JPH0526431B2 - - Google Patents

Info

Publication number
JPH0526431B2
JPH0526431B2 JP57152613A JP15261382A JPH0526431B2 JP H0526431 B2 JPH0526431 B2 JP H0526431B2 JP 57152613 A JP57152613 A JP 57152613A JP 15261382 A JP15261382 A JP 15261382A JP H0526431 B2 JPH0526431 B2 JP H0526431B2
Authority
JP
Japan
Prior art keywords
capacitor
snubber
self
inverter device
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57152613A
Other languages
Japanese (ja)
Other versions
JPS5944978A (en
Inventor
Hiroshi Fukui
Arata Kimura
Kiichi Tokunaga
Masayoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15261382A priority Critical patent/JPS5944978A/en
Publication of JPS5944978A publication Critical patent/JPS5944978A/en
Publication of JPH0526431B2 publication Critical patent/JPH0526431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 本発明は自己消弧形スイツチング素子から成る
インバータ装置に係り、特に上記スイツチング素
子に並列接続されるスナバ回路の損失を低減する
のに好適なインバータ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inverter device comprising a self-extinguishing switching element, and more particularly to an inverter device suitable for reducing loss in a snubber circuit connected in parallel to the switching element.

トランジスタやゲートターンオフサイリスタ等
の自己消弧形スイツチング素子には、ターンオフ
時の印加電圧を吸収するために、通常スナバ回路
が並列接続される。スナバ回路は一般にはコンデ
ンサと抵抗とを含み、このコンデンサは上記スイ
ツチング素子のターンオフ時には充電され、ター
ンオン時には上記抵抗を介して放電される。従つ
て上記スイツチング素子をオンオフすれば、スナ
バ回路に損失が生ずる(その損失の大部分は抵抗
の熱損失である。)。
Self-extinguishing switching elements such as transistors and gate turn-off thyristors are usually connected in parallel with a snubber circuit in order to absorb the voltage applied during turn-off. A snubber circuit generally includes a capacitor and a resistor, the capacitor being charged when the switching element is turned off and discharged through the resistor when the switching element is turned on. Therefore, when the switching element is turned on and off, a loss occurs in the snubber circuit (most of the loss is heat loss in the resistance).

インバータ装置をこのようなスナバ回路付きの
自己消弧形スイツチング素子で構成した場合、そ
の運転により必然的にスナバ回路損失が生ずる。
そしてインバータ駆動周波数の増大に伴つてスナ
バ回路損失も当然大きくなるのである。
When an inverter device is configured with such a self-extinguishing switching element with a snubber circuit, snubber circuit loss inevitably occurs during its operation.
Naturally, as the inverter drive frequency increases, the snubber circuit loss also increases.

従つて本発明の目的は、スナバ回路損失の極め
て小さいインバータ装置を提供することにある。
Therefore, an object of the present invention is to provide an inverter device with extremely low snubber circuit loss.

本発明の要点は、スナバ回路から抵抗を取り除
き、スナバコンデンサに蓄えられたエネルギー
を、スナバコンデンサと新たに設けたリアクトル
との共振回路を利用して電源側に返還するところ
にある。以下実地例にそつて本発明を詳述する。
説明の都合上、自己消弧形スイツチング素子とし
てはゲートターンオフサイリスタ(以下GTOと
略す)を例にとるが、本発芸GTOに限定される
わけではない。
The key point of the present invention is to remove the resistance from the snubber circuit and return the energy stored in the snubber capacitor to the power source using a resonant circuit between the snubber capacitor and a newly provided reactor. The present invention will be explained in detail below with reference to practical examples.
For convenience of explanation, a gate turn-off thyristor (hereinafter abbreviated as GTO) will be taken as an example of a self-extinguishing switching element, but the invention is not limited to the present GTO.

第1図は本発明を単相インバータに適用した実
施例である。図のように直流電源1の両電極間に
は、GTO2とGTO4とを直列接続した組と、
GTO6とGTO8とを直列接続した組とが接続さ
れ、GTO2とGTO4の接続点とGTO6とGTO
8の接続点との間には負荷10が接続される。各
GTO2,4,6,8には、還流ダイオード12,
14,16,18がそれぞれ逆並列接続され(還
流ダイオードは電圧形インバータに必要で、電流
形インバータでは不要である)、さらにスナバコ
ンデンサ22,24,26,28とダイオード3
2,34,36,38の直列接続体がそれぞれ逆
並列接続される。一方電流電源1の両電極間に
は、第1のコンデンサ42と第2のコンデンサ4
4が直列接続される。このコンデンサ42,44
は常に電流電源1により充電されており、事実上
インバータの電源としての機能を有する。直流電
源1の電圧値をEとすれば、各コンデンサ42,
44はそれぞれ電圧値E/2に分圧される。そし
てこのコンデンサ42,44の接続点と上記スナ
バコンデンサとダイオードの各接続点は、リアク
トル46,48とスイツチ素子(SW)52,5
4,56,58を介してそれぞれ接続される。
FIG. 1 shows an embodiment in which the present invention is applied to a single-phase inverter. As shown in the figure, between both electrodes of DC power supply 1, there is a set of GTO2 and GTO4 connected in series,
A set in which GTO6 and GTO8 are connected in series is connected, and the connection point between GTO2 and GTO4 and the connection point between GTO6 and GTO
A load 10 is connected between the connection point 8 and the connection point 8. each
GTO2, 4, 6, 8 have freewheeling diodes 12,
14, 16, and 18 are connected in antiparallel, respectively (free-wheeling diodes are necessary for voltage source inverters, and unnecessary for current source inverters), and snubber capacitors 22, 24, 26, and 28 and diode 3 are connected.
2, 34, 36, and 38 series connections are connected in antiparallel, respectively. On the other hand, a first capacitor 42 and a second capacitor 4 are connected between both electrodes of the current power source 1.
4 are connected in series. This capacitor 42, 44
is always charged by the current power source 1, and effectively functions as a power source for the inverter. If the voltage value of the DC power supply 1 is E, each capacitor 42,
44 are each divided into voltage values E/2. The connection points between the capacitors 42 and 44 and the connection points between the snubber capacitor and the diode are connected to reactors 46 and 48 and switch elements (SW) 52 and 5.
4, 56, and 58, respectively.

第2図は第1図のインバータの動作説明図であ
る。図のようにGTO2とGTO8は同時にオンオ
フされ、GTO4とGTO6はそれらと逆の位相で
オンオフされる。これらのGTOがオンして微小
時間経過後、SW52,58,54,56がそれ
ぞれオンされる。これはスナバコンデンサに蓄積
されたエネルギーを電源側に返還するためであ
る。その返還方法を次に詳述する。
FIG. 2 is an explanatory diagram of the operation of the inverter shown in FIG. 1. As shown in the figure, GTO2 and GTO8 are turned on and off at the same time, and GTO4 and GTO6 are turned on and off in the opposite phase. After a short time elapses after these GTOs are turned on, SWs 52, 58, 54, and 56 are turned on, respectively. This is to return the energy stored in the snubber capacitor to the power supply side. The method of return will be explained in detail below.

まず第2図時刻t1ではGTO2,8はオフで
GTO4,6がオンの状態である。このとき負荷
電流は「42−6−10−4−44−42」の経路を流れ
ている。この時刻t1に先だつてGTO2,8がオ
フしGTO4,6がオンした時刻t0の直後、GTO
2,8のスナバ回路に電流が「42−22−32−4−
44−42」の経路と、「42−6−38−28−44−41」
の経路とに流れ、スナバコンデンサ22,28は
それぞせ図示の極性に電源電圧Eまで充電されて
いる。時刻t2でGTO2,8がオンしGTO4,6
がオフすると、負荷電流は「42−2−10−8−44
−42」の経路を流れる。このときスナバコンデン
サ22,28は独りでには放電しない。しかし時
刻t3でSW52,58をオンすると、2つの共振
回路「22−42−46−52−22」と「28−58−48−44
−28」とが形成される。スナバコンデンサ22,
28の電圧Eであり、コンデンサ42,44の電
圧がE/2であるため、その差E/2を電圧源と
して上記の共振回路が動作する。
First, at time t 1 in Figure 2, GTO 2 and 8 are off.
GTO4 and 6 are on. At this time, the load current is flowing through the path "42-6-10-4-44-42". Immediately after time t 0 when GTO 2 and 8 are turned off and GTO 4 and 6 are turned on prior to this time t 1 , GTO
The current in the snubber circuits 2 and 8 is 42-22-32-4-
44-42” route and “42-6-38-28-44-41”
The snubber capacitors 22 and 28 are each charged to the power supply voltage E with the polarity shown. At time t 2 , GTO2 and 8 are turned on and GTO4 and 6 are turned on.
is turned off, the load current becomes ``42-2-10-8-44
-42'' path. At this time, the snubber capacitors 22 and 28 do not discharge on their own. However, when SW52 and 58 are turned on at time t3 , two resonance circuits "22-42-46-52-22" and "28-58-48-44" are created.
-28'' is formed. snubber capacitor 22,
Since the voltage of the capacitors 42 and 44 is E/2, the above-mentioned resonant circuit operates using the difference E/2 as a voltage source.

すなわち、コンデンサ22の電荷は、42−46−
52の経路で放電し、さらにコンデンサ22の電圧
が0になつた後は、リアクトル46の電流が32−
12−42の経路で流れつづけるので、スナバコンデ
ンサ22のエネルギーが非常に効率よく電源コン
デンサ42に回収される。
That is, the charge on the capacitor 22 is 42−46−
52, and after the voltage of the capacitor 22 becomes 0, the current of the reactor 46 becomes 32-
Since the energy continues to flow along the path 12-42, the energy in the snubber capacitor 22 is recovered to the power supply capacitor 42 very efficiently.

以上のように本発明は、電源電圧がE/2にな
るように電源コンデンサ42,44を分割し、電
源電圧Eまで充電されたスナバコンデンサとの電
圧差で共振回路を動作させたことに大きな特徴が
ある。SW52,58としてサイリスタを用いれ
ば、スナバコンデンサが放電した時点t4でSW5
2,58は独りでにオフする。この動作はスナバ
コンデンサ24,26の放電のときも同様であ
る。
As described above, the present invention has a major advantage in that the power supply capacitors 42 and 44 are divided so that the power supply voltage becomes E/2, and the resonant circuit is operated by the voltage difference between the power supply capacitor 42 and the snubber capacitor charged to the power supply voltage E. It has characteristics. If thyristors are used as SW52 and 58 , SW5
2,58 turns off by itself. This operation is similar when the snubber capacitors 24 and 26 are discharged.

第3図は本発明を3相インバータに適用した実
施例である。図において、第1図と同符号のもの
は同一物を示す。ブロツク64,66はそれぞれ
破線ブロツク62と同様な構成であり、各ブロツ
ク62,64,66の出力は3相負荷101,1
02,103にそれぞれ接続される。またコンデ
ンサ42,44の接続点はリアクトル46,4
8,49を介してそれぞれブロツク62,64,
66に接続される。その動作は第1図の同様なの
で説明は省略する。
FIG. 3 shows an embodiment in which the present invention is applied to a three-phase inverter. In the figures, the same reference numerals as in FIG. 1 indicate the same parts. The blocks 64 and 66 have the same configuration as the broken line block 62, and the outputs of the blocks 62, 64 and 66 are the three-phase loads 101 and 1.
02 and 103, respectively. In addition, the connection point of capacitors 42 and 44 is connected to reactors 46 and 4.
8 and 49 respectively to blocks 62, 64,
66. The operation is similar to that shown in FIG. 1, so the explanation will be omitted.

以上のように本発明によれば、スナバコンデン
サのエネルギーを電源側に返還するものであるか
ら、スナバ回路損失の極めて小さいインバータ装
置を得ることができる。
As described above, according to the present invention, since the energy of the snubber capacitor is returned to the power supply side, it is possible to obtain an inverter device with extremely low snubber circuit loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を単相インバータに適用した実
施例を示す図、第2図は第1図の動作説明図、第
3図は本発明を3相インバータに適用した実施例
を示す図である。 1……直流電源、2,4,6,8……GTO、
22,24,26,28……スナバコンデンサ、
32,34,36,38……ダイオード、42,
44……コンデンサ、46,48……リアクト
ル。
Fig. 1 is a diagram showing an embodiment in which the present invention is applied to a single-phase inverter, Fig. 2 is an explanatory diagram of the operation of Fig. 1, and Fig. 3 is a diagram showing an embodiment in which the present invention is applied to a three-phase inverter. be. 1...DC power supply, 2, 4, 6, 8...GTO,
22, 24, 26, 28... snubber capacitor,
32, 34, 36, 38...diode, 42,
44... Capacitor, 46, 48... Reactor.

Claims (1)

【特許請求の範囲】 1 直流電源の両電極間に自己消弧形スイツチン
グ素子を直列接続したものを少なくとも1組接続
し、その直列接続点から出力を得るようにしたイ
ンバータ装置において、上記直流電源の両電極間
に接続される第1のコンデンサと第2のコンデン
サの直列接続体、上記自己消弧形スイツチング素
子のそれぞれに並列接続されるスナバコンデンサ
とダイオードの直列接続体、上記第1のコンデン
サと第2のコンデンサの接続点と上記スナバコン
デンサとダイオードの各接続点との間に接続され
るリアクトルとスイツチ素子の直列接続体を備
え、 上記自己消弧形スイツチング素子がオンして微
小時間経過後に上記スイツチ素子をオンすること
により、上記スナバコンデンサに蓄積されたエネ
ルギーを直流電源側に返還するようにしたことを
特徴とするインバータ装置。 2 特許請求の範囲第1項において、前記自己消
弧形スイツチング素子はゲートターンオフサイリ
スタであることを特徴とするインバータ装置。 3 特許請求の範囲第1項又は第2項において、
前記スイツチ素子はサイリスタであることを特徴
とするインバータ装置。
[Scope of Claims] 1. An inverter device in which at least one set of self-arc-extinguishing switching elements connected in series is connected between both electrodes of a DC power source, and an output is obtained from the series connection point. a series connection body of a first capacitor and a second capacitor connected between both electrodes of the device, a series connection body of a snubber capacitor and a diode connected in parallel to each of the self-extinguishing switching elements, and the first capacitor A series connection body of a reactor and a switching element is connected between the connection point of the second capacitor and each connection point of the snubber capacitor and the diode, and the self-extinguishing switching element is turned on and a minute time elapses. An inverter device characterized in that the energy stored in the snubber capacitor is returned to the DC power source by turning on the switch element afterwards. 2. The inverter device according to claim 1, wherein the self-extinguishing switching element is a gate turn-off thyristor. 3 In claim 1 or 2,
An inverter device characterized in that the switch element is a thyristor.
JP15261382A 1982-09-03 1982-09-03 Inverter device Granted JPS5944978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15261382A JPS5944978A (en) 1982-09-03 1982-09-03 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15261382A JPS5944978A (en) 1982-09-03 1982-09-03 Inverter device

Publications (2)

Publication Number Publication Date
JPS5944978A JPS5944978A (en) 1984-03-13
JPH0526431B2 true JPH0526431B2 (en) 1993-04-16

Family

ID=15544211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15261382A Granted JPS5944978A (en) 1982-09-03 1982-09-03 Inverter device

Country Status (1)

Country Link
JP (1) JPS5944978A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075838A (en) * 1990-04-10 1991-12-24 York International Corporation Energy efficient voltage snubber circuit
JP5550648B2 (en) * 2009-07-27 2014-07-16 三菱電機株式会社 High frequency power supply

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768672A (en) * 1980-10-16 1982-04-27 Toshiba Corp Converter for power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768672A (en) * 1980-10-16 1982-04-27 Toshiba Corp Converter for power

Also Published As

Publication number Publication date
JPS5944978A (en) 1984-03-13

Similar Documents

Publication Publication Date Title
US4876635A (en) Series resonant inverter with lossless snubber-resetting components
US7646180B2 (en) Power losses reduction in switching power converters
US4611267A (en) Snubber arrangements with energy recovery for power converters using self-extinguishing devices
US4570212A (en) Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor
JPS58151877A (en) Inverter device
JPH0526431B2 (en)
JPS6127989B2 (en)
JPH0667176B2 (en) Gate turn-off thyristor device
JPH0731158A (en) Snubber energy recovery circuit for power converter
JP2555621B2 (en) Inverter energy recovery circuit
JP2528811B2 (en) Power converter
JPH0336221Y2 (en)
JPH06189563A (en) Inverter
JPS589517Y2 (en) Inverter device
JPH0197175A (en) Energy recovery circuit for inverter
JPH06209580A (en) Snubber energy recovery circuit of power converter
JPH0221233B2 (en)
JPS62217864A (en) Snubber circuit for inverter
RU2249908C1 (en) Power system of hysteresis motors
JPS59226669A (en) Inverter device
JP3246159B2 (en) DC-AC converter
JPS60214564A (en) Snubber circuit of gate turn-off thyristor
JPS61170236A (en) Snubber circuit for semiconductor switching element
JPH0324152B2 (en)
JPH1175361A (en) Snubber circuit of inverter