JPH05263417A - Sludge reforming apparatus and method thereof - Google Patents

Sludge reforming apparatus and method thereof

Info

Publication number
JPH05263417A
JPH05263417A JP5992192A JP5992192A JPH05263417A JP H05263417 A JPH05263417 A JP H05263417A JP 5992192 A JP5992192 A JP 5992192A JP 5992192 A JP5992192 A JP 5992192A JP H05263417 A JPH05263417 A JP H05263417A
Authority
JP
Japan
Prior art keywords
sludge
freezing
temperature
melting
ordinary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5992192A
Other languages
Japanese (ja)
Other versions
JP2768117B2 (en
Inventor
Masanori Inoue
正則 井上
Nobuhito Yamashita
暢人 山下
Masakazu Okubo
正和 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Priority to JP4059921A priority Critical patent/JP2768117B2/en
Publication of JPH05263417A publication Critical patent/JPH05263417A/en
Application granted granted Critical
Publication of JP2768117B2 publication Critical patent/JP2768117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To reform sludge into ordinary soil efficiency without the need of such large equipment as a refrigerator or a compressor in treating the sludge by freezing and melting it. CONSTITUTION:A heat exchanger 2 is installed int an LNG pipeline 1 and this is connected to a cooler 4 installed in a sludge refrigeration chamber 6 with a refrigerant pipe 4. A controlling device 3 is then installed on the line of the refrigerant pipe 5, thereby enabling control of temperature of the sludge refrigeration chamber 6. In a sludge reforming apparatus constituted like that, an efficiency cylcle of freezing sludge at a temperature of -10 deg.C--60 deg.C and melting it by returning the temperature to normal temperature is repearted, so that the sludge is reformed into soil close to ordinary. Accordingly, the highly efficient sludge modification of freezing at a refrigenration temperature and then melting is made possible very easily without the need of freezing machinery including a compressor etc., so that equipement cost is reduced and sludge-reformed soil close to ordinary is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汚泥処理における汚泥
を改質する装置及び方法に関する。
FIELD OF THE INVENTION The present invention relates to an apparatus and method for reforming sludge in sludge treatment.

【0002】[0002]

【従来の技術】汚泥処理は先ず汚泥を脱水させることか
ら始められるが、この汚泥を脱水する方法として、汚泥
を凍結させ、汚泥中の細粒分に氷晶分離を起こさせれ
ば、融解時にこの氷晶が細粒汚泥から分離されて水とな
るので、これにより細粒汚泥までの脱水が効率よく行な
われること、更に又この凍結・融解法には、汚泥を改質
する作用があることは一般的に知られている。このた
め、従来から汚泥処理、汚泥改質の工程に、この凍結・
融解法が多く使用されている。
BACKGROUND ART Sludge treatment can be started by first dehydrating sludge. As a method for dehydrating this sludge, if the sludge is frozen and the fine grains in the sludge are separated by ice crystals, the Since the ice crystals are separated from the fine-grained sludge to form water, the dewatering up to the fine-grained sludge can be performed efficiently, and further, this freezing and thawing method has the function of modifying the sludge. Is commonly known. For this reason, this freeze / sludging process has traditionally been used in sludge treatment and sludge reforming processes.
The melting method is often used.

【0003】[0003]

【発明が解決しようとする課題】然しながら、従来から
行なわれている冷凍機を用いた凍結・融解法による汚泥
改質処理は、冷凍機の設備費および運転費に多大の費用
を必要とするいう問題がある。 又この凍結・融解法に
よる汚泥改質効率を左右するものとして、凍結時の冷却
温度及び凍結回数が大きく関係する。
However, the sludge reforming treatment by the conventional freeze / thaw method using a refrigerator requires a large amount of equipment cost and operating cost of the refrigerator. There's a problem. Further, the cooling temperature and the number of times of freezing at the time of freezing are largely related to the sludge reforming efficiency by this freezing / thawing method.

【0004】本発明は、かかる問題点を解決するために
なされたもので、多大の費用を必要としない汚泥の改質
装置および効率の良い汚泥の改質方法を得ることを目的
とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a sludge reforming apparatus and an efficient sludge reforming method which do not require a great deal of cost. is there.

【0005】[0005]

【課題を解決するための手段】本発明に係る汚泥改質装
置および改質方法は、LNGの冷熱を利用する凍結装置
による汚泥改質装置と、水分を含む汚泥を温度−10℃
〜−60℃にて凍結させた後融解させるサイクルを2回
以上繰り返す改質方法を提供するものである。
A sludge reforming apparatus and a reforming method according to the present invention include a sludge reforming apparatus using a freezing device that utilizes the cold heat of LNG and a sludge containing water at a temperature of -10 ° C.
Provided is a reforming method in which a cycle of freezing at -60 ° C and then thawing is repeated twice or more.

【0006】[0006]

【作用】熱交換器によりLNGの冷熱を利用することに
より、コンプレッサーを含み設備規模の大きい冷凍機械
を必要としなくなる。また、温度−10℃以下−60℃
以上にて凍結させた後融解させるサイクルを繰り返すこ
とにより、汚泥の改質を効率よく行なうことが出来る。
By utilizing the cold heat of LNG by the heat exchanger, a refrigerating machine including a compressor and having a large equipment scale is not required. Also, the temperature is -10 ° C or lower and -60 ° C
By repeating the cycle of freezing and then thawing as described above, sludge can be efficiently reformed.

【0007】[0007]

【実施例】図1は本発明の一実施例の汚泥改質装置の構
成図である。図に於いて、1はLNGパイプライン、2
は熱交換器、3は制御装置、4はクーラー、5は熱交換
器2とクーラー4との間を連結し、例えばフロン、又は
エチレングリコール水溶液等の冷媒を循環させる冷媒
管、6は断熱材で作られた冷凍室、7は汚泥である。
EXAMPLE FIG. 1 is a block diagram of a sludge reforming apparatus according to an example of the present invention. In the figure, 1 is the LNG pipeline, 2
Is a heat exchanger, 3 is a control device, 4 is a cooler, 5 is a refrigerant pipe that connects between the heat exchanger 2 and the cooler 4, and circulates a refrigerant such as CFC or ethylene glycol aqueous solution, and 6 is a heat insulating material. Refrigerator made by, 7 is sludge.

【0008】次に、この作用を説明する。熱交換器2に
LNGパイプライン1を通してLNG(−162℃)を
導き冷媒と熱交換させた後、この冷媒を冷媒管5を通し
て断熱された冷凍室6内に設置したクーラー4へと導き
冷凍室6内を冷却する。こうして冷却された冷凍室6内
に汚泥7を搬入し、制御装置3によって温度を−25℃
に調節しつつ汚泥を凍結させる。凍結完了後、汚泥7を
冷凍室6外に出して融解させてから、その粒度分布とア
ッターベルグ限界を測定し、生汚泥と比較した。その結
果を図2粒度分布図、図3塑性図に示す。
Next, this operation will be described. After LNG (-162 [deg.] C.) is introduced into the heat exchanger 2 through the LNG pipeline 1 to exchange heat with the refrigerant, the refrigerant is introduced through the refrigerant pipe 5 to the cooler 4 installed in the insulated freezing room 6 and the freezing room. Cool the inside of 6. The sludge 7 is carried into the refrigerating room 6 cooled in this way, and the temperature is set to -25 ° C. by the control device 3.
Freeze sludge while adjusting to. After the completion of freezing, the sludge 7 was taken out of the freezing chamber 6 and melted, and then the particle size distribution and the Atterberg limit were measured and compared with the raw sludge. The results are shown in Fig. 2 particle size distribution diagram and Fig. 3 plasticity diagram.

【0009】図においてαは生汚泥、βは凍結汚泥、γ
は一般土である。図に示すように生汚泥では粘土分64
%、シルト分36%のものが、凍結させることにより粘
土分31%、シルト分69%へと変化した。即ち凍結に
よる氷晶分離のため微粒子が凝集し粗大化したためであ
る。
In the figure, α is raw sludge, β is frozen sludge, and γ
Is general soil. As shown in the figure, the raw sludge has a clay content of 64
%, The silt content was 36%, and the freezing content changed to 31% clay content and 69% silt content. That is, fine particles aggregated and coarsened due to ice crystal separation by freezing.

【0010】次に図3の塑性図でこの変化を見ると、凍
結により液性限界含水比・塑性指数が大きく低下し、全
く別の土質へと変化していることが判る。ここで、一般
土γの土質を塑性図上に表わすと、WL ≦150% ,
P ≦100% 程度であるから、前記のように生汚泥
αを凍結させると、この一般土γに近づくように改質さ
れることが明らかである。
[0010] Looking at this change in the plasticity diagram of Fig. 3, it can be seen that due to freezing, the liquid limit water content ratio / plasticity index has dropped significantly and has changed to a completely different soil quality. Here, when the soil properties of the general soil γ are represented on the plasticity diagram, W L ≦ 150%,
Since I P ≦ 100%, it is clear that when the raw sludge α is frozen as described above, it is modified so as to approach the general soil γ.

【0011】更に、凍結処理時の雰囲気温度を種々に変
化させて凍結処理した所、−10℃から−50℃では改
質度合がほぼ同様であったが、−60℃以下で凍結させ
ると改質度合が低下し、改質性が悪くなった。また、−
10℃以上の温度で凍結処理をすると処理時間が多くか
かり能率が低下する。以上のことから汚泥改質の為の凍
結温度は、−10℃〜−60℃が効率が高いことが明ら
かになった。
Further, when the freezing treatment was carried out by changing the atmospheric temperature during the freezing treatment variously, the degree of modification was almost the same from -10 ° C to -50 ° C, but it was improved when frozen at -60 ° C or lower. The quality decreased and the reformability deteriorated. Also, −
If the freezing process is performed at a temperature of 10 ° C. or higher, it takes a long processing time and the efficiency is lowered. From the above, it was revealed that the freezing temperature for sludge reforming is highly efficient at -10 ° C to -60 ° C.

【0012】次に更に汚泥改質を進めるために、別の汚
泥を対象として、凍結温度−25℃で凍結・融解サイク
ルを2回繰り返して改質性を測定した結果を、図4粒度
分布図、図5塑性図に示す。図において、αは生汚泥、
β1 は−25℃1サイクルの凍結汚泥、β2 は−25℃
2サイクルの凍結汚泥、である。図4によると、粒度が
粘土分73%、シルト分26%の生汚泥αが、1回の凍
結処理で粘土分67%、シルト分33%の凍結汚泥β1
になり、更に2回の凍結処理で粘土分61%、シルト分
39%の凍結汚泥β2 へと粒子の粗大化が起こっている
ことが明らかとなった。同時にこれに対応して図5塑性
図上の変化も、凍結・融解サイクルが増すにつれて一般
土γに近づくように改質されていることが明らかになっ
た。
Next, in order to further promote sludge reforming, another sludge was subjected to two freeze / thaw cycles at a freezing temperature of -25 ° C. and the reformability was measured. 5 shows the plasticity diagram. In the figure, α is raw sludge,
β 1 is frozen sludge of -25 ℃ 1 cycle, β 2 is -25 ℃
Two cycles of frozen sludge. According to FIG. 4, the raw sludge α having a clay content of 73% and a silt content of 26% is a frozen sludge β 1 having a clay content of 67% and a silt content of 33% in one freeze treatment.
It became clear that the coarsening of the particles occurred in the frozen sludge β 2 having the clay content of 61% and the silt content of 39% by the further two freeze treatments. At the same time, it was revealed that the change in the plasticity diagram of Fig. 5 was also modified correspondingly to the general soil γ as the freeze-thaw cycle increased.

【0013】[0013]

【発明の効果】本発明は、LNGの冷熱を利用する改質
装置を用いることにより、冷凍機械を必要としないの
で、設備費及び運転費を低減することが出来る。また、
改質方法として温度−10℃〜−60℃にて凍結させた
後融解させるサイクルを繰り返すことにより、汚泥を効
率よく一般土に近づくように改質することが出来る。
EFFECTS OF THE INVENTION By using the reformer utilizing the cold heat of LNG, the present invention does not require a refrigerating machine, so that equipment cost and operating cost can be reduced. Also,
By repeating a cycle of freezing at a temperature of −10 ° C. to −60 ° C. and then melting as a reforming method, the sludge can be efficiently reformed so as to approach the general soil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の改質装置の構成図である。FIG. 1 is a configuration diagram of a reformer of the present invention.

【図2】生汚泥と凍結汚泥の粒度分布図である。FIG. 2 is a particle size distribution diagram of raw sludge and frozen sludge.

【図3】生汚泥と凍結汚泥の塑性図である。FIG. 3 is a plasticity diagram of raw sludge and frozen sludge.

【図4】生汚泥と凍結汚泥の粒度分布図である。FIG. 4 is a particle size distribution diagram of raw sludge and frozen sludge.

【図5】生汚泥と凍結汚泥の塑性図である。FIG. 5 is a plasticity diagram of raw sludge and frozen sludge.

【符号の説明】[Explanation of symbols]

1 LNGパイプライン 2 熱交換器 3 制御装置 4 クーラー 5 冷媒管 6 冷凍室 7 汚泥 α 生汚泥 β 凍結汚泥 γ 一般土 1 LNG pipeline 2 Heat exchanger 3 Control device 4 Cooler 5 Refrigerant pipe 6 Freezing room 7 Sludge α Raw sludge β Frozen sludge γ General soil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凍結・融解法により汚泥処理する装置で
あって、LNGの冷熱を利用する熱交換器と、冷凍室内
に設けられたクーラーと、前記熱交換器と前記クーラー
とを連結して冷媒を循環させる冷媒管と、該冷媒管上に
設けられた制御装置とを備えたことを特徴とする汚泥改
質装置。
1. An apparatus for treating sludge by a freeze / thaw method, comprising a heat exchanger utilizing cold heat of LNG, a cooler provided in a freezing chamber, and connecting the heat exchanger and the cooler. A sludge reforming apparatus comprising: a refrigerant pipe for circulating a refrigerant; and a control device provided on the refrigerant pipe.
【請求項2】 凍結・融解法による汚泥処理において、
凍結温度−10℃〜−60℃にて汚泥を凍結させ、その
後これを融解するサイクルを2回以上繰り返すことを特
徴とする汚泥改質方法。
2. In sludge treatment by the freeze / thaw method,
A sludge reforming method, characterized in that the sludge is frozen at a freezing temperature of -10 ° C to -60 ° C, and then a cycle of melting the sludge is repeated twice or more.
JP4059921A 1992-03-17 1992-03-17 Sludge reforming method Expired - Fee Related JP2768117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059921A JP2768117B2 (en) 1992-03-17 1992-03-17 Sludge reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059921A JP2768117B2 (en) 1992-03-17 1992-03-17 Sludge reforming method

Publications (2)

Publication Number Publication Date
JPH05263417A true JPH05263417A (en) 1993-10-12
JP2768117B2 JP2768117B2 (en) 1998-06-25

Family

ID=13127086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059921A Expired - Fee Related JP2768117B2 (en) 1992-03-17 1992-03-17 Sludge reforming method

Country Status (1)

Country Link
JP (1) JP2768117B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135370U (en) * 1976-04-09 1977-10-14
JPS5335702A (en) * 1976-09-13 1978-04-03 Metallgesellschaft Ag Method of producing methane containing gas
JPS5832000A (en) * 1981-05-28 1983-02-24 バイオデ−タ・ソシエタ・ペル・アツイオニ Fractional measuring method of glutamic acid oxaloacetic acid transaminaze enzyme and kit using same
JPS58141800U (en) * 1982-03-17 1983-09-24 三菱電機株式会社 Freeze-thaw sludge treatment equipment
JPS5926197A (en) * 1982-08-06 1984-02-10 Mitsubishi Electric Corp Apparatus for manufacturing compost

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135370U (en) * 1976-04-09 1977-10-14
JPS5335702A (en) * 1976-09-13 1978-04-03 Metallgesellschaft Ag Method of producing methane containing gas
JPS5832000A (en) * 1981-05-28 1983-02-24 バイオデ−タ・ソシエタ・ペル・アツイオニ Fractional measuring method of glutamic acid oxaloacetic acid transaminaze enzyme and kit using same
JPS58141800U (en) * 1982-03-17 1983-09-24 三菱電機株式会社 Freeze-thaw sludge treatment equipment
JPS5926197A (en) * 1982-08-06 1984-02-10 Mitsubishi Electric Corp Apparatus for manufacturing compost

Also Published As

Publication number Publication date
JP2768117B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US2738658A (en) Separation of gas by solidification
Sinyavsky et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration
MY110359A (en) Heat storage type air conditioning apparatus
JPH05263417A (en) Sludge reforming apparatus and method thereof
JP3510604B2 (en) Cooling water supply system
JPH04350468A (en) Liquid cooler
AU6655281A (en) Refrigerating liquid batches
JPS6034164A (en) Method and apparatus for freezing food
Furu et al. Substructure evolution during different hot deformation processes of commercial non-heat treatable aluminium alloys
CN102428275B (en) Pressure Reduction System And Vacuum Treatment Device
JP4560635B2 (en) Sericin separation and recovery equipment
JPH0985232A (en) Seawater desalination device and seawater desalination system using the device
JP3198388B2 (en) Concrete production method
US2297786A (en) Method of partial freezing out of liquid
JP3408022B2 (en) Refrigeration equipment
CN108467928A (en) A method of improving LaFeSi alloy magnetic refrigeration material magnetic entropy varied curve halfwidths
JP3518860B2 (en) Compressed air cooling device
CN101523133B (en) Refrigerator and/or freezer with a magnetic cooler
JP2001152140A (en) Preparation process of tetra n-butyl ammonium bromide hydrate based heat accumulator slurry
RU2235581C1 (en) Method of automatic control of moisture freezing-out process in two-stage freezing-out plant
JPS6073267A (en) Refrigerator
JPH05332663A (en) Quick freezer and controlling method therefor
US2452594A (en) Method of refrigeration employing dry ice
JPS6226472A (en) Ice melter for cold trap coil in refrigerator
JPH06337139A (en) Ice heat storage device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080410

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090410

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100410

LAPS Cancellation because of no payment of annual fees