JPH05264359A - Radiation temperature measuring instrument - Google Patents

Radiation temperature measuring instrument

Info

Publication number
JPH05264359A
JPH05264359A JP4064748A JP6474892A JPH05264359A JP H05264359 A JPH05264359 A JP H05264359A JP 4064748 A JP4064748 A JP 4064748A JP 6474892 A JP6474892 A JP 6474892A JP H05264359 A JPH05264359 A JP H05264359A
Authority
JP
Japan
Prior art keywords
light receiving
measured
temperature
temperature measuring
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4064748A
Other languages
Japanese (ja)
Inventor
Isao Hishikari
功 菱刈
Yukikoto Hosoya
幸言 細矢
Yukio Matsui
幸雄 松井
Yozo Nemoto
洋三 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP4064748A priority Critical patent/JPH05264359A/en
Publication of JPH05264359A publication Critical patent/JPH05264359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the temperature of an object to be measured in one- dimensional direction with a simple constitution. CONSTITUTION:The radiation energy of an object to be measured in one- dimensional direction is measured by arranging detectors 2 in a straight line and a rotary sector 3 is provided in front of the detectors 2. The incidence of the radiation energy to the detectors is scanned and corresponding detecting signals are outputted to a signal processing circuit 10 as the slit 3a of the sector 3 rotates. The circuit calculates and outputs the temperature corresponding to the radiation energy. As a result, the temperature of the radiation energy in the one-dimensional direction can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体が放射する放射エ
ネルギーに基づいて温度を測定する放射温度測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation temperature measuring device for measuring temperature based on radiation energy emitted from an object.

【0002】[0002]

【従来の技術】図4に示すのは、従来の放射温度測定装
置を示す図である。この放射温度測定装置は、1次元
(幅方向)の温度パターンを測定するものである。被測
定物の放射エネルギーは、回転鏡41を介して走査さ
れ、検出素子40に入力される。検出素子40の検出信
号は、増幅器43、A/D変換器44を介して演算手段
45に入力される。
2. Description of the Related Art FIG. 4 shows a conventional radiation temperature measuring device. This radiation temperature measuring device measures a one-dimensional (width direction) temperature pattern. The radiant energy of the object to be measured is scanned via the rotating mirror 41 and input to the detection element 40. The detection signal of the detection element 40 is input to the calculation means 45 via the amplifier 43 and the A / D converter 44.

【0003】回転鏡41の位置は、同期信号発生器46
により検出され、演算手段45に入力される。したがっ
て、演算手段45は、連続した走査で1次元方向の温度
パターンを出力することができる。
The position of the rotating mirror 41 is determined by the synchronizing signal generator 46.
Is detected by and is input to the calculation means 45. Therefore, the calculation means 45 can output the temperature pattern in the one-dimensional direction by continuous scanning.

【0004】この他、被測定物の1次元の温度を検知す
るものにイメージセンサがある。このうちCCDが汎用
されており、直列配置された半導体内で光電変換された
電荷の画素を一方向に転送して検出信号を取り出す。こ
のCCDに対しては、レンズ等光学系を介して被測定物
の放射エネルギーが入力され、連続した走査で1次元方
向の温度パターンを知ることができる。
In addition, there is an image sensor for detecting the one-dimensional temperature of the object to be measured. Of these, a CCD is widely used, and pixels of photoelectrically converted charges in a semiconductor arranged in series are transferred in one direction to extract a detection signal. Radiant energy of the object to be measured is input to the CCD through an optical system such as a lens, and the temperature pattern in the one-dimensional direction can be known by continuous scanning.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図4に
示す放射温度測定装置では、回転鏡41を回転駆動させ
るため、複雑な機構となり高価であるとともに、この回
転鏡41部分でスペースを取り小型軽量化できなかっ
た。
However, in the radiation temperature measuring device shown in FIG. 4, since the rotating mirror 41 is driven to rotate, the mechanism becomes complicated and expensive, and the rotating mirror 41 portion occupies a space and is small and lightweight. I couldn't make it.

【0006】また、CCDでは、内部回路および配線が
煩雑であり、製造、作成までに多くの工数を必要とし、
かつ、作成後において容易に設計変更ができないもので
あった。
Further, in the CCD, the internal circuit and wiring are complicated, and a lot of man-hours are required for manufacturing and producing.
Moreover, the design could not be easily changed after the creation.

【0007】本発明は上記問題点に鑑みてなされたもの
であり、簡単な構成で一次元方向の温度を得ることがで
きる放射温度測定装置を提供することを目的としてい
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a radiation temperature measuring device capable of obtaining a temperature in a one-dimensional direction with a simple structure.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の放射温度測定装置は、被測定物の1次元方
向の温度を該被測定物の放射エネルギーに基づき測定す
る放射温度測定装置において、請求項1では、前記被測
定物の一次元方向の放射エネルギーを検出するため、直
線状に配置された検出器2と、該検出器2の前方に設け
られる回転自在なスリット3aを有して検出器2に対す
る放射エネルギーの入射部分を走査する回転セクタ3
と、前記検出器2が出力する検出信号に基づき、前記被
測定物の温度を演算する信号処理回路10とを具備する
ことを特徴としている。
In order to achieve the above object, the radiation temperature measuring apparatus of the present invention is a radiation temperature measuring apparatus for measuring the temperature of a measured object in a one-dimensional direction based on the radiant energy of the measured object. In claim 1, in order to detect the one-dimensional radiant energy of the object to be measured, a linearly arranged detector 2 and a rotatable slit 3a provided in front of the detector 2 are provided. And rotating sector 3 for scanning the incident portion of the radiant energy on detector 2
And a signal processing circuit 10 for calculating the temperature of the object to be measured based on the detection signal output from the detector 2.

【0009】また請求項2の如く、前記被測定物の1次
元方向の放射エネルギーを検出するため、直線状に複数
個配置される受光素子5a〜5nと、該複数の受光素子
5a〜5nの各電極を切り換えることにより受光素子5
a〜5nを選択的に走査するセレクタ30,31,32
と、前記受光素子5a〜5nが出力する検出信号に基づ
き、前記被測定物の温度を演算する信号処理回路10と
を具備する構成とすることもできる。
According to a second aspect of the invention, in order to detect the radiant energy in the one-dimensional direction of the object to be measured, a plurality of light receiving elements 5a to 5n linearly arranged and the plurality of light receiving elements 5a to 5n are arranged. Light receiving element 5 by switching each electrode
Selectors 30, 31, 32 for selectively scanning a to 5n
And a signal processing circuit 10 for calculating the temperature of the object to be measured based on the detection signals output from the light receiving elements 5a to 5n.

【0010】[0010]

【作用】被測定物の放射エネルギーは、直線状に設けら
れた受光器2により検出され、この検出信号は、回転セ
クタ3のスリット3aが回転することにより連続的な走
査出力として得られる。そして、信号処理回路10によ
り被測定物の放射エネルギーから温度が演算され、受光
器2の方向に対応する1次元方向の温度測定を行うこと
ができる。
The radiant energy of the object to be measured is detected by the light receiver 2 provided linearly, and this detection signal is obtained as a continuous scanning output by the rotation of the slit 3a of the rotating sector 3. Then, the signal processing circuit 10 calculates the temperature from the radiant energy of the object to be measured, and the temperature in the one-dimensional direction corresponding to the direction of the light receiver 2 can be measured.

【0011】[0011]

【実施例】図1は、本発明の放射温度測定装置を示す背
面図である。受光部1は、受光器2と回転セクタ3とか
ら構成される。受光器2は、複数個の受光素子5a〜5
nが所定間隔毎に直線状に配列してなる。各受光素子5
間には、光遮蔽板6が設けられて隣接する受光素子5同
士が相互に干渉することを防止している。
1 is a rear view showing a radiation temperature measuring apparatus of the present invention. The light receiving unit 1 includes a light receiving unit 2 and a rotating sector 3. The light receiver 2 includes a plurality of light receiving elements 5a to 5a.
n are arranged linearly at predetermined intervals. Each light receiving element 5
A light shielding plate 6 is provided between them to prevent adjacent light receiving elements 5 from interfering with each other.

【0012】そして、この受光素子5は、Ge等で形成
される熱電形検出器や、Pbs、PbSe,InAs,
HgCdTe等で形成される光電形検出器が用いられ、
各々の素子の特性により測定する温度範囲が決定され
る。これら受光素子5の両電極間には、共通電極8a,
8bが設けられ、この共通電極8a,8bから得られる
検出信号は、リード9a,9bを介して信号処理回路1
0に入力される。
The light receiving element 5 includes a thermoelectric detector made of Ge or the like, Pbs, PbSe, InAs,
A photoelectric detector formed of HgCdTe or the like is used,
The temperature range to be measured is determined by the characteristics of each element. Between both electrodes of these light receiving elements 5, a common electrode 8a,
8b is provided, and the detection signals obtained from the common electrodes 8a and 8b are supplied to the signal processing circuit 1 via the leads 9a and 9b.
Input to 0.

【0013】受光器2の受光面側部であって、被測定物
の放射エネルギーの入射面前方には、回転セクタ3が設
けられる。回転セクタ3は、円盤状に形成され、モータ
15で回転駆動される。回転セクタ3の外周縁1箇所に
は、前記1個の受光素子5aの幅及び長さ程度のスリッ
ト3aが形成されている。この回転セクタ3の回転は、
同期信号発生器16により検出され、信号処理回路10
に入力される。
A rotating sector 3 is provided on the side of the light receiving surface of the light receiver 2 and in front of the incident surface of the radiant energy of the object to be measured. The rotating sector 3 is formed in a disk shape, and is rotationally driven by the motor 15. A slit 3a having a width and a length of the one light receiving element 5a is formed at one location on the outer peripheral edge of the rotating sector 3. The rotation of this rotation sector 3 is
The signal processing circuit 10 detected by the synchronization signal generator 16
Entered in.

【0014】信号処理回路10は、受光器2の検出信号
を増幅する前段増幅器18、スリット3aの位置を特定
するための同期制御部19、放射率演算等を行い被測定
物の温度を出力する演算手段14を有している。
The signal processing circuit 10 outputs a temperature of an object to be measured by performing a pre-stage amplifier 18 for amplifying a detection signal of the light receiver 2, a synchronization controller 19 for specifying the position of the slit 3a, an emissivity calculation and the like. It has a computing means 14.

【0015】次に、上記構成による放射温度測定装置の
動作を説明する。回転セクタ3が回転することにより、
スリット3aは受光素子5a〜5n部分を順次通過す
る。ここで、スリット3aがある受光素子5a部分に位
置したときには、この受光素子5aが被測定物が放射す
る放射エネルギーを検出し、検出信号として信号処理回
路10に出力する。
Next, the operation of the radiation temperature measuring device having the above structure will be described. As the rotating sector 3 rotates,
The slit 3a sequentially passes through the light receiving elements 5a to 5n. Here, when the slit 3a is located at the portion of the light receiving element 5a, the light receiving element 5a detects the radiant energy emitted by the object to be measured and outputs it to the signal processing circuit 10 as a detection signal.

【0016】したがって、回転セクタ3の回転に伴い、
検出器2は順次、隣接する受光素子5b〜5nが断続的
に放射エネルギーを受光して対応する検出信号を出力す
る。尚、回転セクタ3の回転は、同期信号発生器16及
び同期制御部19により各々の受光素子15a〜15n
の検出信号出力と同期がとられている。そして、受光器
2が受光素子5a〜5nを直線状に配列した構成である
ため、本装置により、この受光素子5a〜5nの配列方
向である1次元方向に対しての温度情報を連続的に得る
ことができる。
Therefore, as the rotating sector 3 rotates,
In the detector 2, the adjacent light receiving elements 5b to 5n intermittently receive the radiant energy and output corresponding detection signals. The rotation of the rotation sector 3 is performed by the synchronization signal generator 16 and the synchronization control unit 19 in each of the light receiving elements 15a to 15n.
It is synchronized with the detection signal output of. Since the light receiver 2 has a configuration in which the light receiving elements 5a to 5n are linearly arranged, the present apparatus continuously outputs temperature information in the one-dimensional direction which is the arrangement direction of the light receiving elements 5a to 5n. Obtainable.

【0017】次に、図2は、前記検出器2の変形例を示
す正面図である。この検出器20は、単一個で、かつ縦
長形状の検出素子21で構成されるものである。両端の
電極22a,22bは、前記信号処理回路10に出力さ
れる。この検出器20および前記回転セクタ3を組合せ
て受光部が構成できる。ここで、検出素子21が単一個
であることから、スリット3aの移動に伴い受光部分が
移動すれば、連続した変化値の検出信号が出力されるこ
とになる。
Next, FIG. 2 is a front view showing a modified example of the detector 2. The detector 20 is composed of a single, vertically elongated detection element 21. The electrodes 22a and 22b at both ends are output to the signal processing circuit 10. The detector 20 and the rotating sector 3 can be combined to form a light receiving unit. Here, since the number of the detection elements 21 is single, if the light receiving portion moves along with the movement of the slit 3a, detection signals of continuous change values will be output.

【0018】次に、図3は、前記受光部1の変形例を示
す図である。この受光部40は、前記検出器2の各受光
素子5a〜5nを複数グループに分け(図の例では1グ
ループ4素子であり、各素子は抵抗体記号で記載)、各
グループ内において一方の電極は共通接続して第1セレ
クタ30に接続する。他方の電極は、各グループ別に1
個づつ共通接続して第2セレクタ31に接続する。
Next, FIG. 3 is a view showing a modification of the light receiving section 1. The light receiving unit 40 divides each of the light receiving elements 5a to 5n of the detector 2 into a plurality of groups (in the example of the figure, there are four elements in one group, each element is described by a resistor symbol), and one of the groups is used in each group. The electrodes are commonly connected and connected to the first selector 30. The other electrode is 1 for each group
Each of them is commonly connected and connected to the second selector 31.

【0019】第1セレクタ30、第2セレクタ31は、
走査制御部32で制御され、切り換えによりいずれかの
1入力を出力する。この出力は、前記検出信号として信
号処理回路10に出力されることになる。この受光部4
0の構成によれば、前記回転セクタ3を用いずとも、受
光素子5a〜5nの配列方向である1次元方向に対して
の温度情報を連続的に得ることができる。そして、この
受光部40では、受光素子5a〜5nから信号処理回路
10までの経路部分の配線を単純化することができ、容
易に制作できる。
The first selector 30 and the second selector 31 are
It is controlled by the scan controller 32, and outputs one of the inputs by switching. This output is output to the signal processing circuit 10 as the detection signal. This light receiving part 4
With the configuration of 0, it is possible to continuously obtain temperature information in the one-dimensional direction that is the arrangement direction of the light receiving elements 5a to 5n without using the rotating sector 3. In the light receiving section 40, the wiring of the path portion from the light receiving elements 5a to 5n to the signal processing circuit 10 can be simplified and can be easily manufactured.

【0020】[0020]

【発明の効果】本発明の請求項1によれば、受光器を直
線状に配置することにより、該方向に対応する放射エネ
ルギーを検出自在であり、回転セクタにより受光器の出
力を該方向で走査出力する構成であるため、1次元方向
の温度を簡単な構成で容易に得ることができる。
According to the first aspect of the present invention, by arranging the light receivers linearly, the radiant energy corresponding to the direction can be detected, and the output of the light receivers in the direction can be detected by the rotating sector. Since the scanning output is employed, the temperature in the one-dimensional direction can be easily obtained with a simple configuration.

【0021】また、請求項2では、複数個の受光素子を
直線状に配置し、セレクタで順次切り換える構成である
から、受光素子の信号線を簡単な配線で形成することが
でき1次元方向の温度を得られる。
According to the second aspect of the invention, since the plurality of light receiving elements are arranged linearly and sequentially switched by the selector, the signal line of the light receiving element can be formed by a simple wiring, and the signal line of the one-dimensional direction can be formed. You can get the temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射温度測定装置を示す背面図。FIG. 1 is a rear view showing a radiation temperature measuring device of the present invention.

【図2】検出器の変形例を示す正面図。FIG. 2 is a front view showing a modified example of the detector.

【図3】受光部の変形例を示す図。FIG. 3 is a diagram showing a modified example of a light receiving unit.

【図4】従来の放射温度測定装置を示す図。FIG. 4 is a diagram showing a conventional radiation temperature measuring device.

【符号の説明】[Explanation of symbols]

1…受光部、2,20…検出器、3…回転セクタ、3a
…スリット、5(5a〜5n),21…受光素子、10
…信号処理回路、14…演算手段、30…第1セレク
タ、31…第2セレクタ、32…走査制御部。
1 ... Light receiving part, 2, 20 ... Detector, 3 ... Rotating sector, 3a
... slits, 5 (5a to 5n), 21 ... light receiving element, 10
... signal processing circuit, 14 ... arithmetic means, 30 ... first selector, 31 ... second selector, 32 ... scan control section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根本 洋三 東京都板橋区熊野町32番8号 株式会社チ ノー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yozo Nemoto 32-8, Kumano-cho, Itabashi-ku, Tokyo Chino Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の1次元方向の温度を該被測定
物の放射エネルギーに基づき測定する放射温度測定装置
において、 前記被測定物の一次元方向の放射エネルギーを検出する
ため、直線状に配置された検出器(2)と、 該検出器の前方に設けられる回転自在なスリット(3
a)を有して検出器に対する放射エネルギーの入射部分
を走査する回転セクタ(3)と、 前記検出器が出力する検出信号に基づき、前記被測定物
の温度を演算する信号処理回路(10)と、を具備する
ことを特徴とする放射温度測定装置。
1. A radiant temperature measuring device for measuring a temperature in a one-dimensional direction of an object to be measured based on radiant energy of the object to be measured. And a rotatable slit (3) provided in front of the detector (2).
A rotating sector (3) having a) for scanning an incident portion of radiant energy to the detector, and a signal processing circuit (10) for calculating the temperature of the object to be measured based on a detection signal output from the detector. And a radiation temperature measuring device.
【請求項2】 被測定物の1次元方向の温度を該被測定
物の放射エネルギーに基づき測定する放射温度測定装置
において、 前記被測定物の1次元方向の放射エネルギーを検出する
ため、直線状に複数個配置される受光素子(5a〜5
n)と、 該複数の受光素子の各電極を切り換えることにより受光
素子を選択的に走査するセレクタ(30,31,32)
と、 前記受光素子が出力する検出信号に基づき、前記被測定
物の温度を演算する信号処理回路(10)と、を具備す
ることを特徴とする放射温度測定装置。
2. A radiation temperature measuring device for measuring the temperature of a measured object in the one-dimensional direction based on the radiant energy of the measured object. A plurality of light receiving elements (5a-5
n) and a selector (30, 31, 32) for selectively scanning the light receiving element by switching each electrode of the plurality of light receiving elements
And a signal processing circuit (10) for calculating the temperature of the object to be measured based on a detection signal output from the light receiving element.
JP4064748A 1992-03-23 1992-03-23 Radiation temperature measuring instrument Pending JPH05264359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064748A JPH05264359A (en) 1992-03-23 1992-03-23 Radiation temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064748A JPH05264359A (en) 1992-03-23 1992-03-23 Radiation temperature measuring instrument

Publications (1)

Publication Number Publication Date
JPH05264359A true JPH05264359A (en) 1993-10-12

Family

ID=13267096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064748A Pending JPH05264359A (en) 1992-03-23 1992-03-23 Radiation temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPH05264359A (en)

Similar Documents

Publication Publication Date Title
JP2001519914A (en) Combined torque and angular position sensor
US4596930A (en) Arrangement for multispectal imaging of objects, preferably targets
KR0135402B1 (en) Thermal-image detecting apparatus
US5021660A (en) Pyroelectric infrared detector and driving method therefor
US3398285A (en) Spectro-radiometer with means for eliminating background noise
JPH05264359A (en) Radiation temperature measuring instrument
US3508068A (en) Optical strip mapping system
US4737642A (en) Arrangement for multispectral imaging of objects, preferably targets
JPH10232167A (en) Measuring device for temperature distribution
JPH0862342A (en) Human body detecting device
US4234789A (en) Observation optical apparatus
JP2689644B2 (en) Pyroelectric infrared detector
US3450889A (en) Radiation sensitive apparatus for measuring linear dimensions
JP2523948B2 (en) Pyroelectric infrared detector
US3495086A (en) Selective target photodetector of the matrix type
CA1248199A (en) Infra red photo detector systems
JP3216523B2 (en) Infrared detector
JP3422619B2 (en) Pyroelectric infrared sensor and device
JP2644822B2 (en) Infrared detector
JPH051954A (en) Temperature distribution measuring device
JP3207689B2 (en) Pyroelectric infrared device and infrared sensor
JPH0694517A (en) Image forming device
JPH0341305A (en) Pyroelectric device for detecting infrared ray
US3855474A (en) Non-scanning object position indicating radiometric device independent of object irradiance variations
US4496833A (en) Detection process and apparatus