US4509003A (en) 1983-03-10 1984-03-01 Vector control method and system for an induction motor
KR1019840001163A KR920011005B1 (en) 1983-03-10 1984-03-08 Nector control method and system for an induction motor
DE8484102581T DE3480979D1 (en) 1983-03-10 1984-03-09 VECTOR CONTROL METHOD AND SYSTEM FOR AN INDUCTION MOTOR.
EP84102581A EP0121792B1 (en) 1983-03-10 1984-03-09 Vector control method and system for an induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039433A JPS59165981A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Publications (2)

Publication Number Publication Date
JPS59165981A JPS59165981A (en) 1984-09-19
JPH0526436B2 true JPH0526436B2 (en) 1993-04-16

Family

ID=12552860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039433A Granted JPS59165981A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Country Status (2)

Country Link
JP (1) JPS59165981A (en)
KR (1) KR920011005B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132792A (en) * 1981-12-25 1982-08-17 Mitsubishi Electric Corp Control system for induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132792A (en) * 1981-12-25 1982-08-17 Mitsubishi Electric Corp Control system for induction motor

Also Published As

Publication number Publication date
KR920011005B1 (en) 1992-12-26
KR840008554A (en) 1984-12-15
JPS59165981A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
JP2780263B2 (en) Vector control method and device for induction motor
JP3611492B2 (en) Inverter control method and apparatus
GB1264165A (en)
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JPH07110160B2 (en) Induction motor controller
JP3064671B2 (en) Control circuit of power converter
EP0121792B1 (en) Vector control method and system for an induction motor
JPH07107783A (en) Variable-speed driving gear of ac motor
JPH0526436B2 (en)
JPS58133167A (en) Device for obtaining common frequency of two electric ac amounts
JPH08168300A (en) Device for controlling vector of induction motor
JPH0570394B2 (en)
JP2946157B2 (en) Induction motor speed control device
JP3283729B2 (en) Induction motor control device
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JPH0570395B2 (en)
JPH06319285A (en) Vector controller for induction motor
JP2590524B2 (en) Vector controller
JPH07123800A (en) Vector control system for induction motor
JPH0526435B2 (en)
JPH0531391B2 (en)
JPH07118954B2 (en) Induction motor vector controller
JPH0793839B2 (en) Induction motor controller
JPH0568391A (en) Slip compensation circuit in vector control of induction motor
JPH0777519B2 (en) Control method of PWM control inverter