JPH05263841A - Electromagnetic control spring clutch mechanism - Google Patents

Electromagnetic control spring clutch mechanism

Info

Publication number
JPH05263841A
JPH05263841A JP5016847A JP1684793A JPH05263841A JP H05263841 A JPH05263841 A JP H05263841A JP 5016847 A JP5016847 A JP 5016847A JP 1684793 A JP1684793 A JP 1684793A JP H05263841 A JPH05263841 A JP H05263841A
Authority
JP
Japan
Prior art keywords
clutch mechanism
spring clutch
shaft member
rotor
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5016847A
Other languages
Japanese (ja)
Other versions
JP2720266B2 (en
Inventor
Kozo Nishimura
興三 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP5016847A priority Critical patent/JP2720266B2/en
Publication of JPH05263841A publication Critical patent/JPH05263841A/en
Application granted granted Critical
Publication of JP2720266B2 publication Critical patent/JP2720266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/105Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with a helical band or equivalent member co-operating with a cylindrical coupling surface

Abstract

PURPOSE:To ensure that the output rotation element of an electromagnetic control spring clutch mechanism is inhibited when an electromagnetic means is inactive. CONSTITUTION:An electromagnetic control spring clutch mechanism 2 has a shaft member 4 which is an output rotation element, an input rotation element rotatively attached to the shaft member 4, and a spring clutch mechanism 8, 10 which are disposed on the shaft member 4 and transmits a driving force from the input rotation element to the shaft member 4. This mechanism also has a brake means 180 for controlling the rotational motion of the shaft member 4, provided for the shaft member 4 which is an output rotation element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁制御ばねクラッチ
機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetically controlled spring clutch mechanism.

【0002】[0002]

【従来の技術】従来から、回転駆動される入力回転要素
の駆動力を伝達するために、コイルばね手段を利用した
電磁制御ばねクラッチ機構が使用されている。この種の
電磁制御ばねクラッチ機構の一例として例えば特開昭5
9−175633号公報に開示されているものがあり、
かかる電磁制御ばねクラッチ機構は、入力回転要素が固
定され且つ出力回転要素が回転自在に装着された軸部材
と、軸部材と一体に回転せしめられるロータと、ロータ
の片側に配設されたアマチュア組立体であって、ロータ
の片面に対向して位置するアマチュア、軸部材に回転自
在に装着された支持部材、及びアマチュアをロータの片
面から離隔する方向に偏倚せしめる偏倚ばね部材を含む
アマチュア組立体と、偏倚ばね部材の弾性偏倚作用に抗
してアマチュアをロータの上記片面に磁気的に吸着せし
める電磁手段と、一端がアマチュア組立体に連結され、
他端が出力回転要素に連結されたコイルばね手段を備え
ている。かかるクラッチ機構においては、電磁手段が除
勢されているときには入力回転要素の駆動力は出力回転
要素に伝達されないが、電磁手段が付勢されるとアマチ
ュア組立体と出力回転要素が相対的に回転され、これに
よってコイルばね手段が収縮され、かくして入力回転要
素の駆動力が出力回転要素に伝達される。
2. Description of the Related Art Conventionally, an electromagnetically controlled spring clutch mechanism utilizing coil spring means has been used to transmit a driving force of an input rotary element that is rotationally driven. An example of this type of electromagnetically controlled spring clutch mechanism is, for example, Japanese Patent Laid-Open No.
There is one disclosed in Japanese Patent Publication No. 9-175633,
Such an electromagnetically controlled spring clutch mechanism includes a shaft member to which an input rotary element is fixed and an output rotary element is rotatably mounted, a rotor rotated integrally with the shaft member, and an armature assembly arranged on one side of the rotor. An armature assembly that is three-dimensional and that includes an armature that faces one surface of the rotor, a support member that is rotatably mounted on a shaft member, and a biasing spring member that biases the armature in a direction away from the one surface of the rotor. An electromagnetic means for magnetically attracting the armature to the one side of the rotor against the elastic biasing action of the biasing spring member, and one end connected to the armature assembly,
The other end comprises a coil spring means connected to the output rotary element. In such a clutch mechanism, the driving force of the input rotary element is not transmitted to the output rotary element when the electromagnetic means is deenergized, but the armature assembly and the output rotary element relatively rotate when the electromagnetic means is biased. This causes the coil spring means to contract, thus transmitting the driving force of the input rotary element to the output rotary element.

【0003】[0003]

【発明が解決しようとする課題】而して、上述した形態
の電磁制御ばねクラッチ機構に限定されるわけではない
が、電磁制御ばねクラッチ機構においては、入力回転要
素と、軸部材との間の摩擦力が大きいときには、電磁手
段が除勢されているときにも入力回転要素からの駆動力
が出力回転要素に伝達され、これによって出力回転要素
が回転する虞があった。
The electromagnetically controlled spring clutch mechanism is not limited to the above-described electromagnetically controlled spring clutch mechanism, but the electromagnetically controlled spring clutch mechanism has a structure in which the input rotary element and the shaft member are connected to each other. When the frictional force is large, the driving force from the input rotary element is transmitted to the output rotary element even when the electromagnetic means is deenergized, which may cause the output rotary element to rotate.

【0004】本発明は上記に点に鑑みてなされたもので
あり、その主たる技術的課題は、電磁制御ばねクラッチ
機構において、電磁手段が除勢されているときにおいて
出力回転要素が回転するのを確実に防止することであ
る。
The present invention has been made in view of the above points, and its main technical problem is to prevent the output rotary element from rotating in the electromagnetically controlled spring clutch mechanism when the electromagnetic means is deenergized. To prevent it surely.

【0005】[0005]

【課題を解決するための手段】上記技術的課題を達成す
るために、本発明によれば、該軸部材に回転自在に装着
され回転駆動される入力回転要素と、該回転軸と一体に
回転せしめられるロータと、該ロータに対向して位置す
るアマチュアと、該アマチュアを該ロータから離隔する
方向に弾性的に偏倚する偏倚ばね部材と、付勢されると
該偏倚ばね部材の弾性偏倚作用に抗して該アマチュアを
該ロータに磁気的に吸着せしめる電磁手段と、収縮する
ことによって該入力回転要素からの駆動力を該軸部材に
伝達するためのコイルばね手段とを具備するばねクラッ
チ機構と、を有する電磁制御ばねクラッチ機構におい
て、該軸部材の回動を制動するためのブレーキ手段を設
けた、ことを特徴とする電磁制御ばねクラッチ機構が提
供される。
In order to achieve the above technical object, according to the present invention, an input rotary element rotatably mounted on the shaft member and driven to rotate, and a rotary shaft that rotates together with the input rotary element. A biased rotor, an armature facing the rotor, a biasing spring member that elastically biases the armature away from the rotor, and an elastic biasing action of the biasing spring member when biased. A spring clutch mechanism comprising: electromagnetic means for magnetically attracting the armature to the rotor, and coil spring means for contracting to transmit the driving force from the input rotary element to the shaft member. An electromagnetic control spring clutch mechanism is provided, in which brake means for braking the rotation of the shaft member is provided.

【0006】[0006]

【作用】本発明の電磁制御ばねクラッチ機構において
は、出力回転要素である該軸部材は、該ブレーキ手段に
よって常時回転を抑制するための制動力が作用せしめら
れている。従って、電磁手段が除勢されているときにお
いて出力回転要素が回転するのを確実に防止することが
できるとともに、電磁手段の付勢後に除勢されたときに
おいても出力回転要素の回転を瞬時に停止することがで
きる。
In the electromagnetically controlled spring clutch mechanism of the present invention, the shaft member, which is the output rotation element, is applied with a braking force for constantly suppressing rotation by the braking means. Therefore, it is possible to reliably prevent the output rotary element from rotating when the electromagnetic means is deenergized, and instantaneously rotate the output rotary element even when the electromagnetic means is deenergized after being biased. You can stop.

【0007】[0007]

【実施例】以下、添付図面を参照して、本発明に従って
構成された電磁制御ばねクラッチ機構の一実施例につい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electromagnetically controlled spring clutch mechanism constructed according to the present invention will be described below with reference to the accompanying drawings.

【0008】図示の実施例は所定方向及び所定方向と反
対方向に回転駆動される入力回転要素の駆動力を出力側
に伝達することができる電磁制御ばねクラッチ機構に本
発明を適用したものである。
In the illustrated embodiment, the present invention is applied to an electromagnetically controlled spring clutch mechanism capable of transmitting the driving force of an input rotary element, which is rotationally driven in a predetermined direction and a direction opposite to the predetermined direction, to an output side. ..

【0009】主として図1を参照して、全体を番号2で
示す図示の電磁制御ばねクラッチ機構は、軸部材4と、
該軸部材4に回転自在に装着された歯車6の如き入力回
転要素と、第1のばねクラッチ機構8、第2のばねクラ
ッチ機構10及びブレーキ手段180とを備えている。
軸部材4は、図1に示す如く、例えば支持基体12及び
14に回転自在に装着され、軸部材4の支持基体12及
び14間の部位に歯車6、第1のばねクラッチ機構8及
び第2のばねクラッチ機構10が配置されている。この
軸部材4には、例えば、接続手段16を介して作動軸1
8(図1において二点鎖線で示す)が接続される。実施
例においては、軸部材4の一端部は支持基体12を貫通
して外方に突出している(この突出端部の一部は、軸受
20を介して回転自在に支持されている)。接続手段1
6は円筒状の接続部材22を備えている。接続部材22
の一端部には比較的大径の受け凹部24aが設けられて
おり、かかる受け凹部24a内に作動軸18の小径端部
18aを位置付けて固定用ねじ26を螺着することによ
って接続部材22と作動軸18が連結されている。ま
た、接続部材22の他端部にも比較的小径の受け凹部2
4b(実施例では、受け凹部24a及び24bは相互に
連通している)が設けられており、かかる受け凹部24
b内に軸部材4の突出端部を位置付けて固定用ねじ28
を螺着することによって接続部材22と軸部材4が連結
されている。固定用ねじ26及び28に代えて、固定用
ピンによって両者を連結することもできる。従って、後
述する如く軸部材4が回転されると、接続手段26を介
して作動軸18も軸部材4と一体に回転せしめられる。
Referring mainly to FIG. 1, the illustrated electromagnetically controlled spring clutch mechanism, generally designated by the numeral 2, includes a shaft member 4,
An input rotary element such as a gear 6 rotatably mounted on the shaft member 4, a first spring clutch mechanism 8, a second spring clutch mechanism 10 and a braking means 180 are provided.
As shown in FIG. 1, the shaft member 4 is rotatably attached to, for example, the support bases 12 and 14, and the gear 6, the first spring clutch mechanism 8 and the second spring clutch mechanism 8 and the second spring clutch mechanism 8 are provided on the shaft member 4 between the support bases 12 and 14. The spring clutch mechanism 10 of FIG. The operating shaft 1 is connected to the shaft member 4 via a connecting means 16, for example.
8 (indicated by a chain double-dashed line in FIG. 1) are connected. In the embodiment, one end of the shaft member 4 penetrates the support base 12 and projects outward (a part of this projecting end is rotatably supported via the bearing 20). Connection means 1
6 includes a cylindrical connecting member 22. Connection member 22
Is provided with a relatively large diameter receiving recess 24a at one end thereof, and the small diameter end 18a of the actuating shaft 18 is positioned in the receiving recess 24a and the fixing screw 26 is screwed into the receiving member 24a so that The operating shaft 18 is connected. Further, the receiving recess 2 having a relatively small diameter is also provided at the other end of the connecting member 22.
4b (in the embodiment, the receiving recesses 24a and 24b are in communication with each other) are provided.
Position the protruding end of the shaft member 4 in b and fix the screw 28 for fixing.
The connecting member 22 and the shaft member 4 are connected by screwing. Instead of the fixing screws 26 and 28, a fixing pin may be used to connect them. Therefore, when the shaft member 4 is rotated as described later, the operating shaft 18 is also rotated integrally with the shaft member 4 via the connecting means 26.

【0010】次に、図1と共に図2を参照して、第1の
ばねクラッチ機構8及びそれに関連する要素について説
明する。実施例においては、軸部材4の支持基体12及
び14間の軸線方向実質上中央部には、大径部4aが設
けられており、かかる大径部4aに歯車6が回転自在に
装着され、かかる歯車6と片方の支持基体12間に第1
のばねクラッチ機構8が配置され、上記歯車6と他方の
支持基体14間に後述する第2のばねクラッチ機構10
が配置されている。
Next, the first spring clutch mechanism 8 and its related elements will be described with reference to FIG. 1 as well as FIG. In the embodiment, a large diameter portion 4a is provided substantially in the center in the axial direction between the support bases 12 and 14 of the shaft member 4, and the gear 6 is rotatably mounted on the large diameter portion 4a. Between the gear 6 and the one supporting base 12, the first
Second spring clutch mechanism 8 is arranged, and a second spring clutch mechanism 10 described later is provided between the gear 6 and the other support base 14.
Are arranged.

【0011】図示の第1のばねクラッチ機構8は、ロー
タ30、アマチュア組立体32、電磁手段34及びコイ
ルばね手段36を含んでいる。更に説明すると、電磁手
段34は、軸部材4の一端部、詳しくは軸部材4の支持
基体12の内側部位に配置されている。図示の電磁手段
34はフィールドコア38と、フィールドコア38に装
着された電磁コイル40を有し、フィールドコア38が
スリーブ部材42を介して軸部材4に回転自在に装着さ
れている(図1参照)。フィールドコア38の外周面に
は係止部44が設けられ、係止部44には切欠き46が
形成されている。一方、支持基体12には、その一部を
後方に折曲せしめることによって係止突起48が設けら
れており、かかる係止突起48が上記係止部44の切欠
き46に係止されている(図1参照)。従って、電磁手
段34は、後述する軸部材4の回転によって回動される
ことがない。
The illustrated first spring clutch mechanism 8 includes a rotor 30, an armature assembly 32, an electromagnetic means 34 and a coil spring means 36. More specifically, the electromagnetic means 34 is arranged at one end of the shaft member 4, specifically, at an inner portion of the support base 12 of the shaft member 4. The illustrated electromagnetic means 34 has a field core 38 and an electromagnetic coil 40 mounted on the field core 38, and the field core 38 is rotatably mounted on the shaft member 4 via a sleeve member 42 (see FIG. 1). ). A locking portion 44 is provided on the outer peripheral surface of the field core 38, and a cutout 46 is formed in the locking portion 44. On the other hand, the supporting base 12 is provided with a locking projection 48 by bending a part thereof rearward, and the locking projection 48 is locked in the notch 46 of the locking portion 44. (See Figure 1). Therefore, the electromagnetic means 34 is not rotated by the rotation of the shaft member 4 described later.

【0012】また、軸部材4の電磁手段34と歯車6と
の間の部位、即ち電磁手段34の内側には、ロータ30
及びアマチュア組立体32が配設されている。具体例に
おいてはロータ30及びアマチュア組立体32が第1の
ボス部材50に所要の通り装着され、ロータ30、アマ
チュア組立体32及び第1のボス部材50がユニット化
されてユニット組立体を構成する。図3をも参照して、
第1のボス部材50は、一端部(図1乃至図3において
左端部)に設けられた小径部52と、他端部(図1乃至
図3において右端部)に設けられた大径部54と、その
中間部に設けられた中径部56とを有している。第1の
ボス部材50の小径部52にはピン受部を規定する一対
の切欠き58が形成されており、かかる切欠き58に軸
部材4を貫通して形成されたピン孔60(図2)に装着
されるピン部材62の両端部が受入れられる。また、図
示のロータ30は、環状基部64と、環状基部64の外
側に配置された環状部66と、環状基部64及び環状部
66を接続する接続部68を有している。かかるロータ
30は、環状基部64を第1のボス部材50の小径部5
2に圧入することによってその一端に固定され、第1の
ボス部材50と一体に回転される。実施例では、ロータ
30が第1のボス部材50の小径部52に固定されるこ
とに関連して、ロータ30の環状基部64の内周縁に
も、一対の凹部70が形成されている。ロータ30に形
成された凹部70は、上記第1のボス部材50に形成さ
れた切欠き58と協働してピン受部を規定し、図4に拡
大して示す如く、軸部材4に装着されたピン部材62の
両端部は上記切欠き58及び上記凹部70に受入れられ
る(従って、ロータ30を第1のボス部材50の小径部
52に固定する際には、ロータ30の凹部70と小径部
52の切欠き58を整合させて圧入する)。かく構成す
ることによって、ロータ30と第1のボス部材50の小
径部52の圧入状態が比較的弱い場合においても、ロー
タ30はピン部材62を介して軸部材4と一体に確実に
回転される。また、実施例のアマチュア組立体32は、
アマチュア72、支持部材74及び偏倚ばね部材76を
含んでいる。支持部材74は短筒状の部材から構成さ
れ、第1のボス部材50の中径部56に回転自在に装着
されている。支持部材74の一端面(図1乃至図4にお
いて左面)内周縁には、環状フランジ78が設けられて
いる。この支持部材74は、軽量のプラスチックから形
成するのが好ましい。アマチュア72はロータ30の環
状部66の外径と略同一の外径を有する環状板から構成
され、偏倚ばね部材76を介して上記支持部材74に装
着されている。更に説明すると、偏倚ばね部材76は支
持部材74の環状フランジ78に装着され、その環状中
央部80が支持部材74の一端面に後述する如く固定さ
れている。図示の偏倚ばね部材76は環状中央部80か
ら外側に鎌状に延びる複数個(実施例においては3個)
の突出部82を有し、複数個の突出部82の各々の自由
端部がアマチュア72の片面(ロータ30と対向する面
とは反対の面)にリベットの如き固定部材84により固
定されている。従って、ロータ30の片側、即ち図1に
おいて右側にアマチュア組立体32が配設され、偏倚ば
ね部材76はアマチュア72をロータ30の片面、即ち
図1において右面から離隔する方向に弾性的に偏倚せし
める作用をする。実施例に示す如く、偏倚ばね部材76
は次の通りにして支持部材76に固定されるのが好まし
い。図示のアマチュア組立体32は、更に、プレート状
のばね固定部材を含んでいる。図示のばね固定部材は偏
倚ばね部材76の環状中央部80の形状に略対応した環
状のプレート部材86から構成されている。このプレー
ト部材86の周縁部には、その一部を折曲せしめること
によって周方向に間隔を置いて複数個(実施例では3
個)の係止突部88が設けられている。一方、偏倚ばね
部材76の環状中央部80には上記係止突部88の各々
に対応して複数個(実施例では3個)の矩形状の挿通孔
90が形成され、更に支持部材74には上記挿通孔90
の各々に対応して矩形状の貫通孔92が形成されてい
る。従って、支持部材74の環状フランジ78に偏倚ば
ね部材76及びプレート部材86を装着すると、プレー
ト部材86の各係止突部88は対応する偏倚ばね部材7
6の挿通孔90及び支持部材74の貫通孔92を通して
支持部材74の他側に突出するようになり(図5に実線
で示す如く突出される)、かかる係止突部88の突出端
を所要の通り変形せしめて支持部材74の他端部に係止
せしめることによって、偏倚ばね部材76の環状中央部
80はプレート部材86と支持部材74間に固定され
る。実施例におけるプレート部材86の係止突部88の
支持部材74への係止は、図5に拡大して示す通りにす
るのが好ましい。即ち、図5に示す如く、支持部材74
の各貫通孔92の右端部(図1乃至図3及び図5におい
て右端部)を右方に向けて拡張せしめ、貫通孔92の拡
張部92a内に係止突部88の変形部を収容せしめるよ
うにするのが好ましく、かくすることによって、支持部
材74、偏倚ばね部材76及びプレート部材86から成
る組立要素を小型化することができる。尚、実施例のよ
うに貫通孔92に拡張部92aを設けた場合には、係止
突部88を変形せしめるためのポンチの如き加圧工具9
4の先端を凹状にし、その先端面94aが弧状面を規定
するようにするのが望ましい。かくすることにより、図
5に実線で示す如く突出せしめられている係止突部88
の突出部を加圧工具94の作用によって図5に一点鎖線
で示す如く所要の通り変形せしめてその変形部を貫通孔
92の拡張部92aに確実に係止せしめることができ
る。
The rotor 30 is provided at a portion of the shaft member 4 between the electromagnetic means 34 and the gear 6, that is, inside the electromagnetic means 34.
And an armature assembly 32 is provided. In the specific example, the rotor 30 and the armature assembly 32 are mounted on the first boss member 50 as required, and the rotor 30, the armature assembly 32, and the first boss member 50 are unitized to form a unit assembly. .. Referring also to FIG.
The first boss member 50 has a small diameter portion 52 provided at one end (the left end in FIGS. 1 to 3) and a large diameter portion 54 provided at the other end (the right end in FIGS. 1 to 3). And a medium diameter portion 56 provided in the middle portion thereof. The small diameter portion 52 of the first boss member 50 is formed with a pair of notches 58 that define a pin receiving portion, and a pin hole 60 formed by penetrating the shaft member 4 in the notches 58 (see FIG. 2). ), The both ends of the pin member 62 attached to () are received. Further, the illustrated rotor 30 includes an annular base portion 64, an annular portion 66 arranged outside the annular base portion 64, and a connecting portion 68 that connects the annular base portion 64 and the annular portion 66. In the rotor 30, the annular base portion 64 is provided in the small diameter portion 5 of the first boss member 50.
It is fixed to one end of the first boss member 50 by being press-fitted into the second boss member 50 and is rotated integrally with the first boss member 50. In the embodiment, as the rotor 30 is fixed to the small-diameter portion 52 of the first boss member 50, a pair of recesses 70 is also formed on the inner peripheral edge of the annular base portion 64 of the rotor 30. The recess 70 formed in the rotor 30 cooperates with the notch 58 formed in the first boss member 50 to define a pin receiving portion, and is attached to the shaft member 4 as shown in an enlarged view in FIG. Both ends of the pin member 62 thus formed are received in the notch 58 and the recess 70 (thus, when the rotor 30 is fixed to the small diameter portion 52 of the first boss member 50, the recess 70 and the small diameter portion of the rotor 30 are The notch 58 of the portion 52 is aligned and press-fitted). With this configuration, even when the press-fitted state of the rotor 30 and the small diameter portion 52 of the first boss member 50 is relatively weak, the rotor 30 is reliably rotated integrally with the shaft member 4 via the pin member 62. .. Further, the amateur assembly 32 of the embodiment is
The armature 72, the support member 74, and the bias spring member 76 are included. The support member 74 is composed of a short tubular member, and is rotatably attached to the medium diameter portion 56 of the first boss member 50. An annular flange 78 is provided on the inner peripheral edge of one end surface (left surface in FIGS. 1 to 4) of the support member 74. The support member 74 is preferably made of lightweight plastic. The armature 72 is composed of an annular plate having an outer diameter substantially the same as the outer diameter of the annular portion 66 of the rotor 30, and is mounted on the support member 74 via a biasing spring member 76. More specifically, the bias spring member 76 is mounted on the annular flange 78 of the support member 74, and the annular center portion 80 is fixed to one end surface of the support member 74 as described later. The bias spring members 76 shown in the figure are plural (three in the embodiment) extending outward from the annular central portion 80 in a sickle shape.
Of the plurality of protrusions 82, and the free end of each of the plurality of protrusions 82 is fixed to one surface of the armature 72 (the surface opposite to the surface facing the rotor 30) by a fixing member 84 such as a rivet. .. Therefore, the armature assembly 32 is disposed on one side of the rotor 30, that is, on the right side in FIG. 1, and the biasing spring member 76 elastically biases the armature 72 in the direction away from one side of the rotor 30, that is, the right side in FIG. To work. As shown in the embodiment, the biasing spring member 76
Is preferably fixed to the support member 76 as follows. The illustrated armature assembly 32 further includes a plate-shaped spring fixing member. The illustrated spring fixing member is composed of an annular plate member 86 substantially corresponding to the shape of the annular central portion 80 of the biasing spring member 76. The plate member 86 has a plurality of circumferentially spaced intervals (three in the embodiment) by bending a part of the plate member 86.
Locking projections 88 are provided. On the other hand, in the annular central portion 80 of the biasing spring member 76, a plurality of (three in the embodiment) rectangular insertion holes 90 are formed corresponding to each of the locking projections 88, and the supporting member 74 is further provided. Is the insertion hole 90
A rectangular through hole 92 is formed corresponding to each of the above. Therefore, when the bias spring member 76 and the plate member 86 are mounted on the annular flange 78 of the support member 74, the respective locking projections 88 of the plate member 86 are corresponding to the bias spring member 7.
6 through the through hole 90 of the support member 74 and the through hole 92 of the support member 74 to the other side of the support member 74 (projected as shown by the solid line in FIG. 5). The annular center portion 80 of the bias spring member 76 is fixed between the plate member 86 and the support member 74 by deforming as described above and engaging with the other end portion of the support member 74. The locking projection 88 of the plate member 86 in the embodiment is preferably locked to the support member 74 as enlargedly shown in FIG. That is, as shown in FIG.
The right end portion (the right end portion in FIGS. 1 to 3 and 5) of each through hole 92 is expanded rightward so that the deformed portion of the locking projection 88 is accommodated in the expanded portion 92a of the through hole 92. This is preferable, and the assembly element including the support member 74, the biasing spring member 76, and the plate member 86 can be downsized. When the expansion portion 92a is provided in the through hole 92 as in the embodiment, the pressing tool 9 such as a punch for deforming the locking projection 88 is formed.
It is desirable to make the tip of No. 4 concave so that its tip surface 94a defines an arcuate surface. By doing so, the locking projection 88 that is projected as shown by the solid line in FIG.
The projecting portion can be deformed as required by the action of the pressing tool 94 as shown by the one-dot chain line in FIG. 5, and the deformed portion can be securely locked to the expanded portion 92a of the through hole 92.

【0013】実施例のユニット組立体においては、更
に、支持部材74の一端面に周方向に間隔を置いて複数
個(実施例においては3個)の突起96が設けられ、ま
た偏倚ばね部材76の環状中央部80には上記突起96
に対応して周方向に間隔を置いて突起受部を規定する複
数個の円形の開口98が形成されている。各突起96の
先端部は偏倚ばね部材76の開口98を貫通し、プレー
ト部材86及びアマチュア72を越えてロータ30の片
面に向って延び、その先端はロータ30の片面に接触乃
至近接せしめられている。実施例では、突起96が上述
した如く延びていることに関連して、プレート部材86
の周縁部には上記開口98に対応して半円状の切欠き1
00が形成されている。かくの通りであるので、各突起
96は開口98及び切欠き100に受入れられ、支持部
材74と偏倚ばね部材76間において駆動力を伝達する
作用をする(言い換えると、支持部材74と偏倚ばね部
材76間に生じるアジアル荷重、即ち回転方向の荷重を
受ける作用をする)と共に、後述する如く第1のばねク
ラッチ機構8における応答性を向上させる作用をする。
第1のばねクラッチ機構8の応答性を一層向上させるに
は、実施例に示す如く、支持部材74の環状フランジ7
8の先端部も偏倚ばね部材76及びプレート部材86を
越えて突出させ、その先端をロータ30の片面に接触乃
至近接せしめるのが好ましく、実施例においては、突起
96の先端面及び環状フランジ78の先端面がロータ3
0の片面に実質上平行である実質上同一平面を規定する
ように構成されている。
In the unit assembly of the embodiment, a plurality of (three in the embodiment) projections 96 are further provided at one end surface of the support member 74 at circumferential intervals, and the bias spring member 76 is also provided. The annular center portion 80 of the
A plurality of circular openings 98 are formed at intervals in the circumferential direction to define the projection receiving portions. The tip of each protrusion 96 penetrates through the opening 98 of the biasing spring member 76, extends beyond the plate member 86 and the armature 72 toward one side of the rotor 30, and its tip is brought into contact with or close to one side of the rotor 30. There is. In the exemplary embodiment, plate member 86 is associated with protrusion 96 extending as described above.
A semi-circular cutout 1 is provided at the peripheral edge of the opening corresponding to the opening 98.
00 is formed. As such, each protrusion 96 is received in the opening 98 and the notch 100 and acts to transmit a driving force between the support member 74 and the bias spring member 76 (in other words, the support member 74 and the bias spring member). It acts to receive the Asian load generated between 76, that is, the load in the rotational direction) and to improve the response of the first spring clutch mechanism 8 as described later.
In order to further improve the responsiveness of the first spring clutch mechanism 8, as shown in the embodiment, the annular flange 7 of the support member 74 is used.
It is also preferable that the tip end portion of 8 also projects beyond the biasing spring member 76 and the plate member 86 so that the tip end thereof contacts or approaches one surface of the rotor 30, and in the embodiment, the tip end surface of the protrusion 96 and the annular flange 78. Tip surface is rotor 3
It is configured to define a substantially coplanar plane that is substantially parallel to one side of zero.

【0014】図示の実施例においては、ユニット組立体
は第1のボス部材50を圧入することによって軸部材4
に所要の通り装着されている。尚、実施例では軸部材4
の所要部位4bにはローレットの如き加工が施されてお
り、かかる部位4bに第1のボス部材50の右端部が大
径部4aの左端面に当接するように圧入され、第1のボ
ス部材50は軸部材4と一体に回転せしめられる。
In the illustrated embodiment, the unit assembly includes a shaft member 4 by press fitting a first boss member 50.
It is installed as required in. In the embodiment, the shaft member 4
The required portion 4b of the first boss member is processed such as knurling, and the right end portion of the first boss member 50 is press-fitted into the portion 4b so as to contact the left end surface of the large diameter portion 4a. 50 is rotated integrally with the shaft member 4.

【0015】再び図1及び図2を参照して、歯車6の片
面(図1及び図2において左面)には、環状のボス部1
02が一体に設けられ、ボス部102内には円筒状の第
2のボス部材104が装着されている。実施例では、こ
の第2のボス部材104は、歯車6の内周部(詳しくは
ボス部102の内側部位)に形成された貫通孔106
(実施例においては2個形成されている)内にその端面
に設けられた一対の突出部108を挿入することによっ
て歯車6と一体に回転するように装着されている。この
第2のボス部材104は、上記第1のボス部材50に向
けて図1及び図2において左方に延びている。尚、第2
のボス部材104は歯車6と一体に形成することも可能
である。
Referring again to FIGS. 1 and 2, the annular boss portion 1 is provided on one surface of the gear 6 (left surface in FIGS. 1 and 2).
02 is integrally provided, and a cylindrical second boss member 104 is mounted in the boss portion 102. In the embodiment, the second boss member 104 has the through hole 106 formed in the inner peripheral portion of the gear 6 (specifically, the inner portion of the boss portion 102).
By inserting a pair of projecting portions 108 provided on the end faces thereof (two are formed in the embodiment), they are mounted so as to rotate integrally with the gear 6. The second boss member 104 extends leftward in FIGS. 1 and 2 toward the first boss member 50. The second
The boss member 104 can be formed integrally with the gear 6.

【0016】上記第1のボス部材50及び第2のボス部
材104に跨ってコイルばね手段36が被嵌されてい
る。ユニット組立体の第1のボス部材50の大径部54
は上記第2のボス部材104に向けて延び、両ボス部材
50及び104の端面は相互に接触乃至近接せしめられ
ている。この第1のボス部材50の大径部54の外径と
第2のボス部材104の外径とは実質上等しく、実施例
ではコイルばね手段36は上記第1のボス部材50の大
径部54と第2のボス部材104の両者に跨って被嵌さ
れている。実施例においては、コイルばね手段36は図
1及び図2において左側から見て右巻(従って、歯車6
が矢印110(図2)で示す方向に回転されているとき
に、支持部材74にその回動を阻止する力が作用して支
持部材74が歯車6に対して相対的に回転せしめられる
と収縮される方向)に捲回されている。かかるコイルば
ね手段36の一端36aは、支持部材74の他端部に形
成された切欠き112(実施例では、周方向に間隔を置
いて複数個形成された切欠き112のいずれか)に挿入
されることによってこれに連結され、その他端36b
は、歯車6の環状ボス部102に形成された切欠き11
4(実施例では、周方向に間隔を置いて4個形成された
切欠き114のいずれか)に挿入されることによってこ
れに連結されている。
Coil spring means 36 is fitted over the first boss member 50 and the second boss member 104. Large diameter portion 54 of first boss member 50 of unit assembly
Extends toward the second boss member 104, and the end surfaces of both boss members 50 and 104 are in contact with or in close proximity to each other. The outer diameter of the large diameter portion 54 of the first boss member 50 and the outer diameter of the second boss member 104 are substantially equal, and in the embodiment, the coil spring means 36 is the large diameter portion of the first boss member 50. It is fitted over both 54 and the second boss member 104. In the embodiment, the coil spring means 36 is right-handed when viewed from the left side in FIGS.
Is rotated in the direction indicated by the arrow 110 (FIG. 2), the support member 74 contracts when the support member 74 is rotated relative to the gear 6 due to the force that prevents the rotation thereof. Direction). One end 36a of the coil spring means 36 is inserted into a notch 112 formed in the other end of the support member 74 (in the embodiment, any one of a plurality of notches 112 formed at intervals in the circumferential direction). By being connected to this, the other end 36b
Is a notch 11 formed in the annular boss portion 102 of the gear 6.
4 (in the embodiment, any one of the four notches 114 formed at intervals in the circumferential direction) is connected to this.

【0017】かくの通りであるので、歯車6が矢印11
0で示す方向に回転されているときに電磁手段34が付
勢されると、後に詳述する如く、歯車6とアマチュア組
立体32とが相対的に回転され、これによってコイルば
ね手段36が収縮され、かくして歯車6から駆動力は第
2のボス部材104、コイルばね手段36及び第1のボ
ス部材50を介して軸部材4に伝達される。
As described above, the gear 6 is indicated by the arrow 11
When the electromagnetic means 34 is energized while it is being rotated in the direction indicated by 0, the gear 6 and the armature assembly 32 are relatively rotated, which causes the coil spring means 36 to contract, as will be described later in detail. Thus, the driving force from the gear 6 is transmitted to the shaft member 4 via the second boss member 104, the coil spring means 36 and the first boss member 50.

【0018】次いで、図1と共に図6を参照して、第2
のばねクラッチ機構10及びこれに関連する要素につい
て説明する。歯車6と支持基体14間に配置された第2
のばねクラッチ機構10は、第1のばねクラッチ機構8
と同様に、ロータ116、アマチュア組立体118、電
磁手段120及びコイルばね手段122を含んでおり、
第2のばねクラッチ機構10におけるロータ116、ア
マチュア組立体118、電磁手段120及びコイルばね
手段122の構成は、第1のばねクラッチ機構8におけ
るロータ30、アマチュア組立体32、電磁手段34及
びコイルばね手段36の構成と実質上同一である。従っ
て、第2のばねクラッチ機構10については概略を説明
する。
Next, referring to FIG. 6 together with FIG.
The spring clutch mechanism 10 and its related elements will be described. Second arranged between the gear 6 and the support base 14
The spring clutch mechanism 10 of FIG.
A rotor 116, an armature assembly 118, an electromagnetic means 120 and a coil spring means 122,
The rotor 116, the armature assembly 118, the electromagnetic means 120, and the coil spring means 122 in the second spring clutch mechanism 10 are configured as follows: the rotor 30, the armature assembly 32, the electromagnetic means 34, and the coil spring in the first spring clutch mechanism 8. The configuration of the means 36 is substantially the same. Therefore, the outline of the second spring clutch mechanism 10 will be described.

【0019】第2のばねクラッチ機構10における電磁
手段120は、軸部材4の他端部、詳しくは軸部材4の
他端部、更に詳しくは軸部材4の支持基体14の内側部
位に配置されている。図示の電磁手段120は、フィー
ルドコア120と、フィールドコア120に装着された
電磁コイル122を有し、フィールドコア120がスリ
ーブ部材124を介して軸部材4に回転自在に装着され
ている(図1参照)。フィールドコア120の外周面に
は係止部126が設けられ、係止部126には切欠き1
28が形成されている。一方、支持基体14には、その
一部を後方に折曲せしめることによって係止突起130
が設けられており、かかる係止突起130が上記係止部
126の切欠き128に係止されている。(図1参
照)。従って、電磁手段120は、後述する軸部材4の
回転によって回動されることがない。
The electromagnetic means 120 in the second spring clutch mechanism 10 is arranged at the other end of the shaft member 4, more specifically at the other end of the shaft member 4, and more specifically at an inner portion of the support base 14 of the shaft member 4. ing. The illustrated electromagnetic means 120 has a field core 120 and an electromagnetic coil 122 attached to the field core 120, and the field core 120 is rotatably attached to the shaft member 4 via a sleeve member 124 (FIG. 1). reference). A locking portion 126 is provided on the outer peripheral surface of the field core 120, and the notch 1 is formed in the locking portion 126.
28 is formed. On the other hand, on the support base 14, a part of the support base 14 is bent backward so that the locking projection 130
Is provided, and the locking projection 130 is locked in the notch 128 of the locking portion 126. (See Figure 1). Therefore, the electromagnetic means 120 is not rotated by the rotation of the shaft member 4 described later.

【0020】また、軸部材4の電磁手段120と歯車6
との間の部位、即ち電磁手段120の内側には、ロータ
116及びアマチュア組立体118が配設されている。
実施例においてはロータ116及びアマチュア組立体1
18も第1のボス部材132に所要の通り装着され、ロ
ータ116、アマチュア組立体118及び第1のボス部
材132がユニット化されてユニット組立体を構成す
る。第1のボス部材132は、一端部(図1及び図6に
おいて左端部)に設けられた大径部134と、他端部
(図1及び図6において右端部)に設けられた小径部1
36と、その中間部に設けられた中径部138とを有し
ている。第1のボス部材132の小径部136にはピン
受部を規定する一対の切欠き140が形成されており、
かかる切欠き140に軸部材4を貫通して形成された他
方のピン孔142(図6)に装着されるピン部材114
の両端部が受入れられる。また、図示のロータ116
は、環状基部146と、環状基部146の外側に配置さ
れた環状部148と、環状基部146及び環状部148
を接続する接続部150を有している。かかるロータ1
16は、環状基部146を第1のボス部材132の小径
部136に圧入することによってその一端に固定され、
第1のボス部材132と一体に回転される。実施例で
は、ロータ116の環状基部146の内周縁にも、一対
の凹部152が形成されている。ロータ116に形成さ
れた凹部152は、上記第1のボス部材132に形成さ
れた切欠き140と協働してピン受部を規定し、軸部材
4に装着されたピン部材144の両端部は上記切欠き1
40及び上記凹部152に受入れられる(従って、ロー
タ116を第1のボス部材132の小径部136に固定
する際には、ロータ116の凹部152と小径部136
の切欠き140を整合させて圧入する)。また、実施例
のアマチュア組立体118は、アマチュア154、支持
部材156及び偏倚ばね部材158を含んでいる。支持
部材156は短筒状の部材から構成され、第1のボス部
材132の中径部138に回転自在に装着されている。
支持部材156の端面(図1において右側)内周縁に
は、環状フランジ(図1)が設けられている。この支持
部材156は、軽量のプラスチックから形成するのが好
ましい。アマチュア154はロータ116の環状部14
8の外径と略同一の外径を有する環状板から構成され、
偏倚ばね部材158を介して上記支持部材156に装着
されている。即ち、偏倚ばね部材158は支持部材15
6の環状フランジに装着され、その環状中央部160が
支持部材156の端面に所要の通り固定されている。図
示の偏倚ばね部材158は環状中央部160から外側に
鎌状に延びる複数個(実施例においては3個)の突出部
162を有し、複数個の突出部162の各々の自由端部
がアマチュア154の片面(図1及び図6において左面
であって、ロータ116と対向する面とは反対の面)に
リベットの如き固定部材164により固定されている。
従って、第2のばねクラッチ機構10においても、ロー
タ116の片側、即ち図1において左側にアマチュア組
立体118が配設され、偏倚ばね部材158はアマチュ
ア154をロータ116の片面、即ち図1において左面
から離隔する方向に弾性的に偏倚せしめる作用をする。
この第2のばねクラッチ機構10においても、偏倚ばね
部材158は、第1のばねクラッチ機構8と実質上同様
に、ばね固定部材を構成する環状のプレート部材166
によって支持部材156に所要の通り固定されるのが好
ましい。
The electromagnetic means 120 of the shaft member 4 and the gear 6
The rotor 116 and the armature assembly 118 are disposed in a portion between the two, that is, inside the electromagnetic means 120.
In the embodiment, the rotor 116 and the amateur assembly 1
18 is also attached to the first boss member 132 as required, and the rotor 116, the armature assembly 118, and the first boss member 132 are unitized to form a unit assembly. The first boss member 132 has a large-diameter portion 134 provided at one end (left end in FIGS. 1 and 6) and a small-diameter portion 1 provided at the other end (right end in FIGS. 1 and 6).
36 and a medium-diameter portion 138 provided in the middle portion thereof. The small diameter portion 136 of the first boss member 132 is formed with a pair of notches 140 that define a pin receiving portion,
The pin member 114 mounted in the other pin hole 142 (FIG. 6) formed through the shaft member 4 in the notch 140.
Both ends of are accepted. Also, the illustrated rotor 116
Is a ring-shaped base 146, a ring-shaped part 148 arranged outside the ring-shaped base 146, a ring-shaped base 146 and a ring-shaped part 148.
It has the connection part 150 which connects. Such rotor 1
16 is fixed to one end of the small diameter portion 136 of the first boss member 132 by press-fitting the annular base portion 146,
It is rotated integrally with the first boss member 132. In the embodiment, a pair of recesses 152 is also formed on the inner peripheral edge of the annular base portion 146 of the rotor 116. The recess 152 formed in the rotor 116 cooperates with the notch 140 formed in the first boss member 132 to define a pin receiving portion, and both ends of the pin member 144 mounted on the shaft member 4 are Notch 1 above
40 and the recess 152 (therefore, when fixing the rotor 116 to the small diameter portion 136 of the first boss member 132, the recess 152 and the small diameter portion 136 of the rotor 116 are received.
Align the notches 140 and press fit). The example armature assembly 118 also includes an armature 154, a support member 156, and a biasing spring member 158. The support member 156 is composed of a short tubular member, and is rotatably attached to the medium diameter portion 138 of the first boss member 132.
An annular flange (FIG. 1) is provided on the inner peripheral edge of the end surface (right side in FIG. 1) of the support member 156. The support member 156 is preferably formed from lightweight plastic. The amateur 154 is the annular portion 14 of the rotor 116.
8 is composed of an annular plate having an outer diameter substantially the same as the outer diameter,
It is attached to the support member 156 via the biasing spring member 158. That is, the biasing spring member 158 is the support member 15
6 is attached to an annular flange 6 of which an annular central portion 160 is fixed to an end surface of the support member 156 as required. The illustrated biasing spring member 158 has a plurality of (three in this embodiment) protrusions 162 extending outward from the annular central portion 160 in a sickle shape, and the free end of each of the plurality of protrusions 162 is an armature. It is fixed to one surface of 154 (the left surface in FIGS. 1 and 6 and the surface opposite to the surface facing the rotor 116) by a fixing member 164 such as a rivet.
Therefore, also in the second spring clutch mechanism 10, the armature assembly 118 is disposed on one side of the rotor 116, that is, on the left side in FIG. It acts to elastically deviate in the direction away from.
Also in the second spring clutch mechanism 10, the biasing spring member 158 is substantially the same as the first spring clutch mechanism 8 and the annular plate member 166 constituting the spring fixing member.
It is preferably secured to the support member 156 as required.

【0021】第2のばねクラッチ機構10においては、
更に、第1のばねクラッチ機構8と同様に、支持部材1
56の端面には周方向に間隔を置いてロータ116の片
面に向って延びる複数個の突起168を設けるのが好ま
しく、また支持部材156に設けられた環状フランジの
先端をロータ116の上記片面に接触乃至近接せしめる
のが好ましい。
In the second spring clutch mechanism 10,
Further, similarly to the first spring clutch mechanism 8, the support member 1
It is preferable to provide a plurality of projections 168 extending toward one surface of the rotor 116 at intervals on the end surface of the rotor 56, and the tip of an annular flange provided on the support member 156 is provided on the one surface of the rotor 116. It is preferable to bring them into contact with or close to each other.

【0022】図示の実施例においては、ユニット組立体
は第1のボス部材132を圧入することによって軸部材
4に所要の通り装着されている。尚、実施例では軸部材
4の所要部位4Cにもローレットの如き加工が施されて
おり、かかる部位4Cに第1のボス部材132の左端部
が大径部4aの右端面に当接するように圧入され、大1
のボス部材132は軸部材4と一体に回転せしめられ
る。
In the illustrated embodiment, the unit assembly is mounted to the shaft member 4 as required by press fitting the first boss member 132. In the embodiment, the required portion 4C of the shaft member 4 is also processed such as knurling so that the left end portion of the first boss member 132 abuts the right end surface of the large diameter portion 4a. Pressed, large 1
The boss member 132 is rotated together with the shaft member 4.

【0023】歯車6の他面(図1及び図6において右
面)にも、環状ボス部170が一体に設けられ、ボス部
170内には円筒状の第2のボス部材172が装着され
ている。実施例では、第2のボス部材172は歯車6に
形成された上記貫通孔106内に歯車6の他側から端面
に設けられた一対の突出部174を挿入することによっ
て歯車6と一体に回転するように装着されている。この
第2のボス部材172は、上記第1のボス部材132に
向けて図1及び図6において右方に延びている。第2の
ボス部材172も歯車6と一体に形成することができ
る。
An annular boss portion 170 is integrally provided on the other surface of the gear 6 (right surface in FIGS. 1 and 6), and a cylindrical second boss member 172 is mounted in the boss portion 170. .. In the embodiment, the second boss member 172 rotates integrally with the gear 6 by inserting a pair of protrusions 174 provided on the end surface from the other side of the gear 6 into the through hole 106 formed in the gear 6. It is installed to do. The second boss member 172 extends rightward in FIGS. 1 and 6 toward the first boss member 132. The second boss member 172 can also be formed integrally with the gear 6.

【0024】上記第1のボス部材132及び第2のボス
部材172に跨ってコイばね手段122が被嵌されてい
る。第2のばねクラッチ機構10におけるユニット組立
体の第1のボス部材132の大径部134は上記第2の
ボス部材172に向けて延び、両ボス部材132及び1
72の端面は相互に接触乃至近接せしめられている。こ
の第1のボス部材132の大径部134の外径と第2の
ボス部材172の外径とは実質上等しく、実施例ではコ
イルばね手段122は上記第1のボス部材132の大径
部134と第2のボス部材172の両者に跨って被嵌さ
れている。実施例においては、コイルばね手段122は
図1及び図6において右側から見て右巻(従って、歯車
6が矢印176(図6)で示す方向に回転されていると
きに、支持部材156にその回動を阻止する力が作用し
て支持部材156が歯車6に対して相対的に回転せしめ
られると収縮される方向)に捲回されている。かかるコ
イルばね手段122の一端122aは、支持部材156
の他端部に形成された切欠き(実施例では、周方向に間
隔を置いて複数個形成された切欠きのいずれか)に挿入
されることによってこれに連結され、その他端122b
は、歯車6の環状ボス部170に形成された切欠き17
8(実施例では、周方向に間隔を置いて4個形成された
切欠き178のいずれか)に挿入されることによってこ
れに連結されている。
The carp spring means 122 is fitted over the first boss member 132 and the second boss member 172. The large diameter portion 134 of the first boss member 132 of the unit assembly of the second spring clutch mechanism 10 extends toward the second boss member 172, and both boss members 132 and 1
The end faces of 72 are in contact with or in close proximity to each other. The outer diameter of the large diameter portion 134 of the first boss member 132 and the outer diameter of the second boss member 172 are substantially equal to each other. In the embodiment, the coil spring means 122 includes the large diameter portion of the first boss member 132. It is fitted over both 134 and the second boss member 172. In the exemplary embodiment, the coil spring means 122 has a right-handed winding when viewed from the right in FIGS. The support member 156 is wound in a direction in which it contracts when the support member 156 is caused to rotate relative to the gear 6 due to a force that prevents rotation. The one end 122a of the coil spring means 122 has a support member 156.
Is connected to the notch formed in the other end portion of the other end (in the embodiment, one of a plurality of notches formed at intervals in the circumferential direction), and the other end 122b.
Is a notch 17 formed in the annular boss portion 170 of the gear 6.
8 (in the embodiment, any one of four notches 178 formed at intervals in the circumferential direction) is connected to this.

【0025】かくの通りであるので、歯車6が矢印17
6で示す方向に回転されているときに電磁手段120が
付勢されると、後に詳述する如く、歯車6とアマチュア
組立体118とが相対的に回転され、これによってコイ
ルばね手段122が収縮され、かくして歯車6からの駆
動力は第2のボス部材172、コイルばね手段122及
び第1のボス部材132を介して軸部材4に伝達され
る。
As described above, the gear 6 has the arrow 17
When the electromagnetic means 120 is biased while being rotated in the direction indicated by 6, the gear 6 and the armature assembly 118 are relatively rotated, which causes the coil spring means 122 to contract, as will be described in detail later. Thus, the driving force from the gear 6 is transmitted to the shaft member 4 via the second boss member 172, the coil spring means 122 and the first boss member 132.

【0026】かくの通りの電磁制御ばねクラッチ機構2
においては、図1に示す通り、第1のばねクラッチ機構
8及び第2のばねクラッチ機構10におけるロータ30
及び116の片側にアマチュア組立体32及び118が
配置され、ロータ30及び116の他側に電磁手段34
及び120が配置され、第1のばねクラッチ機構8にお
ける各種構成要素と第2のばねクラッチ機構10におけ
る各種構成要素とが、歯車6を基準にして軸部材4の軸
線方向両側に実質上対象に配置されている。即ち、第1
のばねクラッチ機構8にあっては、歯車6の片面から図
1において左方に向って、第2のボス部材104、コイ
ルばね手段36、第1のボス部材50、アマチュア組立
体32、ロータ30及び電磁手段34が配置され、第2
のばねクラッチ機構10にあっては、歯車6の他面から
図1において右方に向って、第2のボス部材172、コ
イルばね手段122、第1のボス部材132、アマチュ
ア組立体118、ロータ116及び電磁手段120が配
置されている。
The electromagnetically controlled spring clutch mechanism 2 as described above
In FIG. 1, the rotor 30 in the first spring clutch mechanism 8 and the second spring clutch mechanism 10 is shown in FIG.
And 116 are arranged on one side of the armature assemblies 32 and 118, and on the other side of the rotors 30 and 116 are electromagnetic means 34.
And 120 are arranged so that the various constituent elements of the first spring clutch mechanism 8 and the various constituent elements of the second spring clutch mechanism 10 are substantially symmetrical to each other on both axial sides of the shaft member 4 with respect to the gear 6. It is arranged. That is, the first
In the spring clutch mechanism 8 of FIG. 1, the second boss member 104, the coil spring means 36, the first boss member 50, the armature assembly 32, and the rotor 30 are directed from one surface of the gear 6 to the left in FIG. And an electromagnetic means 34 is arranged, the second
In the spring clutch mechanism 10 of FIG. 1, the second boss member 172, the coil spring means 122, the first boss member 132, the armature assembly 118, the rotor from the other surface of the gear 6 to the right in FIG. 116 and electromagnetic means 120 are arranged.

【0027】図示の電磁制御ばねクラッチ機構2には、
電磁手段34及び120の除勢時に歯車6からの駆動力
が直接軸部材4に伝達されて軸部材4が回転するおそれ
がある故に、軸部材4に常時回転を抑制する制動力を作
用せしめるためのブレーキ手段180(図1)が付設さ
れている。
The illustrated electromagnetically controlled spring clutch mechanism 2 includes:
Since the driving force from the gear 6 may be directly transmitted to the shaft member 4 when the electromagnetic means 34 and 120 are deenergized, and the shaft member 4 may rotate, a braking force that constantly suppresses rotation is applied to the shaft member 4. Brake means 180 (FIG. 1) is attached.

【0028】図1と共に図7を参照して、実施例のブレ
ーキ手段180について説明する。図示のブレーキ手段
180は回転部材182を含んでいる。軸部材4の他端
部は支持基体14を貫通して外方に突出し、かかる突出
端に短筒状の回転部材182が装着されている。実施例
では、回転部材182にはこれを貫通して貫通孔184
が形成されており、この貫通孔184及び軸部材4に形
成された孔(図示せず)にピン部材186を圧入するこ
とによって回転部材182が軸部材4に固定されてい
る。従って、回転部材182は軸部材4と一体に回転す
る。実施例では、更に、回転部材182の内面(即ち、
支持基体14に対向する面)に、合成皮又は合成ゴムの
如き高摩擦係数の材料から形成された摩擦部材188が
貼着されている。
With reference to FIG. 7 together with FIG. 1, the braking means 180 of the embodiment will be described. The illustrated braking means 180 includes a rotating member 182. The other end of the shaft member 4 penetrates the support base 14 and projects outward, and a short tubular rotating member 182 is attached to the projecting end. In the embodiment, the rotary member 182 penetrates through the through hole 184.
The rotary member 182 is fixed to the shaft member 4 by press-fitting the pin member 186 into the through hole 184 and a hole (not shown) formed in the shaft member 4. Therefore, the rotating member 182 rotates integrally with the shaft member 4. In the exemplary embodiment, the inner surface (ie,
A friction member 188 made of a material having a high coefficient of friction such as synthetic leather or synthetic rubber is attached to a surface facing the support base 14).

【0029】一方、軸部材4の他端部はスリーブ部材1
90を介して支持基体14に支持されている。スリーブ
部材190の一端にはフランジ部196が一体に設けら
れている。このスリーブ部材190は、フランジ部19
6が支持基体14の内側に位置する、即ちフランジ部1
96が支持基体14と電磁手段120間に位置するよう
に支持基体14に装着され、そのスリーブ本体197は
支持基体14に形成された開口を通して外方に延びてい
る。実施例では、図7に明確に示す通り、スリーブ本体
197の対向する外面には一対の平坦面190a(図7
において一方のみ示す)が形成されており、また支持基
体14にはスリーブ本体197の縦断面の外形に対応し
た形状の開口が形成されており、それ故に、スリーブ本
体197を上記開口内に位置付けた状態においては、ス
リーブ部材190が支持基体14に対して相対的に回転
することはない。ブレーキ手段180は、更に、制動部
材192を含んでいる。スリーブ状の部材から構成され
る制動部材192には、スリーブ本体197の縦断面の
外形に対応した形状の貫通孔199が形成されており、
(従って、制動部材192の貫通孔199を規定する内
周面には、スリーブ本体197の外周面に存在する一対
の平坦面190aに対応した一対の平坦面192aが形
成されている)、この制動部材192がスリーブ部材1
92のスリーブ本体197の外側に装着されている。従
って、容易に理解される如く、制動部材192はスリー
ブ部材190に対して相対的に回動することはないが、
スリーブ部材190の軸線方向、即ち図1において左右
方向に相対的に移動自在である。実施例では、制動部材
192の右端にも回転部材182の外形に対応したフラ
ンジ部198が一体に形成されている。そして、更に、
このフランジ部198と支持基体14間には、制動部材
192を被嵌してコイルばね194(偏倚手段を構成す
る)が配設されている。このコイルばね194はフラン
ジ部198に作用して制動部材192を回転部材182
に向けて、即ち図1において右方に向けて偏倚せしめる
作用をし、従って制動部材192のフランジ部198の
端面は、コイルばね194の作用によって回転部材18
2の内面に配設された摩擦部材188の表面に弾性的に
圧接される。尚、実施例においては、回転部材182に
摩擦部材188を設けているが、これに代えて、制動部
材192、或いは回転部材182と制動部材192の双
方に摩擦部材を設けてもよい。
On the other hand, the other end of the shaft member 4 is the sleeve member 1
It is supported by the support base 14 via 90. A flange portion 196 is integrally provided at one end of the sleeve member 190. The sleeve member 190 includes the flange portion 19
6 is located inside the support base 14, that is, the flange portion 1
96 is mounted on the support base 14 so as to be located between the support base 14 and the electromagnetic means 120, and a sleeve body 197 thereof extends outward through an opening formed in the support base 14. In the embodiment, as clearly shown in FIG. 7, a pair of flat surfaces 190a (FIG.
(Only one of which is shown in FIG. 2) is formed, and the supporting base 14 is formed with an opening having a shape corresponding to the outer shape of the longitudinal cross section of the sleeve body 197. Therefore, the sleeve body 197 is positioned in the opening. In the state, the sleeve member 190 does not rotate relative to the support base 14. The braking means 180 further includes a braking member 192. The braking member 192 composed of a sleeve-shaped member is provided with a through hole 199 having a shape corresponding to the outer shape of the sleeve body 197 in a vertical cross section.
(Therefore, a pair of flat surfaces 192a corresponding to the pair of flat surfaces 190a existing on the outer peripheral surface of the sleeve body 197 are formed on the inner peripheral surface defining the through hole 199 of the braking member 192). The member 192 is the sleeve member 1
It is attached to the outside of the sleeve body 197 of 92. Therefore, as can be easily understood, the braking member 192 does not rotate relative to the sleeve member 190,
It is relatively movable in the axial direction of the sleeve member 190, that is, in the left-right direction in FIG. In the embodiment, the flange portion 198 corresponding to the outer shape of the rotating member 182 is also integrally formed at the right end of the braking member 192. And further,
Between the flange portion 198 and the support base 14, a braking member 192 is fitted and a coil spring 194 (which constitutes a biasing means) is disposed. The coil spring 194 acts on the flange portion 198 to move the braking member 192 to the rotating member 182.
1, that is, toward the right in FIG. 1, the end face of the flange portion 198 of the braking member 192 is rotated by the action of the coil spring 194.
2 is elastically pressed against the surface of the friction member 188 disposed on the inner surface of 2. In the embodiment, the rotary member 182 is provided with the friction member 188, but instead of this, the braking member 192, or both the rotary member 182 and the braking member 192 may be provided with friction members.

【0030】次に、上述した構成の電磁制御ばねクラッ
チ機構2の作用効果について説明する。
Next, the function and effect of the electromagnetically controlled spring clutch mechanism 2 having the above-described structure will be described.

【0031】まず、図1、図2及び図6を参照して、歯
車6が矢印110(図2)で示す所定方向に回転されて
いる場合について説明すると、かかる場合には第1のば
ねクラッチ機構8の電磁手段34が付勢及び除勢され、
これによって歯車6の駆動力が選択的に軸部材4(軸部
材4は出力要素を構成する)に伝達される。
First, referring to FIGS. 1, 2 and 6, the case where the gear 6 is rotated in a predetermined direction shown by an arrow 110 (FIG. 2) will be described. In such a case, the first spring clutch The electromagnetic means 34 of the mechanism 8 is energized and deenergized,
As a result, the driving force of the gear 6 is selectively transmitted to the shaft member 4 (the shaft member 4 constitutes an output element).

【0032】即ち、歯車6が矢印110で示す方向に回
転されているときに電磁手段34が付勢されると、電磁
手段34の磁気的吸引力によってアマチュア72が偏倚
ばね部材76の弾性偏倚作用に抗して図1において左方
に移動してロータ30の片面に磁気的に吸着せしめら
れ、アマチュア72とロータ30とが接続状態になる。
一方、歯車6は矢印110(図2)で示す方向に回転さ
れ、コイルばね手段36を介して支持部材74も同じ方
向に回転されている(支持部材74と一体に偏倚ばね部
材76及びアマチュア72も回転されている)。従っ
て、アマチュア72とロータ30が磁気的に吸着されて
接続状態になると、軸部材4が停止していることも起因
して支持部材74にその回動を阻止する力が作用する。
かくすると、かかる回動阻止力によって歯車6と支持部
材74間に相対的速度が生じ、かかる速度差に起因して
コイルばね手段36が収縮される。かくすると、コイル
ばね手段36を介して第2のボス部材104と第1のボ
ス部材50とが接続され、軸部材4は第1のボス部材5
0、コイルばね手段36及び第2のボス部材104を介
して歯車6に駆動連結される。かくして、歯車6の矢印
10で示す方向の回動力は軸部材4に伝達され、軸部材
4、従ってこれに接続された作動軸18は歯車6の回転
に付随して矢印110で示す方向に回転される。
That is, when the electromagnetic means 34 is biased while the gear 6 is rotated in the direction indicated by the arrow 110, the armature 72 is elastically biased by the biasing spring member 76 by the magnetic attraction force of the electromagnetic means 34. 1 to move to the left in FIG. 1 to be magnetically attracted to one surface of the rotor 30, and the armature 72 and the rotor 30 are connected.
On the other hand, the gear 6 is rotated in the direction indicated by the arrow 110 (FIG. 2), and the support member 74 is also rotated in the same direction via the coil spring means 36 (the bias spring member 76 and the armature 72 are integrated with the support member 74). Has also been rotated). Therefore, when the armature 72 and the rotor 30 are magnetically attracted and brought into a connected state, a force that prevents the rotation of the support member 74 acts due to the fact that the shaft member 4 is stopped.
By doing so, a relative speed is generated between the gear 6 and the support member 74 due to the rotation inhibiting force, and the coil spring means 36 is contracted due to the speed difference. In this way, the second boss member 104 and the first boss member 50 are connected via the coil spring means 36, and the shaft member 4 becomes the first boss member 5.
0, the coil spring means 36 and the second boss member 104 are drivingly connected to the gear 6. Thus, the rotational force of the gear 6 in the direction indicated by the arrow 10 is transmitted to the shaft member 4, and the shaft member 4, and thus the operating shaft 18 connected thereto, rotates in the direction indicated by the arrow 110, following the rotation of the gear 6. To be done.

【0033】他方、電磁手段34が除勢されると、偏倚
ばね部材76の弾性偏倚作用によってアマチュア72が
図1において右方に移動してロータ30の片面から離
れ、アマチュア72とロータ30との上記接続状態が解
除される(即ち、アマチュア72は偏倚ばね部材76の
作用によって図1に示す位置に復帰する)。このアマチ
ュア72の復帰時には、支持部材74とアマチュア72
間に介在されている偏倚ばね部材76の弾性偏倚作用に
よってロータ30の片面から離隔する方向に移動される
ため、アマチュア72とロータ30の接続が迅速に解除
される。また、この復帰時には第1のボス部材50の中
径部56の外径と支持部材74の内径部に存在する間隙
に起因してアマチュア72が軸部材4に対して幾分傾斜
する傾向にあるが、実施例においては支持部材74の一
端面に設けられた突起96がロータ30の片面に接触乃
至近接せしめられている故に、アマチュア72が若干傾
動した際には支持部材74の突起96の前端面がロータ
30の片面に接触するようになり、アマチュア72がロ
ータ30の片面に接触することによる応答性の低下が効
果的に防止される。更に、実施例においては、支持部材
74の環状フランジ78の先端もロータ30の片面に接
触乃至近接されている故に、支持部材74自体の所謂ガ
タも少なくすることができ、応答性の低下が一層防止さ
れる。アマチュア72とロータ30の接続状態が解除さ
れると、上述した駆動伝達時に蓄えられたコイルばね手
段36の弾性力によって支持部材74が矢印110で示
す方向に更に若干回動され、コイルばね手段36は拡張
される。コイルばね手段36の拡張の際には、支持部材
74が第1のボス部材50に回転自在に装着され、かか
る支持部材74には偏倚ばね部材76、アマチュア72
及びプレート部材86が装着されているのみであるた
め、支持部材74は大きい抵抗を受けることなくコイル
ばね手段36の弾性力によって容易に迅速に所要の通り
回転される。かくの如くコイルばね手段36が拡張する
と、第2のボス部材104と第1のボス部材50とのコ
イルばね手段36による接続が解除され、かくして歯車
6と軸部材4の駆動連結が解除される。かかる電磁手段
34の除勢時においては、容易に理解される如く、歯車
6の回転に付随してコイルばね手段36を介して支持部
材74、偏倚ばね部材76及びアマチュア72が回転す
るのみである。また、歯車6が矢印110で示す方向に
回転されているときには、第2のばねクラッチ機構10
の電磁手段120は付勢されず、それ故に、第2のばね
クラッチ機構10においては、歯車6の矢印110で示
す方向の回転に付随してコイルばね手段122を介して
支持部材156、偏倚ばね部材158及びアマチュア1
54が回転するのみである。
On the other hand, when the electromagnetic means 34 is de-energized, the elastic biasing action of the biasing spring member 76 causes the armature 72 to move to the right in FIG. 1 and separate from one side of the rotor 30 to separate the armature 72 from the rotor 30. The connection state is released (that is, the armature 72 is returned to the position shown in FIG. 1 by the action of the biasing spring member 76). When the amateur 72 returns, the support member 74 and the amateur 72
Due to the elastic biasing action of the biasing spring member 76 interposed therebetween, the biasing spring member 76 is moved in a direction away from one surface of the rotor 30, so that the connection between the armature 72 and the rotor 30 is quickly released. Further, at the time of this return, the armature 72 tends to be slightly inclined with respect to the shaft member 4 due to the gap between the outer diameter of the middle diameter portion 56 of the first boss member 50 and the inner diameter portion of the support member 74. However, in the embodiment, since the projection 96 provided on one end surface of the support member 74 is brought into contact with or close to one surface of the rotor 30, the front end of the projection 96 of the support member 74 is slightly tilted when the armature 72 is slightly tilted. Since the surface comes into contact with one surface of the rotor 30, the decrease in responsiveness due to the contact of the armature 72 with the one surface of the rotor 30 is effectively prevented. Further, in the embodiment, since the tip of the annular flange 78 of the support member 74 is also in contact with or close to one surface of the rotor 30, so-called rattling of the support member 74 itself can be reduced, and the responsiveness is further reduced. To be prevented. When the connection between the armature 72 and the rotor 30 is released, the elastic force of the coil spring means 36 accumulated during the above-described drive transmission causes the support member 74 to further rotate slightly in the direction indicated by the arrow 110, and the coil spring means 36. Is expanded. When the coil spring means 36 is expanded, the support member 74 is rotatably attached to the first boss member 50, and the bias spring member 76 and the armature 72 are attached to the support member 74.
Since only the plate member 86 is attached, the supporting member 74 can be easily and quickly rotated by the elastic force of the coil spring means 36 without receiving a large resistance. When the coil spring means 36 expands in this way, the connection between the second boss member 104 and the first boss member 50 by the coil spring means 36 is released, and thus the drive connection between the gear 6 and the shaft member 4 is released. .. When the electromagnetic means 34 is deenergized, as is easily understood, the support member 74, the bias spring member 76, and the armature 72 only rotate via the coil spring means 36 in association with the rotation of the gear 6. .. Further, when the gear 6 is rotated in the direction indicated by the arrow 110, the second spring clutch mechanism 10
The electromagnetic means 120 is not biased, and therefore, in the second spring clutch mechanism 10, accompanying the rotation of the gear 6 in the direction indicated by the arrow 110, via the coil spring means 122, the support member 156, the bias spring. Member 158 and amateur 1
Only 54 rotates.

【0034】上述したとは反対に、歯車6が矢印176
(図6)で示す方向に回転されている場合には第2のば
ねクラッチ機構10の電磁手段120が付勢及び除勢さ
れ、これによって歯車6の駆動力が選択的に軸部材4に
伝達される。
Contrary to the above, the gear 6 is indicated by the arrow 176.
When rotating in the direction shown in FIG. 6, the electromagnetic means 120 of the second spring clutch mechanism 10 is energized and deenergized, whereby the driving force of the gear 6 is selectively transmitted to the shaft member 4. To be done.

【0035】即ち、歯車6が矢印176で示す方向に回
転されているときに電磁手段120が付勢されると、電
磁手段120の磁気的吸引によってアマチュア154が
偏倚ばね部材158の弾性偏倚作用に抗して図1におい
て右方に移動してロータ116の片面に磁気的に吸着せ
しめられ、アマチュア154とロータ116とが接続状
態になる。かくすると、歯車6と支持部材156間に相
対的速度差が生じ、かかる速度差に起因してコイルばね
手段122が収縮される。かく収縮されると、コイルば
ね手段122を介して第2のボス部材172と第1のボ
ス部材132とが接続され、軸部材4は第1のボス部材
132、コイルばね手段122及び第2のボス部材17
2を介して歯車6に駆動連結される。かくして、歯車6
の矢印176で示す方向の回動力は軸部材4に伝達さ
れ、軸部材4、従ってこれに接続された作動軸18は歯
車6の回転に付随して矢印176で示す方向に回転され
る。
That is, when the electromagnetic means 120 is energized while the gear 6 is rotated in the direction shown by the arrow 176, the magnetic attraction of the electromagnetic means 120 causes the armature 154 to act on the elastic biasing action of the biasing spring member 158. On the contrary, it moves rightward in FIG. 1 and is magnetically attracted to one surface of the rotor 116, so that the armature 154 and the rotor 116 are connected. This causes a relative speed difference between the gear 6 and the support member 156, and the coil spring means 122 contracts due to the speed difference. When contracted in this manner, the second boss member 172 and the first boss member 132 are connected to each other via the coil spring means 122, and the shaft member 4 has the first boss member 132, the coil spring means 122, and the second boss member 132. Boss member 17
It is drivingly connected to the gear 6 via 2. Thus, gear 6
The rotational force in the direction indicated by the arrow 176 is transmitted to the shaft member 4, and the shaft member 4, and thus the operating shaft 18 connected thereto, is rotated in the direction indicated by the arrow 176 in association with the rotation of the gear 6.

【0036】他方、電磁手段120が除勢されると、偏
倚ばね部材158の弾性偏倚作用によってアマチュア1
54が図1において左方に移動してロータ116の片面
から離れ、アマチュア154とロータ116との上記接
続状態が解除される(即ち、アマチュア154は偏倚ば
ね部材158の作用によって図1に示す位置に復帰す
る)。かくすると、上述した駆動伝達時に蓄えられたコ
イルばね手段122の弾性力によって支持部材156が
矢印176で示す方向に更に若干回動され、コイルばね
手段122は拡張される。かくの如くコイルばね手段1
22が拡張すると、第2のボス部材172と第1のボス
部材132とのコイルばね手段122による接続が解除
され、かくして歯車6と軸部材4の駆動連結が解除され
る。かかる電磁手段120の除勢時においては、容易に
理解される如く、歯車6の回転に付随してコイルばね手
段122を介して支持部材156、偏倚ばね部材158
及びアマチュア154が回転するのみである。従って、
第2のばねクラッチ機構10においても、第1のばねク
ラッチ機構8と同様の効果が達成される。また、歯車6
が矢印176で示す方向に回転されているときには、第
1のばねクラッチ機構8の電磁手段34は付勢されず、
それ故に、第1のばねクラッチ機構8においては、歯車
6の矢印176で示す方向の回転に付随してコイルばね
手段36を介して支持部材74、偏倚ばね部材76及び
アマチュア72が回転するのみである。
On the other hand, when the electromagnetic means 120 is de-energized, the elastic biasing action of the biasing spring member 158 causes the amateur 1
54 moves to the left in FIG. 1 and separates from one side of the rotor 116, and the above-mentioned connection state between the armature 154 and the rotor 116 is released (that is, the armature 154 is moved to the position shown in FIG. 1 by the action of the biasing spring member 158). Return to). By doing so, the elastic force of the coil spring means 122 stored at the time of drive transmission described above causes the support member 156 to further rotate slightly in the direction indicated by the arrow 176, and the coil spring means 122 is expanded. Thus, the coil spring means 1
When 22 is expanded, the connection between the second boss member 172 and the first boss member 132 by the coil spring means 122 is released, and thus the drive connection between the gear 6 and the shaft member 4 is released. When the electromagnetic means 120 is deenergized, as will be easily understood, the support member 156 and the bias spring member 158 are accompanied by the rotation of the gear 6 via the coil spring means 122.
And the amateur 154 only rotates. Therefore,
Also in the second spring clutch mechanism 10, the same effect as that of the first spring clutch mechanism 8 is achieved. Also, the gear 6
Is rotating in the direction indicated by the arrow 176, the electromagnetic means 34 of the first spring clutch mechanism 8 is not biased,
Therefore, in the first spring clutch mechanism 8, the support member 74, the bias spring member 76, and the armature 72 are only rotated via the coil spring means 36 in association with the rotation of the gear 6 in the direction indicated by the arrow 176. is there.

【0037】上述の作動において、ブレーキ手段180
を備えていない場合には軸部材4が回転するおそれがあ
った。更に詳細に説明すると、歯車6と軸部材4との間
の摩擦係数が大きいと電磁手段34及び120の除勢時
に歯車6の回動力が直接軸部材4に伝達され、かく伝達
される比較的小さい力によって軸部材4が回転するおそ
れがあった。かかる傾向は、歯車6と軸部材4間の摩擦
力、言い換えると歯車6と軸部材4間の摩擦係数、歯車
6に作用する歯車6の半径方向(即ち軸部材4の軸線に
対して実質上垂直な方向)の負荷等に影響され、上記摩
擦力が大きいときに軸部材4が回転して電磁手段34及
び120が除勢されているにもかかわらず作動軸18が
回転する不都合が存在する。
In the above operation, the braking means 180
If the shaft member 4 is not provided, the shaft member 4 may rotate. More specifically, when the coefficient of friction between the gear 6 and the shaft member 4 is large, the rotational force of the gear 6 is directly transmitted to the shaft member 4 when the electromagnetic means 34 and 120 are deenergized, and thus relatively transmitted. The shaft member 4 may be rotated by a small force. This tendency is due to the frictional force between the gear 6 and the shaft member 4, in other words, the coefficient of friction between the gear 6 and the shaft member 4, and the radial direction of the gear 6 acting on the gear 6 (that is, substantially with respect to the axis of the shaft member 4). When the frictional force is large, the shaft member 4 rotates and the electromagnetic means 34 and 120 are de-energized, but the working shaft 18 rotates due to the influence of the load in the vertical direction). ..

【0038】これに対して、実施例の如く、軸部材4に
関連してブレーキ手段180を付設した場合には、比較
的弱い力による軸部材4の回動をブレーキ手段180の
作用、即ち回転部材182と制動部材192間の摩擦力
によって確実に阻止することができ、かくして電磁手段
34及び120の除勢時における軸部材4の回転を防止
することができる。実施例においては、回転部材182
と制動部材192間に摩擦部材188が介在され、更に
コイルばね194の作用によって回転部材182と制動
部材192とが圧接される構成であり、それ故に、電磁
手段34及び120の除勢時における軸部材4の回転を
一層確実に防止することができる。
On the other hand, when the braking means 180 is provided in association with the shaft member 4 as in the embodiment, the rotation of the shaft member 4 by a relatively weak force causes the braking means 180 to act, that is, rotate. The frictional force between the member 182 and the braking member 192 can surely prevent the rotation of the shaft member 4 when the electromagnetic means 34 and 120 are deenergized. In the exemplary embodiment, rotating member 182
The friction member 188 is interposed between the brake member 192 and the braking member 192, and the rotating member 182 and the braking member 192 are pressed against each other by the action of the coil spring 194. Therefore, the shafts when the electromagnetic means 34 and 120 are de-energized. The rotation of the member 4 can be prevented more reliably.

【0039】尚、上述したブレーキ手段180は、図示
の電磁制御ばねクラッチ機構2に限定されず、例えば特
願昭60−78439号の明細書及び図面に開示されて
いる電磁制御ばねクラッチ機構等にも同様に適用するこ
とができる。
The braking means 180 described above is not limited to the electromagnetic control spring clutch mechanism 2 shown in the drawings, and may be the electromagnetic control spring clutch mechanism disclosed in the specification and drawings of Japanese Patent Application No. 60-78439. Can be similarly applied.

【0040】尚、上述の実施例における電磁制御ばねク
ラッチ機構2においては、第1のばねクラッチ機構8及
び第2のばねクラッチ機構10におけるロータ30及び
116、アマチュア組立体32及び118、並びに第1
のボス部材50及び132がユニット組立体としてユニ
ット化されている故に、組立要素が少なくなり、特に重
要であるロータ30及び116とアマチュア72及び1
58の間隔をも一定に保持することができる。また、ア
マチュア72及び154が偏倚ばね部材76及び158
を介してプレート部材86及び166によって支持部材
74及び156の一端面に固定される故に、プレート部
材86及び166がアマチュア72及び154の環状中
央部80及び160のほぼ全域に実質上均一に作用し、
かかる環状中央部80及び160をプレート部材86及
び166と支持部材74及び156間に確実に固定する
ことができると共に偏倚ばね部材76及び158、支持
部材74及び156並びにプレート部材86及び166
から成る組立要素を小型化することもできる。更に、か
くすることによって、支持部材74及び156への固定
に伴うアマチュア72及び154の変形も防止すること
ができ、このことに起因して応答性も向上する。
In the electromagnetically controlled spring clutch mechanism 2 of the above-described embodiment, the rotors 30 and 116, the armature assemblies 32 and 118, and the first spring clutch mechanism 8 and the second spring clutch mechanism 10 of the first and second spring clutch mechanisms 10 and 1st, respectively.
Since the boss members 50 and 132 of FIG. 1 are unitized as a unit assembly, the number of assembly elements is reduced, and the rotors 30 and 116 and the armatures 72 and 1 which are particularly important
The spacing of 58 can also be kept constant. Also, the amateurs 72 and 154 are biased spring members 76 and 158.
Since the plate members 86 and 166 are fixed to one end surfaces of the support members 74 and 156 by the plate members 86 and 166, the plate members 86 and 166 act substantially uniformly over the entire annular central portions 80 and 160 of the armatures 72 and 154. ,
The annular central portions 80 and 160 can be securely fixed between the plate members 86 and 166 and the support members 74 and 156, and the bias spring members 76 and 158, the support members 74 and 156, and the plate members 86 and 166 are also included.
The assembly element consisting of can also be miniaturized. Furthermore, by doing so, it is possible to prevent the deformation of the armatures 72 and 154 due to the fixing to the support members 74 and 156, and the response is also improved due to this.

【0041】更にまた、図示の電磁制御ばねクラッチ機
構2においては、第1のばねクラッチ機構8における第
1のボス部材50が軸部材4の片側から圧入されて大径
部4aの片端面に当接し、るた第2のばねクラッチ機構
10における第1のボス部材132が軸部材4の他側か
ら圧入されて大径部4aの他端面に当接している故に、
第1のボス部材50及び132と共に第1のボス部材5
0及び132間に位置する歯車6並びに第2のボス部材
104及び172の軸部材4に対する移動が確実に阻止
され、更には、例えば電磁制御ばねクラッチ機構2を縦
に配置した(軸部材4を縦に配置する)場合において
も、大径部4aが設けられていることに起因して各種構
成要素間の間隙が一個所に集中的に累積されることはな
く、従って第1のボス部材50及び132と第2のボス
部材104及び172間にコイルばね手段36及び12
2の一部が侵入するのも確実に防止される。
Furthermore, in the electromagnetically controlled spring clutch mechanism 2 shown, the first boss member 50 of the first spring clutch mechanism 8 is press-fitted from one side of the shaft member 4 to contact one end surface of the large diameter portion 4a. Since the first boss member 132 of the slack second spring clutch mechanism 10 is press-fitted from the other side of the shaft member 4 and is in contact with the other end surface of the large diameter portion 4a,
The first boss member 5 together with the first boss members 50 and 132
The movement of the gear 6 located between 0 and 132 and the second boss members 104 and 172 with respect to the shaft member 4 is reliably prevented, and further, for example, the electromagnetically controlled spring clutch mechanism 2 is vertically arranged (the shaft member 4 is Even in the case of arranging vertically, the gaps between the various components are not concentrated in one place due to the large diameter portion 4a being provided, and therefore the first boss member 50 And 132 and the second boss members 104 and 172 between the coil spring means 36 and 12
It is also surely prevented that a part of 2 enters.

【0042】以上、図1乃至図7に基づいて説明した電
磁制御ばねクラッチ機構は、例えば図8及び図9に示す
通りに組合せて用いることによって、例えばマッサージ
器等に好都合に適用することができる。図8及び図9に
おいて、支持基体12及び14間には、所定間隔を置い
て2個の電磁制御ばねクラッチ機構2a及び2bが配設
されている。各電磁制御ばねクラッチ機構2a及び2b
は、図1乃至図7に示す電磁制御ばねクラッチ機構2と
実質上同一の構成であり、それ故にその詳細な説明につ
いては省略する。
The electromagnetically controlled spring clutch mechanism described above with reference to FIGS. 1 to 7 can be conveniently applied to, for example, a massager by using it in combination as shown in FIGS. 8 and 9. .. In FIG. 8 and FIG. 9, two electromagnetic control spring clutch mechanisms 2a and 2b are arranged between the supporting bases 12 and 14 at a predetermined interval. Each electromagnetic control spring clutch mechanism 2a and 2b
Has substantially the same structure as the electromagnetically controlled spring clutch mechanism 2 shown in FIGS. 1 to 7, and therefore its detailed description is omitted.

【0043】支持基体12及び14間には、更に、回転
軸200が回転自在に装着されている。この回転軸20
0には歯車202が装着され、歯車202は片方の電磁
制御ばねクラッチ機構2aにおける歯車6aに噛合さ
れ、上記歯車6aは他方の電磁制御ばねクラッチ機構2
bにおける歯車6bに噛合されている。回転軸200
は、図示していないが正逆転可能な伝動モータの如き駆
動源に駆動連結されている。従って、図8に示す通り、
駆動源(図示せず)の正転によって回転軸200が矢印
204で示す方向に回転されると、歯車202を介して
歯車6aが矢印210で示す方向に回転され、更に歯車
6bが矢印212で示す方向に回転される。一方、駆動
源(図示せず)の逆転によって回転軸200が矢印20
6で示す方向に回転されると、歯車202を介して歯車
6aが矢印208で示す方向に回転され、更に歯車6b
が矢印214で示す方向に回転される。
A rotary shaft 200 is further rotatably mounted between the support bases 12 and 14. This rotating shaft 20
The gear 202 is attached to the gear 0, the gear 202 is meshed with the gear 6a in one electromagnetic control spring clutch mechanism 2a, and the gear 6a is the other electromagnetic control spring clutch mechanism 2a.
It is meshed with the gear 6b at b. Rotating shaft 200
Is drivingly connected to a drive source such as a transmission motor (not shown) capable of forward and reverse rotation. Therefore, as shown in FIG.
When the rotary shaft 200 is rotated in the direction indicated by the arrow 204 by the normal rotation of the drive source (not shown), the gear 6a is rotated in the direction indicated by the arrow 210 via the gear 202, and the gear 6b is further indicated by the arrow 212. It is rotated in the direction shown. On the other hand, the rotation of the drive shaft (not shown) causes the rotary shaft 200 to move in the direction of the arrow 20.
When the gear 6a is rotated in the direction indicated by 6, the gear 6a is rotated in the direction indicated by the arrow 208 via the gear 202, and the gear 6b is further rotated.
Is rotated in the direction indicated by arrow 214.

【0044】図示の複合クラッチ機構においては、上述
した記載から容易に理解される如く、回転軸200が矢
印204で示す方向に回転されているときには、片方の
電磁制御ばねクラッチ機構2aにおける第1のばねクラ
ッチ機構8aと他方の電磁制御ばねクラッチ機構2bに
おける第2のばねクラッチ機構10bとが付勢及び除勢
され(このとき、片方の電磁制御ばねクラッチ機構2a
における第2のばねクラッチ機構10a及び他方の電磁
制御ばねクラッチ機構2bにおける第1のばねクラッチ
機構8bは付勢されることはない)、上述したとは反対
に回転軸200が矢印206で示す方向に回転されてい
るときには、片方の電磁制御ばねクラッチ機構2aにお
ける第2のばねクラッチ機構10aと他方の電磁制御ば
ねクラッチ機構2bにおける第1のばねクラッチ機構8
bとが付勢及び除勢される(このとき、片方の電磁制御
ばねクラッチ機構2aにおける第1のばねクラッチ機構
8a及び他方の電磁制御ばねクラッチ機構2bにおける
第2のばねクラッチ機構10bは付勢されることはな
い)。尚、図示の実施例では歯車6aと歯車6bとが反
対方向に回転されるように噛合されているが、歯車6a
と歯車6bとが同一方向に回転されるように駆動連結さ
れている(例えば歯車6aと歯車6bの間にアイドル歯
車が介在されている)場合には、回転軸200が矢印2
04で示す方向に回転されているときには電磁制御ばね
クラッチ機構2a及び2bにおける第1のばねクラッチ
機構8a及び8bが付勢及び除勢され(このとき、電磁
制御ばねクラッチ機構2a及び2bにおける第2のばね
クラッチ機構10a及び10bが付勢されることはな
い)、上述したは反対に回転軸200が矢印206で示
す方向に回転されているときには電磁制御ばねクラッチ
機構2a及び2bにおける第2のばねクラッチ機構10
a及び10bが付勢及び除勢される(このとき、電磁制
御ばねクラッチ機構2a及び2bにおける第1のばねク
ラッチ機構8a及び8bが付勢されることはない)。
In the illustrated composite clutch mechanism, as will be easily understood from the above description, when the rotary shaft 200 is rotated in the direction indicated by the arrow 204, the first clutch in the electromagnetically controlled spring clutch mechanism 2a is rotated. The spring clutch mechanism 8a and the second spring clutch mechanism 10b in the other electromagnetically controlled spring clutch mechanism 2b are energized and deenergized (at this time, one electromagnetically controlled spring clutch mechanism 2a
The second spring clutch mechanism 10a in FIG. 4 and the first spring clutch mechanism 8b in the other electromagnetically controlled spring clutch mechanism 2b are not urged), but in the opposite direction to the above, the rotation shaft 200 is in the direction indicated by the arrow 206. The second spring clutch mechanism 10a in the one electromagnetically controlled spring clutch mechanism 2a and the first spring clutch mechanism 8 in the other electromagnetically controlled spring clutch mechanism 2b when being rotated to the right.
b is energized and deenergized (at this time, the first spring clutch mechanism 8a in one electromagnetically controlled spring clutch mechanism 2a and the second spring clutch mechanism 10b in the other electromagnetically controlled spring clutch mechanism 2b are energized. Never be done). In the illustrated embodiment, the gear 6a and the gear 6b are meshed so as to rotate in opposite directions.
And the gear 6b are drivingly connected so as to rotate in the same direction (for example, an idle gear is interposed between the gear 6a and the gear 6b), the rotary shaft 200 is indicated by the arrow 2
When being rotated in the direction indicated by 04, the first spring clutch mechanisms 8a and 8b in the electromagnetic control spring clutch mechanisms 2a and 2b are urged and deenergized (at this time, the second spring clutch mechanisms 2a and 2b in the electromagnetic control spring clutch mechanisms 2a and 2b are activated). The spring clutch mechanisms 10a and 10b are not biased), and the second spring in the electromagnetically controlled spring clutch mechanisms 2a and 2b when the rotary shaft 200 is rotated in the direction indicated by the arrow 206, conversely to the above. Clutch mechanism 10
a and 10b are energized and deenergized (at this time, the first spring clutch mechanisms 8a and 8b in the electromagnetically controlled spring clutch mechanisms 2a and 2b are not energized).

【0045】回転軸200が矢印204で示す方向に回
転されているときに、電磁制御ばねクラッチ機構2aの
第1のばねクラッチ機構8aが付勢されると、かかる第
1のばねクラッチ機構8aを介して歯車6aの矢印21
0で示す方向の回動力が軸部材4aに伝達され、かくし
て作動軸18aは矢印210で示す方向に回転される。
また、上述したときに電磁制御ばねクラッチ機構2bの
第2のばねクラッチ機構10bが付勢されると、第2の
ばねクラッチ機構10bを介して歯車6bの矢印212
で示す方向の回動力が軸部材4bに伝達され、かくして
作動軸18bは矢印212で示す方向に回転される。
When the first spring clutch mechanism 8a of the electromagnetically controlled spring clutch mechanism 2a is biased while the rotary shaft 200 is rotating in the direction indicated by the arrow 204, the first spring clutch mechanism 8a is activated. Through the arrow 21 of the gear 6a
The rotational force in the direction indicated by 0 is transmitted to the shaft member 4a, and thus the operating shaft 18a is rotated in the direction indicated by the arrow 210.
Further, when the second spring clutch mechanism 10b of the electromagnetically controlled spring clutch mechanism 2b is biased at the time described above, the arrow 212 of the gear 6b passes through the second spring clutch mechanism 10b.
The turning force in the direction indicated by is transmitted to the shaft member 4b, and thus the operating shaft 18b is rotated in the direction indicated by arrow 212.

【0046】他方、回転軸200が矢印206で示す方
向に回転されているときに、電磁制御ばねクラッチ機構
2aの第2のばねクラッチ機構8bが付勢されると、か
かる第1のばねクラッチ機構8bを介して歯車6aの矢
印208で示す方向の回動力が軸部材4aに伝達され、
かくして作動軸18aは矢印208で示す方向に回転さ
れる。また、上述したときに電磁制御ばねクラッチ機構
2bの第1のばねクラッチ機構10aが付勢されると、
第1のばねクラッチ機構10aを介して歯車6bの矢印
214で示す方向の回動力が軸部材4bに伝達され、か
くして作動軸18bは矢印214で示す方向に回転され
る。
On the other hand, when the second spring clutch mechanism 8b of the electromagnetically controlled spring clutch mechanism 2a is biased while the rotary shaft 200 is rotating in the direction indicated by the arrow 206, the first spring clutch mechanism is activated. The rotational force of the gear 6a in the direction indicated by the arrow 208 is transmitted to the shaft member 4a via 8b,
Thus, the operating shaft 18a is rotated in the direction indicated by the arrow 208. Further, when the first spring clutch mechanism 10a of the electromagnetically controlled spring clutch mechanism 2b is biased at the time described above,
The rotational force of the gear 6b in the direction indicated by the arrow 214 is transmitted to the shaft member 4b via the first spring clutch mechanism 10a, and thus the operating shaft 18b is rotated in the direction indicated by the arrow 214.

【0047】尚、電磁制御ばねクラッチ機構2a、2b
の軸部材4a、4bにはブレーキ手段180a、180
bが各々配設されており、軸部材4a、4bには常に回
転を抑制する作動力が作用せしめられているので、第1
のばねクラッチ機構8a(又は8b)及び第2のばねク
ラッチ機構10a(又は10b)が除勢されているとき
には、ブレーキ手段180a、180bの制動作用によ
り、軸部材4a(又は4b)の回転は確実に防止され
る。
Incidentally, the electromagnetically controlled spring clutch mechanisms 2a, 2b.
Brake means 180a, 180
b are provided respectively, and the operating force for suppressing the rotation is always applied to the shaft members 4a and 4b.
When the second spring clutch mechanism 8a (or 8b) and the second spring clutch mechanism 10a (or 10b) are deenergized, the rotation of the shaft member 4a (or 4b) is ensured by the braking action of the braking means 180a, 180b. To be prevented.

【0048】[0048]

【発明の効果】本発明による電磁制御ばねクラッチ機構
は以上のように構成され、出力回転要素である軸部材に
該軸部材の回動を制動するためのブレーキ手段を設けた
ので、該軸部材は、該ブレーキ手段によって常時回転を
抑制するための制動力が作用せしめられている。従っ
て、電磁手段が除勢されているときにおいて出力回転要
素が回転するのを確実に防止することができるととも
に、電磁手段の付勢後に除勢されたときにおいても出力
回転要素の回転を瞬時に停止することができる。
The electromagnetically controlled spring clutch mechanism according to the present invention is constructed as described above, and the shaft member which is the output rotary element is provided with the brake means for braking the rotation of the shaft member. The braking means always applies a braking force for suppressing the rotation. Therefore, it is possible to reliably prevent the output rotary element from rotating when the electromagnetic means is deenergized, and instantaneously rotate the output rotary element even when the electromagnetic means is deenergized after being biased. You can stop.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電磁制御ばねクラッチ機構の一実
施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of an electromagnetically controlled spring clutch mechanism according to the present invention.

【図2】図1の電磁制御ばねクラッチ機構における第1
のばねクラッチ機構を分解して示す分解斜視図。
FIG. 2 is a first view of the electromagnetically controlled spring clutch mechanism of FIG.
FIG. 3 is an exploded perspective view showing the spring clutch mechanism of FIG.

【図3】図2の第1のばねクラッチ機構におけるユニッ
ト組立体を分解して示す分解斜視図。
FIG. 3 is an exploded perspective view showing an exploded unit assembly of the first spring clutch mechanism of FIG.

【図4】図2の第1のばねクラッチ機構におけるユニッ
ト組立体を軸部材に装着した状態を示す断面図。
4 is a cross-sectional view showing a state in which the unit assembly in the first spring clutch mechanism of FIG. 2 is attached to the shaft member.

【図5】図2のユニット組立体の偏倚ばね部材の固定方
法を説明するための部分拡大断面図。
5 is a partially enlarged cross-sectional view for explaining a method of fixing the bias spring member of the unit assembly of FIG.

【図6】図1の電磁制御ばねクラッチ機構における第2
のばねクラッチ機構を分解して示す分解斜視図。
6 is a second view of the electromagnetically controlled spring clutch mechanism of FIG.
FIG. 3 is an exploded perspective view showing the spring clutch mechanism of FIG.

【図7】図1の電磁制御ばねクラッチ機構におけるブレ
ーキ手段のスリーブ部材及び回転阻止部材を示す斜視
図。
7 is a perspective view showing a sleeve member and a rotation blocking member of the braking means in the electromagnetically controlled spring clutch mechanism of FIG.

【図8】図1に示す電磁制御ばねクラッチ機構を用いた
一適用例を示す側面図。
8 is a side view showing an application example using the electromagnetically controlled spring clutch mechanism shown in FIG.

【図9】図8におけるAーA線からみたところを示す
図。
FIG. 9 is a diagram showing a view seen from the line AA in FIG. 8.

【符号の説明】[Explanation of symbols]

2,2a及び2b:電磁制御ばねクラッチ機構 4,4a及び4b:軸部材 6,6a及び6b:歯車 8,8a及び8b:第1のばねクラッチ機構 10,10a及び10b:第2のばねクラッチ機構 30及び116:ロータ 32及び118:アマチュア組立体 34及び120:電磁手段 36及び122:コイルばね手段 50及び132:第1のボス部材 72及び154:アマチュア 74及び156:支持部材 76及び158:偏倚ばね部材 104及び172:第1のボス部材 180,180a及び180b:ブレーキ手段 182:回転部材 188:摩擦部材 192:制動部材 2, 2a and 2b: Electromagnetically controlled spring clutch mechanism 4, 4a and 4b: Shaft member 6, 6a and 6b: Gears 8, 8a and 8b: First spring clutch mechanism 10, 10a and 10b: Second spring clutch mechanism 30 and 116: Rotor 32 and 118: Amateur assembly 34 and 120: Electromagnetic means 36 and 122: Coil spring means 50 and 132: First boss member 72 and 154: Amateur 74 and 156: Support member 76 and 158: Bias Spring members 104 and 172: First boss members 180, 180a and 180b: Brake means 182: Rotating member 188: Friction member 192: Braking member

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回転自在に装着された軸部材と、 該軸部材に回転自在に装着され回転駆動される入力回転
要素と、 該回転軸と一体に回転せしめられるロータと、該ロータ
に対向して位置するアマチュアと、該アマチュアを該ロ
ータから離隔する方向に弾性的に偏倚する偏倚ばね部材
と、付勢されると該偏倚ばね部材の弾性偏倚作用に抗し
て該アマチュアを該ロータに磁気的に吸着せしめる電磁
手段と、収縮することによって該入力回転要素からの駆
動力を該軸部材に伝達するためのコイルばね手段とを具
備するばねクラッチ機構と、 を有する電磁制御ばねクラッチ機構において、 該軸部材の回動を制動するためのブレーキ手段を備え
た、ことを特徴とする電磁制御ばねクラッチ機構。
1. A shaft member rotatably mounted, an input rotary element rotatably mounted on the shaft member, and driven to rotate, a rotor rotatable integrally with the rotary shaft, and a rotor facing the rotor. And a biasing spring member that elastically biases the amateur in a direction away from the rotor, and when biased, resists the elastic biasing action of the biasing spring member to magnetically actuate the amateur to the rotor. An electromagnetically controlled spring clutch mechanism including: a spring clutch mechanism including: electromagnetic means for mechanically adsorbing, and a coil spring means for contracting to transmit the driving force from the input rotary element to the shaft member, An electromagnetically controlled spring clutch mechanism, comprising a braking means for braking the rotation of the shaft member.
【請求項2】 該ばねクラッチ機構は、第1のばねクラ
ッチ機構と第2のばねクラッチ機構とを有し、該第1の
ばねクラッチ機構と該第2のばねクラッチ機構が該入力
回転要素に対して対象的に該軸部材上に配設されてお
り、該第1のばねクラッチ機構と該第2のばねクラッチ
機構の一方が付勢されると該入力回転要素の所定方向の
回転を該軸部材に伝達し、他方が付勢されると該入力回
転要素の所定方向と反対方向の回転を該軸部材に伝達す
るように構成された、請求項1記載の電磁制御ばねクラ
ッチ機構。
2. The spring clutch mechanism has a first spring clutch mechanism and a second spring clutch mechanism, and the first spring clutch mechanism and the second spring clutch mechanism serve as the input rotary element. In contrast, it is symmetrically disposed on the shaft member, and when one of the first spring clutch mechanism and the second spring clutch mechanism is energized, the rotation of the input rotary element in the predetermined direction is prevented. The electromagnetically controlled spring clutch mechanism according to claim 1, wherein the electromagnetically controlled spring clutch mechanism is configured to transmit to the shaft member the rotation of the input rotary element in a direction opposite to a predetermined direction when the other is biased.
【請求項3】 該アマチュア及び該偏倚ばね部材は該ロ
ータの片側に配設されたアマチュア組立体を構成し、該
アマチュア組立体は更に該軸部材に回転自在に装着され
た支持部材を有し、該支持部材と該アマチュアとの間に
該偏倚ばね部材が配設されており、該電磁手段は該ロー
タの他側に配設されている、請求項1又は2記載の電磁
制御ばねクラッチ機構。
3. The armature and the biasing spring member constitute an armature assembly disposed on one side of the rotor, and the armature assembly further includes a supporting member rotatably mounted on the shaft member. 3. The electromagnetically controlled spring clutch mechanism according to claim 1 or 2, wherein the biasing spring member is disposed between the support member and the armature, and the electromagnetic means is disposed on the other side of the rotor. ..
【請求項4】 該軸部材と一体に回転する第1のボス部
材と、該第1のボス部材に隣接して配設され該入力回転
要素と一体に回転する第2のボス部材とを更に備え、該
コイルばね手段は該第1のボス部材と該第2のボス部材
とに跨がって被嵌され、該アマチュア組立体に連結され
た一端から該入力回転要素に連結された他端まで、該入
力回転要素の所定方向への回転に付随して該アマチュア
組立体と該入力回転要素とが相対的に回転せしめられる
と収縮される方向に捲回されている、請求項3記載の電
磁制御ばねクラッチ機構。
4. A first boss member that rotates integrally with the shaft member, and a second boss member that is disposed adjacent to the first boss member and that rotates integrally with the input rotary element. The coil spring means is fitted over the first boss member and the second boss member, and is connected from the one end connected to the armature assembly to the other end connected to the input rotary element. The winding according to claim 3, wherein the armature assembly and the input rotary element are wound in a direction in which the armature assembly and the input rotary element are contracted when the armature assembly and the input rotary element are rotated relative to each other. Electromagnetically controlled spring clutch mechanism.
【請求項5】 該ブレーキ手段は、該軸部材と一体に回
転する回転部材と、該回転部材の回転を制動する制動部
材を含んでいる、請求項1乃至4のいずれかに記載の電
磁制御ばねクラッチ機構。
5. The electromagnetic control according to claim 1, wherein the brake means includes a rotating member that rotates integrally with the shaft member and a braking member that brakes the rotation of the rotating member. Spring clutch mechanism.
【請求項6】 該ブレーキ手段は、該軸部材と該制動部
材を圧接するための偏倚手段を含んでいる、請求項5記
載の電磁制御ばねクラッチ機構。
6. The electromagnetically controlled spring clutch mechanism according to claim 5, wherein the braking means includes a biasing means for press-contacting the shaft member and the braking member.
【請求項7】 該軸部材及び該制動部材の相互に接触す
る面の少なくとも一方に、摩擦部材が装着されている、
請求項5又は6記載の電磁制御ばねクラッチ機構。
7. A friction member is mounted on at least one of the surfaces of the shaft member and the braking member that contact each other.
The electromagnetically controlled spring clutch mechanism according to claim 5.
JP5016847A 1993-01-08 1993-01-08 Electromagnetic control spring clutch mechanism Expired - Lifetime JP2720266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5016847A JP2720266B2 (en) 1993-01-08 1993-01-08 Electromagnetic control spring clutch mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5016847A JP2720266B2 (en) 1993-01-08 1993-01-08 Electromagnetic control spring clutch mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61178822A Division JPH0819970B2 (en) 1986-07-31 1986-07-31 Electromagnetically controlled spring clutch mechanism

Publications (2)

Publication Number Publication Date
JPH05263841A true JPH05263841A (en) 1993-10-12
JP2720266B2 JP2720266B2 (en) 1998-03-04

Family

ID=11927607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5016847A Expired - Lifetime JP2720266B2 (en) 1993-01-08 1993-01-08 Electromagnetic control spring clutch mechanism

Country Status (1)

Country Link
JP (1) JP2720266B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332518U (en) * 1976-08-27 1978-03-22
JPS57195930A (en) * 1981-05-27 1982-12-01 Mita Ind Co Ltd Clutch capable of both normal and reverse rotation
JPS59142525U (en) * 1983-03-14 1984-09-22 小倉クラツチ株式会社 electromagnetic spring clutch
JPS59175633A (en) * 1983-03-23 1984-10-04 Mita Ind Co Ltd Solenoid controlled spring clutch mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332518U (en) * 1976-08-27 1978-03-22
JPS57195930A (en) * 1981-05-27 1982-12-01 Mita Ind Co Ltd Clutch capable of both normal and reverse rotation
JPS59142525U (en) * 1983-03-14 1984-09-22 小倉クラツチ株式会社 electromagnetic spring clutch
JPS59175633A (en) * 1983-03-23 1984-10-04 Mita Ind Co Ltd Solenoid controlled spring clutch mechanism

Also Published As

Publication number Publication date
JP2720266B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JPH0819970B2 (en) Electromagnetically controlled spring clutch mechanism
US7604105B2 (en) Rotation transmission device
JP2009156283A (en) Rotation transmitting device
JP4200853B2 (en) Driving force transmission device and unbalance confirmation method thereof
JPH05263841A (en) Electromagnetic control spring clutch mechanism
JP2007187249A (en) Rotation transmitting device
JP3330283B2 (en) Electromagnetic clutch
JPH0751973B2 (en) Electromagnetically controlled spring clutch mechanism
JP2686927B2 (en) Electromagnetically controlled spring clutch mechanism
JP3030808B2 (en) Brake equipment
JP2767430B2 (en) Electromagnetic clutch mechanism
JP4541178B2 (en) Rotation transmission device
KR910003776B1 (en) Electro magnetically controlled spring clutch mechanism
JP3291908B2 (en) Electromagnetic clutch with brake
JP2006226366A (en) Rotation transmission device
JPH08232983A (en) Electromagnetic control spring clutch mechanism
JPH08232984A (en) Electromagnetic control spring clutch mechanism
JP3200077B2 (en) Motor with brake
JP4606921B2 (en) Rotation transmission device
JPH0130017B2 (en)
JPH0141852B2 (en)
JP2000153767A (en) Power steering apparatus
JPH0645063Y2 (en) Electromagnetically controlled spring clutch mechanism
JPH0439472Y2 (en)
KR20230017723A (en) Motor-specific electromagnetic braking device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930