JPH05263613A - Energy recovering device in molten reducing iron manufacturing - Google Patents

Energy recovering device in molten reducing iron manufacturing

Info

Publication number
JPH05263613A
JPH05263613A JP6201792A JP6201792A JPH05263613A JP H05263613 A JPH05263613 A JP H05263613A JP 6201792 A JP6201792 A JP 6201792A JP 6201792 A JP6201792 A JP 6201792A JP H05263613 A JPH05263613 A JP H05263613A
Authority
JP
Japan
Prior art keywords
gas
compressor
oxygen
carbon dioxide
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6201792A
Other languages
Japanese (ja)
Inventor
Hiroaki Kaneda
博晶 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6201792A priority Critical patent/JPH05263613A/en
Publication of JPH05263613A publication Critical patent/JPH05263613A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PURPOSE:To easily recover carbon dioxide and prevent nitrogen oxide or carbon dioxide from being dumped to the atmosphere by subjecting exhaust gas in a reducing furnace to combustion by not air but oxygen, and using the resultant combustion gas as gas for dilution for a temperature. CONSTITUTION:Reducing furnace exhaust gas, which is cooled in a first cooler 3 and pressurized in an exhaust gas compressor 4, is introduced into an oxygen combustor 9, to be utilized as fuel. A part of oxygen to be used in a reducing furnace 1 is branched and supplied into the oxygen combustor 9, thus generating combustion gas of a high temperature. Accordingly, the exhaust gas in the reducing furnace is burnt with oxygen so that nitrogen cannot be included into the main component of the combustion gas. The combustion gas is adapted to drive an expansion turbine 10. Most of the gas exhausted from the expansion turbine 10 is supplied into the oxygen combustor 9 through a circulating path 17, thus cooling high temperature gas after combustion. A part of the gas recovers carbon dioxide in a carbon dioxide recovering device 20, where the recovery can be easily carried out because the gas is consisted of carbon dioxide and steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融還元製鉄用還元炉
や製鉄用高炉のエネルギ回収装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an energy recovery system for a smelting reduction iron reduction furnace and an iron blast furnace.

【0002】[0002]

【従来の技術】図4は従来の還元炉のエネルギ回収装置
の一例を示す系統図である。この図において、還元炉
(1)には上部から鉄鉱石が供給され、側壁から石炭と
石灰石が微粉状で供給されている。また、下部から酸素
が供給され、石炭の燃焼により鉄鉱石は溶融還元され
て、鉄が生産される。還元炉(1)内では、水素ガス、
一酸化炭素、炭酸ガスの混合ガスが連続的に発生して加
圧状態となるため、排気ガスとして炉外に放出される。
放出された排気ガスは、分離器(2)内で、ガス中に随
伴した固形分が分離され、その固形分は再び還元炉
(1)内に戻る。排気ガスは、その後冷却器(3)で所
定の温度(常温)に冷却され、排気ガス圧縮機(4)に
より加圧される。
2. Description of the Related Art FIG. 4 is a system diagram showing an example of a conventional energy recovery device for a reduction furnace. In this figure, iron ore is supplied from the upper part to the reduction furnace (1), and coal and limestone are supplied in the form of fine powder from the side wall. Further, oxygen is supplied from the lower part, and the iron ore is melted and reduced by the combustion of coal to produce iron. In the reduction furnace (1), hydrogen gas,
A mixed gas of carbon monoxide and carbon dioxide gas is continuously generated to be in a pressurized state, and is discharged to the outside of the furnace as exhaust gas.
The discharged exhaust gas is separated in the separator (2) into a solid content accompanying the gas, and the solid content returns to the reducing furnace (1) again. The exhaust gas is then cooled to a predetermined temperature (normal temperature) by the cooler (3) and pressurized by the exhaust gas compressor (4).

【0003】加圧された排気ガスは燃焼器(8)に至
り、燃料として利用される。すなわち、還元炉(1)か
ら排出されるガスは、主成分が水素、一酸化炭素、炭酸
ガスであるから、可燃性ガスである。そこでこれを燃焼
させ、高温のガスを得てエネルギとして回収するのであ
る。その際、空気中の酸素と還元炉排気ガスが酸化燃焼
して高温となるので、このガスを所定温度に稀釈するた
め、過剰空気を空気圧縮機(17)で加圧して供給して
いる。燃焼器(8)を出た燃焼ガスは、膨張タービン
(10)で膨張し、回転動力を得て、発電機(11)や
前記圧縮機(4),(7)等を駆動する。膨張タービン
(10)を出たガスは、更に排熱回収ボイラ(12)で
熱回収されて大気に放出される。排熱回収ボイラ(1
2)で発生した水蒸気は蒸気タービン(13)内で膨張
し、これを回転駆動する。
The pressurized exhaust gas reaches the combustor (8) and is used as fuel. That is, the gas discharged from the reduction furnace (1) is a combustible gas because the main components are hydrogen, carbon monoxide, and carbon dioxide gas. Then, this is burned to obtain high-temperature gas and recover it as energy. At this time, oxygen in the air and the exhaust gas from the reducing furnace are oxidatively burned to a high temperature, and therefore, in order to dilute this gas to a predetermined temperature, excess air is pressurized and supplied by the air compressor (17). The combustion gas that has left the combustor (8) is expanded in the expansion turbine (10) to obtain rotational power and drive the generator (11) and the compressors (4) and (7). The gas discharged from the expansion turbine (10) is further heat-recovered by the exhaust heat recovery boiler (12) and released to the atmosphere. Exhaust heat recovery boiler (1
The steam generated in 2) expands in the steam turbine (13) and drives it to rotate.

【0004】前記のとおり、空気を加圧する空気圧縮機
(7)、膨張タービン(10)、発電機(11)、は一
軸上に配置されている。また、排気ガスを加圧する排気
ガス圧縮機(4)も、同一軸上に配置されるが、運転の
都合によっては別軸となっている。
As described above, the air compressor (7) for pressurizing air, the expansion turbine (10), and the generator (11) are arranged on one axis. Further, the exhaust gas compressor (4) for pressurizing the exhaust gas is also arranged on the same axis, but it is a different axis depending on the convenience of operation.

【0005】[0005]

【発明が解決しようとする課題】エネルギ回収に必要な
回転機器類を前記のように一軸上に配置することは、動
力の伝達効率がよく、理想的な接続法ではあるが、次の
制約によってこれができない場合があり問題であった。
It is an ideal connection method that the rotating devices necessary for energy recovery are arranged on one axis as described above, although it is an ideal connection method. However, the following restrictions apply. This could be a problem in some cases, which was a problem.

【0006】一つは軸系の振動の問題である。多数の回
転機器の接続によって生じる振動は、その接続方法とミ
スアライメントによって振動応答が過敏になりやすい。
また、長大軸には捩り振動が生じやすいので、事故に至
る可能性がある。そして、個々の機器に生じるラテラル
な軸振動について安定性を評価していても、接続と機器
間のミスアライメントによる振動は、据付方法,地盤等
によって変化するため予測が難しい。
One is the problem of shaft vibration. Vibration caused by the connection of a large number of rotating devices tends to have a hypersensitive vibration response due to the connection method and misalignment.
Further, torsional vibration is likely to occur in the long shaft, which may lead to an accident. Even if the stability is evaluated for the lateral axial vibration that occurs in each device, it is difficult to predict the vibration due to misalignment between the connection and the device because it changes depending on the installation method, the ground, and the like.

【0007】第二は起動トルクの問題である。圧縮機と
呼ばれる機器は、連続的にトルクを必要とし、起動時に
おいても負のトルクである。また膨張タービンも、作動
ガスの流量が確保され温度が所定の温度を越えないと、
正のトルクは生じない。したがってこの種のエネルギ回
収には、起動時の負のトルクを補う起動装置が必要にな
る。膨張タービンと一軸上に接続される機器が多くなれ
ば、それだけ起動時の負のトルクが大きくなり、起動装
置の必要容量が大きくなる。
The second is the problem of starting torque. A device called a compressor continuously requires torque, and the torque is negative even at the time of starting. In addition, the expansion turbine, if the flow rate of the working gas is secured and the temperature does not exceed the predetermined temperature,
No positive torque is produced. Therefore, this type of energy recovery requires a starting device that compensates for the negative torque at the time of starting. If the number of devices connected to the expansion turbine on one axis increases, the negative torque at the time of starting increases and the required capacity of the starting device also increases.

【0008】更にサージングの問題がある。圧縮機は、
取扱いガスの圧縮特性に応じて、ガスが通過する通路面
積を徐々に小さくしてある。高分子量ガスを取扱う場合
は、特に圧縮による体積の縮少率が大きいので、通路面
積の縮少は著しい。また、この圧縮機は本来負のトルク
を必要とし、静止状態から昇速する場合、トルクは回転
数のほぼ2乗に比例して増大する。回転数が低い時に
は、圧力も回転数の2乗に比例して上昇するため、吸込
まれたガスの全量が高圧段側に押されても、面積が相対
的にせまくなっている通路を充分に流れることができ
ず、一部分のガスが逆流してサージングに突入する。こ
のサージングはトルクの変動を伴なうため、回転数も同
時に変動して不安定となる。この現象は分子量の大きい
ガスに特に顕著に表われる。
Further, there is a problem of surging. The compressor is
The passage area through which the gas passes is gradually reduced in accordance with the compression characteristics of the handled gas. When handling a high-molecular-weight gas, the volume reduction rate due to compression is particularly large, so the passage area is significantly reduced. Further, this compressor originally requires a negative torque, and when the speed is increased from the stationary state, the torque increases in proportion to almost the square of the rotation speed. When the number of revolutions is low, the pressure also rises in proportion to the square of the number of revolutions, so even if the total amount of sucked gas is pushed to the high pressure stage side, the passage with a relatively narrow area can be sufficiently used. It cannot flow, and some gas flows backwards and plunges into surging. Since this surging is accompanied by a torque fluctuation, the rotational speed also fluctuates and becomes unstable. This phenomenon is particularly remarkable in a gas having a large molecular weight.

【0009】[0009]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、水素および一酸化炭素を含む製鉄
炉の排ガスを冷却する第1の冷却器と、上記第1の冷却
器を出た上記排ガスを圧縮する第1の圧縮機と、上記第
1の圧縮機を出た上記排ガスを酸素を用いて燃焼させる
酸素燃焼器と、上記酸素発生器で発生した燃焼ガスによ
り駆動され上記第1の圧縮機の回転軸と同軸に連結され
た膨張タービンと、上記膨張タービンの回転軸と同軸に
連結された発電機と、上記膨張タービンを出た上記燃焼
ガスを冷却する第2の冷却器と、上記膨張タービンの回
転軸と同軸に連結され、上記第2の冷却器を出た上記燃
焼ガスを圧縮する第2の圧縮機と、上記第2の圧縮機を
出た上記燃焼ガスを冷却する第3の冷却器と、上記膨張
タービンの回転軸と同軸に連結され上記第3の冷却器を
出た上記燃焼ガスを圧縮する第3の圧縮機と、上記第3
の圧縮機を出た上記燃焼ガスから炭酸ガスを分離する炭
酸ガス回収装置と、上記第3の圧縮機を出た上記燃焼ガ
スの一部を分岐して上記酸素燃焼器に供給する循環管路
と、上記第1,第2および第3の圧縮機のうち少なくと
も一部の圧縮過程の途中をその圧縮機のすぐ前流に設け
られた冷却器の入口に連通する抽気管路とを具備したこ
とを特徴とする溶融還元製鉄におけるエネルギ回収装置
を提案するものである。
In order to solve the above-mentioned conventional problems, the present invention provides a first cooler for cooling exhaust gas of an ironmaking furnace containing hydrogen and carbon monoxide, and the first cooler. Driven by combustion gas generated in the oxygen generator, a first compressor for compressing the exhaust gas discharged from the first compressor, an oxygen combustor that burns the exhaust gas discharged from the first compressor with oxygen, and a combustion gas generated in the oxygen generator. An expansion turbine coaxially connected to the rotary shaft of the first compressor, a generator coaxially connected to the rotary shaft of the expansion turbine, and a second turbine for cooling the combustion gas exiting the expansion turbine. A cooler, a second compressor that is coaxially connected to the rotary shaft of the expansion turbine, and that compresses the combustion gas that exits the second cooler, and the combustion gas that exits the second compressor. Third cooler that cools the rotating shaft of the expansion turbine A third compressor for compressing the combustion gases, which is connected coaxially exit said third cooler, the third
Carbon dioxide recovery device for separating carbon dioxide gas from the combustion gas discharged from the compressor, and a circulation line for branching a part of the combustion gas discharged from the third compressor to the oxycombustor And a bleed line for communicating at least a part of the compression process of the first, second and third compressors with an inlet of a cooler provided immediately upstream of the compressor. The present invention proposes an energy recovery device for smelting reduction iron making characterized by the above.

【0010】[0010]

【作用】本発明においては、還元炉の排ガスを圧縮して
燃焼し、その燃焼ガスにより膨張タービンを駆動してエ
ネルギを回収するに当り、還元炉の排ガスを空気でなく
酸素により燃焼させ、またその燃焼ガス、すなわち炭酸
ガスと水蒸気の混合ガスを、温度稀釈用のガスとして用
いるので、燃焼ガス中に窒素が入り込まない。したがっ
て炭酸ガスを容易に回収でき、窒素酸化物や炭酸ガスを
大気中に廃棄しなくてすむ。
In the present invention, the exhaust gas of the reducing furnace is compressed and burned, and when the combustion gas drives the expansion turbine to recover energy, the exhaust gas of the reducing furnace is burned with oxygen instead of air, and Since the combustion gas, that is, a mixed gas of carbon dioxide gas and steam is used as a gas for temperature dilution, nitrogen does not enter the combustion gas. Therefore, carbon dioxide can be easily recovered, and nitrogen oxide and carbon dioxide need not be discarded into the atmosphere.

【0011】本発明ではまた、圧縮機の圧縮過程の途中
をその圧縮機のすぐ前流に設けられた冷却器の入口に連
通する抽気管路が設けられているので、低回転数域で
は、抽気機構を開いて吸収したガスの一部を抽気し、回
転数の上昇と伴ってこれを閉じてゆけば、サージングな
しで回転数を上昇させることができる。
Further, in the present invention, since the extraction line which communicates with the inlet of the cooler provided immediately upstream of the compressor in the middle of the compression process of the compressor is provided, in the low rotational speed range, If the bleeding mechanism is opened to bleed off a part of the absorbed gas and then the bleeding mechanism is closed as the rotation speed increases, the rotation speed can be increased without surging.

【0012】一方、低回転数域でガスの一部を抽気する
ことは、圧縮機の吐出圧力を下げ、圧縮機内の通過ガス
流量を下げることになるから、結果的には起動時のトル
クが小さくなる。また、圧縮機の吐出側から吸入側に至
るバイパスラインにより、圧縮機の吸入側の圧力を下げ
ることができるので、圧縮機の吸入流量(重量流量)が
少なくなり、トルクを小さくすることができる。膨張タ
ービンも起動時は負のトルクであるが、燃料を投入して
着火すると正のトルクを発生するようになる。これは回
転数の上昇に伴い増大するので、燃料着火直後まで起動
装置でトルクをカバーすれば自立し、以後は燃料を追加
することにより加速することができる。このように、圧
縮機の起動トルクを小さくすることは、起動装置の容量
を小さくするのに有効である。
On the other hand, extracting a part of the gas in the low rotation speed range lowers the discharge pressure of the compressor and the flow rate of the gas passing through the compressor. Get smaller. Further, since the pressure on the suction side of the compressor can be lowered by the bypass line extending from the discharge side to the suction side of the compressor, the suction flow rate (weight flow rate) of the compressor can be reduced and the torque can be reduced. .. The expansion turbine also has a negative torque at the time of starting, but when the fuel is injected and ignited, a positive torque is generated. Since this increases as the number of revolutions increases, it can be self-sustaining if the starter covers the torque until immediately after fuel ignition, and thereafter, it can be accelerated by adding fuel. As described above, reducing the starting torque of the compressor is effective for reducing the capacity of the starting device.

【0013】[0013]

【実施例】図1,図2および図3は、それぞれ本発明の
第1,第2および第3の実施例を示す系統図である。こ
れらの図において、前記図4により説明した従来のもの
と同様の部分については、冗長になるのを避けるため、
同一の符号を付け詳しい説明を省く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2 and 3 are system diagrams showing first, second and third embodiments of the present invention, respectively. In these figures, the portions similar to the conventional one described with reference to FIG.
The same symbols are attached and detailed explanations are omitted.

【0014】本実施例では、第1の冷却器(3)で冷却
され排気ガス圧縮機(第1の圧縮機)(4)で加圧され
た還元炉排気ガスが、酸素燃焼器(9)に導かれて燃料
として利用される。この酸素燃焼器(9)では、還元炉
(1)に使用する酸素が一部分岐して供給され、排気ガ
スが酸化されて高温の燃焼ガスが発生する。このように
本実施例では、酸素を用いて還元炉の排気ガスを燃焼さ
せるので、燃焼ガスの主成分は炭酸ガスと水蒸気であ
り、窒素は含まれない。
In this embodiment, the reducing furnace exhaust gas cooled by the first cooler (3) and pressurized by the exhaust gas compressor (first compressor) (4) is converted into the oxygen combustor (9). Will be used as fuel. In this oxycombustor (9), oxygen used in the reduction furnace (1) is partially branched and supplied, and the exhaust gas is oxidized to generate high-temperature combustion gas. As described above, in the present embodiment, since the exhaust gas of the reduction furnace is burned using oxygen, the main components of the combustion gas are carbon dioxide gas and water vapor, and nitrogen is not included.

【0015】燃焼ガスはその後、従来同様に膨張タービ
ン(10)内で膨張し、回転動力を得て発電機(11)
や前記排気ガス圧縮機(4)その他を駆動する。膨張タ
ービン(10)を出たガスは、更に第2の冷却器(1
5)で常温まで冷却された後、循環ガス圧縮機(第2の
圧縮機)(16)により加圧され、その大部分が循環管
路(17)を経て前記酸素燃焼器(9)に循環供給さ
れ、燃焼した高温ガスを所定の温度まで冷却(温度稀
釈)するために使用される。その温度は、膨張タービン
(10)の耐熱温度によって支配されるものである。
Thereafter, the combustion gas is expanded in the expansion turbine (10) in the same manner as in the conventional case to obtain the rotational power and the generator (11).
And driving the exhaust gas compressor (4) and others. The gas exiting the expansion turbine (10) is further fed to the second cooler (1
After being cooled to room temperature in 5), it is pressurized by the circulating gas compressor (second compressor) (16), and most of it is circulated to the oxycombustor (9) through the circulation pipe (17). It is used for cooling (temperature dilution) the high temperature gas supplied and burned to a predetermined temperature. The temperature is governed by the heat resistant temperature of the expansion turbine (10).

【0016】循環ガス圧縮機(16)を出たガスの一部
は、第3の冷却器(18)で再度常温まで冷却され、炭
酸ガス圧縮機(第3の圧縮機)(19)で更に加圧さ
れ、炭酸ガス回収装置(20)に至る。このガスの主成
分は、前記のとおり炭酸ガスと水蒸気のみである。水蒸
気は冷却により簡単に凝縮して復水となるから、このガ
スを冷却・加圧すれば、炭酸ガスが簡単に回収できる。
この場合、水蒸気は上記循環系の最低温度時の分圧とし
て存在しこれを越えるものは、水分となって系外に排出
される。そして排気ガスと同一分子量のガスが循環系内
で余剰となるから、これを炭酸ガス圧縮機(19)で系
内から取出し、炭酸ガス回収装置(20)に昇圧して回
収する。
A part of the gas discharged from the circulating gas compressor (16) is cooled again to room temperature by the third cooler (18), and is further cooled by the carbon dioxide gas compressor (third compressor) (19). It is pressurized and reaches the carbon dioxide recovery device (20). The main components of this gas are only carbon dioxide and water vapor as described above. Since water vapor is easily condensed by cooling to be condensed water, carbon dioxide can be easily recovered by cooling and pressurizing this gas.
In this case, water vapor exists as a partial pressure at the lowest temperature of the circulation system, and if it exceeds this, it becomes water and is discharged out of the system. Then, since a gas having the same molecular weight as the exhaust gas becomes a surplus in the circulation system, this gas is taken out from the system by the carbon dioxide gas compressor (19) and pressurized in the carbon dioxide gas recovery device (20) to be recovered.

【0017】本実施例では、酸素燃焼器(9)において
還元炉(1)の排気ガスを空気でなく酸素を用いて燃焼
させ、また温度稀釈用のガスとして炭酸ガスと水蒸気等
の混合ガスを利用するので、燃焼ガス中には窒素が存在
しない。したがって特別な分離装置を必要とせずに、炭
酸ガスを回収でき、窒素酸化物や炭酸ガスを大気に廃棄
せずにすむ。そして、溶融還元製鉄設備には酸素製造プ
ロセスが付設されており、この酸素を利用できるので、
新たな酸素製造設備も不要である。
In this embodiment, in the oxygen combustor (9), the exhaust gas of the reduction furnace (1) is burned by using oxygen instead of air, and a mixed gas such as carbon dioxide and steam is used as a gas for temperature dilution. Since it is used, there is no nitrogen in the combustion gas. Therefore, carbon dioxide can be recovered without requiring a special separation device, and nitrogen oxides and carbon dioxide need not be discarded into the atmosphere. And since the oxygen production process is attached to the smelting reduction iron making equipment and this oxygen can be used,
No new oxygen production equipment is required.

【0018】本実施例の排気ガス圧縮機(4)、膨張タ
ービン(10)、循環ガス圧縮機(16)、炭酸ガス圧
縮機(19)は一軸に配置され、発電機(11)と同軸
に接続されている。各圧縮機(4),(16),(1
9)は負のトルク、膨張タービン(10)は正のトルク
をそれぞれ発生するので、この差が発電機(11)の発
電量となる。これら一軸上に配置された機器類は、起動
的にはすべて負のトルクであるので、起動に必要なトル
クを得るために、起動装置(21)を軸端に設けて、起
動時の加速を担わせる。
The exhaust gas compressor (4), the expansion turbine (10), the circulating gas compressor (16) and the carbon dioxide gas compressor (19) of this embodiment are arranged uniaxially and coaxially with the generator (11). It is connected. Each compressor (4), (16), (1
9) produces a negative torque and the expansion turbine (10) produces a positive torque, and this difference is the power generation amount of the generator (11). The devices arranged on these one axis all have a negative torque at the start. Therefore, in order to obtain the torque required for the start, a starter (21) is provided at the shaft end to accelerate the start-up. To carry.

【0019】起動時には還元炉(1)の排気ガスも得ら
れない場合もあるので、別途起動用燃料(天然ガス等)
ライン(22)を設ける。すなわち起動装置(21)に
よって起動した軸系が徐々にスピードを増し、循環ガス
がリサイクルを始めると、起動用燃料を酸素燃焼器
(9)内で酸素により着火燃焼させる。この燃料量が増
加すると、膨張タービン(10)のトルクが増加し軸系
は加速されて、起動装置なしでも自立して回転できるよ
うになる。この時起動装置(21)はこの軸系から切離
される。燃料と酸素を更に増加すると、回転数は更に上
昇し、定格速度に達して起動は完了する。
Since the exhaust gas of the reduction furnace (1) may not be obtained at the time of starting, a separate starting fuel (natural gas, etc.)
A line (22) is provided. That is, when the shaft system started by the starter (21) gradually increases in speed and the circulating gas begins to recycle, the starting fuel is ignited and burned by oxygen in the oxycombustor (9). When this amount of fuel increases, the torque of the expansion turbine (10) increases and the shaft system is accelerated so that it can rotate independently without a starter. At this time, the activation device (21) is disconnected from this shaft system. When the fuel and oxygen are further increased, the rotation speed further increases, the rated speed is reached, and the start-up is completed.

【0020】各圧縮機(4),(16),(19)の負
のトルクは、回転数の上昇に伴いその2乗に比例して増
加する。そこで本実施例では、圧縮器に抽気機構と抽気
ラインを設け、起動トルクを下げるような工夫をしてい
る。高分子量ガスを取扱う圧縮機は圧縮行程における通
路面積の縮少率が大きいため、回転数が過度的な条件下
では低圧側で吸込まれたガスが高圧側通路圧力が上昇せ
ず通過することができずに、一部が逆流してサージング
現象を起す可能性もあるが、本実施例では抽気機構と抽
気ラインを設置すれば、これも防止することができる。
The negative torque of each of the compressors (4), (16) and (19) increases in proportion to the square of the increase in the rotation speed. Therefore, in this embodiment, the compressor is provided with an extraction mechanism and an extraction line to reduce the starting torque. Since the compressor that handles high-molecular-weight gas has a large reduction ratio of the passage area in the compression stroke, the gas sucked on the low-pressure side may pass through without increasing the passage pressure on the high-pressure side under conditions where the rotation speed is excessive. There is a possibility that some of them may flow backward and cause a surging phenomenon, but in the present embodiment, this can also be prevented by installing a bleeding mechanism and a bleeding line.

【0021】抽気機構と抽気ラインは、圧縮機のインペ
ラ中間に取付けたもので、起動時には開いた状態にして
おく。そうすると、吸込まれたガスは圧縮機内のインペ
ラで昇圧され、抽気機構部分で一部のガスが抽気される
ため、その後のインペラへの流入ガス量が減少して、起
動に必要なトルクが小さくなる。ここで抽気されたガス
は、圧縮機の吸込側へ戻され、吸込側の冷却器で冷却さ
れて、再度圧縮機に吸込まれる。回転数の上昇に伴って
抽気ラインを閉じてゆき、定格速度では全閉としてガス
を抽気なしで昇圧させる。
The bleeding mechanism and the bleeding line are attached in the middle of the impeller of the compressor, and are kept open at the time of startup. Then, the sucked gas is boosted by the impeller in the compressor, and a part of the gas is extracted in the extraction mechanism, so that the amount of gas flowing into the impeller after that is decreased and the torque required for starting is reduced. .. The gas extracted here is returned to the suction side of the compressor, cooled by the cooler on the suction side, and sucked into the compressor again. The bleed line is closed as the number of revolutions increases, and the gas is boosted without bleed at full speed at the rated speed.

【0022】図1は循環ガス圧縮機(16)に抽気機構
と抽気ライン(16a)を設けた場合、図2では循環ガ
ス圧縮機(16)と炭酸ガス圧縮機(19)に抽気機構
と抽気ライン(16a),(19a)を設けた場合、そ
して図3はすべての圧縮機(4),(16),(19)
に抽気機構、抽気ライン(4a),(16a),(19
a)を設けた場合をそれぞれ示す。上記のような抽気機
構、抽気ラインを設けるか,設けないかについては、個
々のケースにより異なる。各機器のトルク比は設計条件
によって異なるが、概略を示すと、排気ガス圧縮機
(4)は−1.0 、膨張タービン(10)は+9.5 、循環
ガス圧縮機(16)は−4.6 、炭酸ガス圧縮機(19)
は−1.5 である。したがって循環ガス圧縮機(16)に
は必ず抽気機構と抽気ラインを設ける必要があるが、そ
の他の圧縮機(4),(19)はプラント規模によって
有無を決定できる。
In FIG. 1, when the circulating gas compressor (16) is provided with a bleeding mechanism and a bleeding line (16a), in FIG. 2, the circulating gas compressor (16) and the carbon dioxide gas compressor (19) are bleeding mechanism and bleeding. When lines (16a) and (19a) are provided, and FIG. 3 shows all compressors (4), (16) and (19)
Bleeding mechanism, bleeding lines (4a), (16a), (19
The case where a) is provided is shown. Whether or not the bleeding mechanism and the bleeding line as described above are provided depends on the individual case. The torque ratio of each device differs depending on the design conditions, but the outline is as follows: exhaust gas compressor (4) is -1.0, expansion turbine (10) is +9.5, circulating gas compressor (16) is -4.6, carbon dioxide. Gas compressor (19)
Is −1.5. Therefore, the circulating gas compressor (16) must always be provided with an extraction mechanism and an extraction line, but the presence or absence of the other compressors (4) and (19) can be determined depending on the plant scale.

【0023】[0023]

【発明の効果】本発明によれば、次の効果が得られる。According to the present invention, the following effects can be obtained.

【0024】1)還元炉の排ガスを空気でなく酸素を用
いて燃焼させ、また温度稀釈用のガスとして炭酸ガスと
水蒸気等の混合ガスを利用するので、燃焼ガス中には窒
素が存在しない。したがって特別な分離装置を必要とせ
ずに、炭酸ガスを回収でき、窒素酸化物や炭酸ガスを大
気中に廃棄せずにすむ。そして溶融還元製鉄設備には酸
素製造プロセスが付設されており、その酸素を利用でき
るので、新たな酸素製造設備は不要である。
1) Since the exhaust gas of the reduction furnace is burned by using oxygen instead of air, and the mixed gas of carbon dioxide gas and steam is used as the gas for temperature dilution, nitrogen is not present in the combustion gas. Therefore, carbon dioxide can be recovered without requiring a special separation device, and nitrogen oxides and carbon dioxide need not be discarded into the atmosphere. An oxygen production process is attached to the smelting reduction ironmaking equipment, and the oxygen can be used, so that no new oxygen production equipment is required.

【0025】2)圧縮機の圧縮過程の途中から抽気する
管路を設けたことにより、起動時のトルクを減少し、起
動装置を小型化することができる。その結果、各回転機
器を同一軸上に配置し、別置きの場合に必要な電動機を
省略して、各機器間の動力伝達効率を高めることができ
る。また、この一軸化によって、起動・停止等を含めた
運転が簡単になるとともに、据付に必要な面積が小さく
なる。
2) By providing the pipe line for extracting air from the middle of the compression process of the compressor, the torque at the time of starting can be reduced and the starting device can be miniaturized. As a result, it is possible to arrange the rotating devices on the same axis, omit the electric motor required in the case of separate placement, and improve the power transmission efficiency between the devices. In addition, this uniaxial operation simplifies the operation including starting and stopping, and reduces the area required for installation.

【0026】3)上記抽気によって、圧縮機のサージン
グを防止できる。
3) The bleeding prevents the surging of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例を示す系統図であ
る。
FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】図2は本発明の第2実施例を示す系統図であ
る。
FIG. 2 is a system diagram showing a second embodiment of the present invention.

【図3】図3は本発明の第3実施例を示す系統図であ
る。
FIG. 3 is a system diagram showing a third embodiment of the present invention.

【図4】図4は従来の還元炉のエネルギ回収装置の一例
を示す系統図である。
FIG. 4 is a system diagram showing an example of a conventional energy recovery device for a reduction furnace.

【符号の説明】[Explanation of symbols]

(1) 還元炉 (2) 分離器 (3) (第1の)冷却器 (4) 排気ガス圧縮機
(第1の圧縮機) (7) 空気圧縮機 (8) 燃焼器 (9) 酸素燃焼器 (10) 膨張タービン (11) 発電機 (12) 排熱回収ボイラ (13) 蒸気タービン (15) 第2の冷却器 (16) 循環ガス圧縮機
(第2の圧縮機) (17) 循環管路 (18) 第3の冷却器 (19) 炭酸ガス圧縮機
(第3の圧縮機) (20) 炭酸ガス回収装置 (21) 起動装置 (22) 起動用燃料ライン (4a),(16a),(19a) 抽気ライン
(1) Reduction furnace (2) Separator (3) (First) cooler (4) Exhaust gas compressor (first compressor) (7) Air compressor (8) Combustor (9) Oxygen combustion Unit (10) Expansion turbine (11) Generator (12) Exhaust heat recovery boiler (13) Steam turbine (15) Second cooler (16) Circulating gas compressor (second compressor) (17) Circulating pipe Line (18) Third cooler (19) Carbon dioxide gas compressor (third compressor) (20) Carbon dioxide gas recovery device (21) Starter device (22) Fuel line for starting (4a), (16a), (19a) Extraction line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素および一酸化炭素を含む製鉄炉の排
ガスを冷却する第1の冷却器と、上記第1の冷却器を出
た上記排ガスを圧縮する第1の圧縮機と、上記第1の圧
縮機を出た上記排ガスを酸素を用いて燃焼させる酸素燃
焼器と、上記酸素発生器で発生した燃焼ガスにより駆動
され上記第1の圧縮機の回転軸と同軸に連結された膨張
タービンと、上記膨張タービンの回転軸と同軸に連結さ
れた発電機と、上記膨張タービンを出た上記燃焼ガスを
冷却する第2の冷却器と、上記膨張タービンの回転軸と
同軸に連結され、上記第2の冷却器を出た上記燃焼ガス
を圧縮する第2の圧縮機と、上記第2の圧縮機を出た上
記燃焼ガスを冷却する第3の冷却器と、上記膨張タービ
ンの回転軸と同軸に連結され上記第3の冷却器を出た上
記燃焼ガスを圧縮する第3の圧縮機と、上記第3の圧縮
機を出た上記燃焼ガスから炭酸ガスを分離する炭酸ガス
回収装置と、上記第3の圧縮機を出た上記燃焼ガスの一
部を分岐して上記酸素燃焼器に供給する循環管路と、上
記第1,第2および第3の圧縮機のうち少なくとも一部
の圧縮過程の途中をその圧縮機のすぐ前流に設けられた
冷却器の入口に連通する抽気管路とを具備したことを特
徴とする溶融還元製鉄におけるエネルギ回収装置。
1. A first cooler for cooling the exhaust gas of an iron-making furnace containing hydrogen and carbon monoxide, a first compressor for compressing the exhaust gas leaving the first cooler, and the first compressor. An oxygen combustor that burns the exhaust gas from the compressor using oxygen, and an expansion turbine that is driven by the combustion gas generated in the oxygen generator and that is coaxially connected to the rotation shaft of the first compressor. A generator that is coaxially connected to the expansion shaft of the expansion turbine, a second cooler that cools the combustion gas that exits the expansion turbine, and a coaxial connection to the rotation shaft of the expansion turbine. A second compressor that compresses the combustion gas that exits the second cooler, a third cooler that cools the combustion gas that exits the second compressor, and a coaxial shaft of the expansion turbine. And compresses the combustion gas from the third cooler connected to A third compressor, a carbon dioxide recovery device for separating carbon dioxide from the combustion gas discharged from the third compressor, and a part of the combustion gas discharged from the third compressor. And a circulation line for supplying the oxy-fuel combustor to the oxy-fuel combustor, and a cooler provided immediately upstream of the compressor in the middle of the compression process of at least a part of the first, second and third compressors. An energy recovery apparatus for smelting and reducing ironmaking, comprising: an extraction line communicating with an inlet.
JP6201792A 1992-03-18 1992-03-18 Energy recovering device in molten reducing iron manufacturing Withdrawn JPH05263613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201792A JPH05263613A (en) 1992-03-18 1992-03-18 Energy recovering device in molten reducing iron manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201792A JPH05263613A (en) 1992-03-18 1992-03-18 Energy recovering device in molten reducing iron manufacturing

Publications (1)

Publication Number Publication Date
JPH05263613A true JPH05263613A (en) 1993-10-12

Family

ID=13187982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201792A Withdrawn JPH05263613A (en) 1992-03-18 1992-03-18 Energy recovering device in molten reducing iron manufacturing

Country Status (1)

Country Link
JP (1) JPH05263613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004347A1 (en) * 2000-04-21 2002-01-17 Institut Français Du Petrole Hydrogen derived from methanol cracking is used as a clean fuel for power generation while reinjecting co-product carbon dioxide
US8834599B2 (en) 2008-10-23 2014-09-16 Siemens Vai Metals Technologies Gmbh Method and device for operating a smelting reduction process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004347A1 (en) * 2000-04-21 2002-01-17 Institut Français Du Petrole Hydrogen derived from methanol cracking is used as a clean fuel for power generation while reinjecting co-product carbon dioxide
US8834599B2 (en) 2008-10-23 2014-09-16 Siemens Vai Metals Technologies Gmbh Method and device for operating a smelting reduction process
US9574247B2 (en) 2008-10-23 2017-02-21 Primetals Technologies Austria GmbH Method and device for operating a smelting reduction process

Similar Documents

Publication Publication Date Title
US8266883B2 (en) Power plant start-up method and method of venting the power plant
JP3341924B2 (en) Method of operating a gas turbine device and combined devices for producing energy and at least one air gas
US20080010967A1 (en) Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method
EP2562387A2 (en) Power plant and method of use
JP2002201959A (en) Gas turbine and method for operating the gas turbine
US4488398A (en) Power plant integrated with coal gasification
Nakhamkin et al. AEC 110 MW CAES plant: status of project
JPS61182427A (en) Fluidized bed combustion system air storage type gas turbinegenerating facility
US4028883A (en) Generating plant and method of starting up a generating plant
US20060232071A1 (en) Turbo set with starting device
US6199363B1 (en) Method for operating a gas turbogenerator set
JPH0949436A (en) Starting method of combination plant
JPH05263613A (en) Energy recovering device in molten reducing iron manufacturing
WO1998049438A1 (en) Power plant with partial oxidation and sequential combustion
CA2453634C (en) Turbo recuperator device
JP3177767B2 (en) Starting / Stopping Combined Power Plant
US20120102964A1 (en) Turbomachine including a carbon dioxide (co2) concentration control system and method
JPH08158890A (en) Driving method of coal gasification composite power plant
JP4208993B2 (en) Single axis combined plant startup system
RU2182247C2 (en) Method and device for starting gas-turbine power plant and feeding it with gas
RU2186224C2 (en) Method and device for starting and supplying gas to gas-turbine power plant
JP3585544B2 (en) Operating method of integrated coal gasification combined cycle power plant
KR100355309B1 (en) Integration Gasification Combined Cycle system using excess nitrogen from Air Separation Unit
JPH08326554A (en) Power generating equipment with coal gasifying gas turbine and nitrogen feeding method therefor
KR980009763A (en) Coal gasification combined power generation system and coal gasification combined power generation system that can prevent decrease in summer output

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518