JPH05262855A - Epoxy resin composition and use thereof - Google Patents

Epoxy resin composition and use thereof

Info

Publication number
JPH05262855A
JPH05262855A JP11392792A JP11392792A JPH05262855A JP H05262855 A JPH05262855 A JP H05262855A JP 11392792 A JP11392792 A JP 11392792A JP 11392792 A JP11392792 A JP 11392792A JP H05262855 A JPH05262855 A JP H05262855A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
group
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11392792A
Other languages
Japanese (ja)
Inventor
Toshio Sugawara
捷夫 菅原
Toru Koyama
小山  徹
Hisao Yokokura
久男 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11392792A priority Critical patent/JPH05262855A/en
Publication of JPH05262855A publication Critical patent/JPH05262855A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title compsn. which is excellent in processibility and gives a cured article excellent in heat resistance, flexibility, and moisture resistance by compounding an epoxy resin with a specific arom. tetracarboxylic acid dianhydride. CONSTITUTION:An epoxy resin is compounded with a tetracarboxylic acid dianhydride of formula I (wherein Ya is a group of formula II or cyclohexylidene; Yb is -O- or a group of formula III; Yc is -O- or a group of formula IV; Xa, Xb, Xc, and Xd are each H, alkyl, alkenyl, or alkenoyl; and R1 and R2 are each H or 1-18C alkyl) to give the title compsn. Since the compsn. contains as a curative the above arom. dianhydride excellent in the compatibility with the resin, it has a good moldability until cured, gives a cured article contg. no void nor granular structure and excellent in heat resistance, flexibility, and moisture resistance, and thus greatly facilitates the molding operation in producing various apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業性が良好で且つ硬
化物の耐熱性、可撓性が優れ電機機器、電子用機器及び
構造用産業用機器の信頼性を大巾に向上できる新規なエ
ポキシ樹脂組成物及びその用途に関するものである。
INDUSTRIAL APPLICABILITY The present invention has a good workability and excellent heat resistance and flexibility of a cured product, and can greatly improve the reliability of electrical equipment, electronic equipment and structural industrial equipment. Epoxy resin composition and its use.

【0002】[0002]

【従来の技術】従来、電機機器、電子用機器及び産業用
機器に用いられている無水酸硬化エポキシ樹脂に於い
て、無水酸はエポキシ樹脂への相溶性及び成形性等の作
業性の関係から通常、1官能のもの(2価カルボン酸の
無水物)が用いられている。しかし、1官能の無水酸で
硬化したエポキシ樹脂は作業性が優れている反面、耐熱
性が劣り特に高温での使用には限界があった。エポキシ
樹脂の耐熱性を向上させる方法としてベンゾフェノンテ
トラカルボン酸無水物、及びピロメリット酸無水物等の
2官能の無水酸(4価カルボン酸の2無水物)を添加す
る系が知られている(例えば、特開昭48−85699
号、特開平2−255828号各公報)。
2. Description of the Related Art Conventionally, in an acid anhydride-cured epoxy resin used in electrical equipment, electronic equipment and industrial equipment, the acid anhydride is used because of its compatibility with the epoxy resin and workability such as moldability. Usually, monofunctional ones (anhydrides of divalent carboxylic acids) are used. However, while the epoxy resin cured with a monofunctional acid anhydride has excellent workability, it has poor heat resistance and is limited in use at high temperatures. As a method of improving the heat resistance of an epoxy resin, a system in which a bifunctional anhydride (tetracarboxylic dianhydride) such as benzophenonetetracarboxylic acid anhydride and pyromellitic acid anhydride is added is known ( For example, JP-A-48-85699
And Japanese Patent Laid-Open No. 2-255828).

【0003】[0003]

【発明が解決しようとする課題】しかし、これら2官能
の芳香族無水酸はエポキシとの相溶性が悪く又、融点が
極めて高く、良好な硬化物を得るには融点以上の高い温
度で硬化しなければならない欠点がある。又、エポキシ
との相溶性が悪いため、レジンの成形性にも問題があっ
た。1官能の無水酸との併用が考えられるが、1官能の
無水酸との相溶性も十分でなく、成形時の作業性は必ず
しも改善されない。又、硬化物の耐熱性及び可撓性も十
分とは言えず、これらの樹脂を用いた各種機器の信頼性
は必ずしも満足できるものでは無かった。これは、ボイ
ドレスで且つ、均質な成形物が得られないことが原因し
ているものと考えられる。本発明では、上記の欠点を改
良するため、エポキシとの相溶性が優れた新規な2官能
の芳香族系無水酸を硬化剤として用いることにより、硬
化前は良好な成形作業性を維持した組成物であり且つ、
ボイド、不均質性物が無く耐熱性、可撓性及び耐湿性の
極めて優れたエポキシ樹脂の硬化物を得ることのできる
エポキシ樹脂組成物と、それを用いた各種用途を提供す
ることを課題とする。
However, these bifunctional aromatic anhydrides have poor compatibility with epoxy and have an extremely high melting point, and in order to obtain a good cured product, they cure at a temperature higher than the melting point. There are drawbacks that must be taken. Further, since the compatibility with the epoxy is poor, there is a problem in the moldability of the resin. A combination with a monofunctional anhydride can be considered, but the compatibility with the monofunctional anhydride is not sufficient, and workability during molding is not necessarily improved. In addition, the heat resistance and flexibility of the cured product are not sufficient, and the reliability of various devices using these resins was not always satisfactory. It is considered that this is due to the fact that a voidless and uniform molded product cannot be obtained. In the present invention, in order to improve the above-mentioned drawbacks, a novel difunctional aromatic anhydride having excellent compatibility with epoxy is used as a curing agent, so that a composition having good molding workability before curing is maintained. It is a thing and
It is an object to provide an epoxy resin composition that can obtain a cured product of an epoxy resin that is extremely excellent in heat resistance, flexibility, and moisture resistance without voids and inhomogeneities, and various applications using the same. To do.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、エポキシ樹脂と下記式化1のテトラカル
ボン酸二無水物とを含有するエポキシ樹脂組成物とした
ものである。
In order to solve the above problems, the present invention provides an epoxy resin composition containing an epoxy resin and a tetracarboxylic dianhydride represented by the following formula (1).

【化1】 それぞれH、アルキル基、アルケニル基、アルケノイル
基を示し、R1 ,R2 はそれぞれH、炭素数1〜18の
アルキル基である。)
[Chemical 1] Each represents H, an alkyl group, an alkenyl group, and an alkenoyl group, and R 1 and R 2 are each H and an alkyl group having 1 to 18 carbon atoms. )

【0005】本発明において、エポキシ樹脂としては、
例えば絶縁コイル用の注型用として粘度の低いものが要
求される場合は、各種脂環式、ビスフェノールAのジグ
リシジルエーテル、ビスフェノールFのジグリシジルエ
ーテル、ヒダントイン型エポキシ、シリコーンエポキシ
等一般に市販されている粘度の低い各種エポキシ材料が
使用される。又、半導体封止用、プリント基板を作製す
るためのプリプレグ用としては、比較的粘度の高いも
の、あるいは固形のものが要求されるが、この場合はノ
ボラック型エポキシ、高分子量のビスフェノールAのジ
グリシジルエーテル等が使用できる。これらエポキシは
必要に応じて複数配合されても良い。又、無水酸は一般
に市販されている1官能のものと併用しても良い。更
に、従来から知られている硬化促進剤、添加剤、可撓化
剤、無機、有機の各種充填剤等を必要に応じて配合して
用いても良い。エポキシに対する無水酸の配合割合は、
従来から知られているように、エポキシ基1に対して
0.5〜1.5当量、好ましくは0.7〜1.2当量配
合して使用される。このように、本発明のエポキシ樹脂
組成物は用いるエポキシ化合物とか各種添加剤を選択す
ることにより、電機絶縁コイルの絶縁用ワニス、FRP
積層材のマトリックス用樹脂、プリント基板の絶縁層用
樹脂及び半導体素子の封止用樹脂等の各種用途に使用す
ることができる。
In the present invention, as the epoxy resin,
For example, when low viscosity is required for casting for insulating coils, various alicyclic compounds, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, hydantoin type epoxy, silicone epoxy, etc. are generally commercially available. Various epoxy materials with low viscosity are used. For semiconductor encapsulation and for prepregs for producing printed circuit boards, those having relatively high viscosity or solid ones are required. In this case, novolac type epoxy and diphenol of high molecular weight bisphenol A are required. Glycidyl ether or the like can be used. A plurality of these epoxies may be blended as necessary. Further, the acid anhydride may be used in combination with a generally commercially available monofunctional acid anhydride. Furthermore, conventionally known curing accelerators, additives, flexibilizers, various inorganic and organic fillers and the like may be blended and used as necessary. The mixing ratio of anhydrous acid to epoxy is
As conventionally known, 0.5 to 1.5 equivalents, preferably 0.7 to 1.2 equivalents, of the epoxy group 1 are used. As described above, the epoxy resin composition of the present invention can be selected by selecting an epoxy compound to be used and various additives, thereby producing an insulating varnish for an electric insulating coil, an FRP.
It can be used for various applications such as a resin for a matrix of a laminated material, a resin for an insulating layer of a printed board, and a resin for sealing a semiconductor element.

【0006】[0006]

【作用】本発明の無水酸硬化型エポキシ樹脂組成物に於
いて、使用した新規な上記化1の2官能芳香族系無水酸
は、従来の耐熱性が高いとされている芳香族系2官能無
水酸に比べて融点が極めて低く又、分子構造中に相溶性
の高いエステル又はエーテル基を導入してあるためエポ
キシに対する溶解性が優れ、成形する際のレジンの流動
性も良くなりその結果、含浸性が改善されボイドレスで
且つ均質な成形品が得られ耐湿性も大巾に向上したもの
と考える。本発明の無水酸硬化型エポキシ樹脂組成物で
得られた硬化物の耐熱性が高く可撓性も良いのは、本発
明で使用した新規な化1で表わされる2官能無水酸が芳
香族環を多く含み又、分子構造中にエステル又はエーテ
ル基等の可撓性の基が導入されているためと考える。
In the anhydride-curable epoxy resin composition of the present invention, the novel bifunctional aromatic anhydride of Chemical Formula 1 used is an aromatic bifunctional aromatic anhydride which has been conventionally considered to have high heat resistance. The melting point is much lower than that of anhydrous acid, and the highly compatible ester or ether group is introduced in the molecular structure, so the solubility in epoxy is excellent, and the fluidity of the resin during molding is improved, and as a result, It is considered that the impregnation property was improved, a voidless and uniform molded product was obtained, and the moisture resistance was greatly improved. The cured product obtained from the acid anhydride-curable epoxy resin composition of the present invention has high heat resistance and good flexibility because the bifunctional anhydride represented by the chemical formula 1 used in the present invention has an aromatic ring. It is considered that this is due to the fact that a large amount of is included and a flexible group such as an ester or ether group is introduced into the molecular structure.

【0007】[0007]

〔エポキシ樹脂〕〔Epoxy resin〕

エピコート828(油化シエルエポキシ製商品名):ビ
スフェノール型エポキシ、粘度120〜150ポイズ
(25℃における) ELM−100(住友化学工業製商品名):アミノ系エ
ポキシ、粘度11.2ポイズ(25℃における) CY−179(チバガイギー製商品名):脂環式エポキ
シ、粘度0.35〜0.45ポイズ(25℃における) HP−4302(大日本インキ化学工業製商品名):ナ
フタレン環骨格エポキシ、粘度14.2ポイズ(25℃
における) YL−932(油化シエルエポキシ製商品名):1,
1,3−トリス〔p−(2,3−エポキシプロポキシ)
フェニル〕メタン ECN1273(チバガイギー製商品名):クレゾール
ノボラック型エポキシ、軟化点65〜75℃ GY280(チバガイギー製商品名):ビスフェノール
型エポキシ、半固体
Epicoat 828 (trade name manufactured by Yuka Shell Epoxy): Bisphenol type epoxy, viscosity 120 to 150 poise (at 25 ° C.) ELM-100 (trade name manufactured by Sumitomo Chemical Co., Ltd.): Amino epoxy, viscosity 11.2 poise (25 ° C.) CY-179 (trade name, manufactured by Ciba Geigy): alicyclic epoxy, viscosity 0.35 to 0.45 poise (at 25 ° C.) HP-4302 (trade name, manufactured by Dainippon Ink and Chemicals, Inc.): naphthalene ring skeleton epoxy, Viscosity 14.2 poise (25 ℃
In) YL-932 (trade name of oiled shell epoxy): 1,
1,3-tris [p- (2,3-epoxypropoxy)
Phenyl] methane ECN1273 (Ciba Geigy product name): Cresol novolac type epoxy, softening point 65-75 ° C. GY280 (Ciba Geigy product name): Bisphenol type epoxy, semi-solid

【0008】〔無水酸硬化剤〕[Anhydrous curing agent]

【化1】 の酸無水物において、置換基として下記のものを用い
た。 Xa,Xb,Xc,Xdは−H、 C:Yaはシクロヘキシリデン、Yb,Ycは−O−、
Xa,Xb,Xc,Xdは−H、 BTDA:ベンゾフェノンテトラカルボン酸二無水物 PMDA:ピロメリット酸二無水物 TMEG(新日本理化製商品名):エチレングリコール
ビストリメリテート、融点64〜72℃ MHAC−P(日立化成工業製商品名):メチルナジッ
ク酸無水物
[Chemical 1] In the acid anhydride of, the following were used as the substituents. Xa, Xb, Xc, and Xd are -H, C: Ya is cyclohexylidene, Yb and Yc are -O-,
Xa, Xb, Xc, and Xd are -H, BTDA: Benzophenone tetracarboxylic dianhydride PMDA: Pyromellitic dianhydride TMEG (trade name of New Nippon Rika): Ethylene glycol bistrimellitate, melting point 64-72 ° C MHAC -P (trade name, manufactured by Hitachi Chemical Co., Ltd.): methyl nadic acid anhydride

【0009】〔硬化促進剤〕 2MZ−CN(四国化成工業製商品名):1−シアノエ
チル−2メチルイミダゾール 2PZ−CN(四国化成工業製商品名):1−シアノエ
チル−2フェニルイミダゾール
[Curing accelerator] 2MZ-CN (trade name manufactured by Shikoku Kasei Kogyo): 1-cyanoethyl-2methylimidazole 2PZ-CN (trade name manufactured by Shikoku Kasei Kogyo): 1-cyanoethyl-2phenylimidazole

【0010】実施例1〜12、比較例1〜6 本実施例では、各種エポキシ樹脂と、本発明の対象とな
る2官能無水物(A、B又はC)、及び比較例として従
来から知られている2官能無水酸(BTDA、PMD
A、TMEG)及び1官能無水酸(MHAC−P)とを
配合し、該配合組成の硬化前のレジンの状態及び硬化物
の特性を調べた。この例では、無水酸の配合割合は全て
エポキシ1当量に対して1当量になるようにした。又、
溶剤の混合されている系は全て固形分濃度(NV)で3
0wt%になるようにした。溶剤の混合されていない系
の無水酸のエポキシへの溶解は70〜100℃に加熱
し、溶剤の混合されている系は室温〜50℃の範囲で加
熱攪拌した。硬化物の特性は硬化促進剤として2PZ−
CN(四国化成)を固形分に対して0.5%添加し、1
50℃/5時間+180℃/10時間+200℃/15
時間加熱硬化したものを用いて測定した。硬化物の特性
測定は下記の方法で行った。
Examples 1 to 12 and Comparative Examples 1 to 6 In this example, various epoxy resins, the bifunctional anhydride (A, B or C) which is the object of the present invention, and conventionally known as comparative examples. Bifunctional anhydrous (BTDA, PMD
A, TMEG) and monofunctional acid anhydride (MHAC-P) were blended, and the state of the resin before curing and the properties of the cured product of the blended composition were examined. In this example, all the acid anhydrides were mixed in an amount of 1 equivalent to 1 equivalent of epoxy. or,
All systems mixed with solvent have a solid content concentration (NV) of 3
It was set to 0 wt%. Dissolution of the anhydrous acid in the solvent-unmixed system into the epoxy was heated to 70 to 100 ° C, and the solvent-mixed system was heated and stirred at room temperature to 50 ° C. The characteristics of the cured product are 2PZ- as a curing accelerator.
Add 0.5% of CN (Shikoku Kasei) to the solid content, and
50 ° C / 5 hours + 180 ° C / 10 hours + 200 ° C / 15
It measured using what was heat-cured for time. The characteristics of the cured product were measured by the following methods.

【0011】曲げ特性:万能型テンシロン装置を用い、
室温で曲げ速度5mm/minの条件で測定した。 ガラス転移温度:TMA装置を用い、2℃/minの速
度で昇温し熱膨張係数が変化する点とした。 熱分解開始温度:熱天秤を用い5℃/minの速度で昇
温し、10%減量する温度とした。 その結果を表1に示す。
Bending characteristics: Using a universal tensilon device,
The measurement was performed at room temperature under a bending speed of 5 mm / min. Glass transition temperature: It was set as a point where the thermal expansion coefficient was changed by using a TMA apparatus and raising the temperature at a rate of 2 ° C./min. Pyrolysis initiation temperature: A temperature was raised at a rate of 5 ° C./min using a thermobalance, and the temperature was set to 10% reduction. The results are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表1の結果から、実施例1〜12の2官能
無水酸を配合した系は、従来の2官能無水酸を配合した
比較例に比べて硬化前のレジンの状態及び硬化物の状態
が極めて良いことが分かる。本発明の実施例による硬化
物の曲げ特性は、従来の2官能無水酸及び1官能無水酸
を単独で用いた比較例に比べて伸びが大きく靱性が向上
していることが分かる。耐熱性の目安であるガラス転移
温度及び熱分解温度も本発明の実施例によるものは、従
来の2官能無水酸及び1官能無水酸を用いた比較例に比
べて向上していることが分かる。
From the results shown in Table 1, the systems containing the bifunctional anhydrides of Examples 1 to 12 were compared with the comparative examples containing conventional bifunctional anhydrides in the state of the resin before curing and the state of the cured product. It turns out that is extremely good. As for the bending properties of the cured products according to the examples of the present invention, it is understood that the elongation is large and the toughness is improved as compared with the comparative example using the conventional bifunctional anhydride and monofunctional anhydride alone. It can be seen that the glass transition temperature and the thermal decomposition temperature, which are indexes of heat resistance, are also improved in the examples of the present invention as compared with the comparative examples using the conventional bifunctional anhydride and monofunctional anhydride.

【0014】実施例13〜17、比較例7〜9 この実施例では回転機用コイルの絶縁ワニスとして使用
するために、レジン組成及び硬化した絶縁コイルの特性
を調べた。配合方法は先の実施例に準じて行い硬化促進
剤は固形分に対する添加割合である。回転機用電気絶縁
コイルの作製方法を以下に示す。バインダ樹脂で未焼成
軟質集成マイカシートとガラスクロスとを貼りあわせた
ガラス裏打ちマイカテープ(絶縁基材:幅25mmのテ
ープ)を作製した。中のバインダ含量は不揮発分で、5
重量%(絶縁基材全重量を基準とする)であった。前記
絶縁基材を半導体上に半掛けで5回巻回後、表2のレジ
ン組成物を真空加圧含浸し、100℃/10時間+15
0℃/5時間+210℃/15時間加熱して硬化した。
このようにして得た電気絶縁コイルの絶縁層には、剥離
が認められなかった。硬化物の特性の測定は下記の方法
で行った。
Examples 13 to 17 and Comparative Examples 7 to 9 In this example, the resin composition and the characteristics of the cured insulating coil were examined for use as an insulating varnish for a coil for a rotating machine. The compounding method was carried out according to the above-mentioned examples, and the curing accelerator was added at a ratio relative to the solid content. The method for producing an electrically insulated coil for a rotating machine will be described below. A glass-backed mica tape (insulating base material: tape having a width of 25 mm) was prepared by bonding an unfired soft laminated mica sheet and a glass cloth with a binder resin. The content of binder is non-volatile, 5
% By weight (based on the total weight of the insulating substrate). After winding the insulating base material on the semiconductor half-wrapped 5 times, the resin composition shown in Table 2 was impregnated under vacuum and 100 ° C./10 hours + 15.
It was cured by heating at 0 ° C./5 hours + 210 ° C./15 hours.
No peeling was observed in the insulating layer of the electrically insulated coil thus obtained. The characteristics of the cured product were measured by the following methods.

【0015】耐熱性試験(ヒートサイクル試験):25
0℃で24時間、次いで40℃で24時間、RH95%
の条件における加熱及び吸湿試験を1サイクルとして1
0サイクルまで行い、各サイクル毎にtanδ及び絶縁
抵抗を測定した。 重量減少率:前記電気絶縁コイルから絶縁層のみを切り
だし、50mm×50mmの試験片を用いて、270℃
/10日間熱劣化後の重量変化率を測定した。 耐水性試験:前記電気絶縁コイルの絶縁層のテープ巻回
方向にそって、絶縁層のみ幅10mm、長さ60mmの
試験片を切りだし、支点間距離40mmで2点支持、中
央部荷重による曲げ強度を25℃で測定した。同様に、
前記試験片を40℃の水中に24時間浸漬した後の曲げ
強度を測定し初期に対する保持率を求めた。 その結果を表2に示す。
Heat resistance test (heat cycle test): 25
24 hours at 0 ° C, then 24 hours at 40 ° C, RH 95%
1 cycle of heating and moisture absorption test under the conditions
The cycle was repeated up to 0 cycles, and tan δ and insulation resistance were measured for each cycle. Weight reduction rate: Cut out only the insulating layer from the electrically insulated coil, and use a test piece of 50 mm × 50 mm to 270 ° C.
The rate of weight change after heat deterioration for 10 days was measured. Water resistance test: A test piece having a width of 10 mm and a length of 60 mm is cut out along the tape winding direction of the insulating layer of the electric insulating coil, and is supported at two points with a fulcrum distance of 40 mm and bent by a central load. Strength was measured at 25 ° C. Similarly,
The test piece was immersed in water at 40 ° C. for 24 hours, and the bending strength was measured to determine the retention rate from the initial stage. The results are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】本発明の実施例による電気絶縁コイルの絶
縁層の特性は、従来の2官能無水酸及び1官能無水酸を
用いた比較例に比べて耐熱、耐湿性が改良されているこ
とが分かる。
It can be seen that the characteristics of the insulating layer of the electrically insulating coil according to the embodiment of the present invention are improved in heat resistance and humidity resistance as compared with the comparative example using the conventional bifunctional anhydride and monofunctional anhydride. ..

【0018】実施例18〜22、比較例10〜12 この実施例では、FRP積層材のマトリックス用樹脂と
して使用するために、レジン組成及び硬化したFRP積
層材の特性を調べた。配合方法は実施例1〜12に準じ
て行い、硬化促進剤は固形分に対する添加割合である。
この実施例18〜22及び比較例12については、レジ
ンをガラスクロス(Eガラス、厚さ0.1mm)に含浸
塗工し、室温で風乾し更に105℃で10分間乾燥して
プリプレグを得た。このプリプレグを20枚重ねて圧力
50kgf/cm2 、温度130℃で30分間加熱し、
更に180℃で1時間、210℃で2時間加熱プレスを
行い積層板を得た。比較例10、11については、風乾
後、溶剤(DMF:N,N′−ジメチルホルムアミド)
の沸点が高いことから140℃で3分間乾燥した以外は
実施例18〜22と同じ条件である。曲げ特性、重量減
少率は成形品から一部切り出し概述の条件で測定した。
耐水性は、室温で24時間浸漬した後の重量変化から吸
水量を求めた。その結果を表3に示す。
Examples 18-22, Comparative Examples 10-12 In this example, the resin composition and the properties of the cured FRP laminate were investigated for use as a matrix resin for the FRP laminate. The compounding method is carried out according to Examples 1 to 12, and the curing accelerator is added in proportion to the solid content.
In Examples 18 to 22 and Comparative Example 12, glass cloth (E glass, thickness 0.1 mm) was impregnated with a resin, air-dried at room temperature, and further dried at 105 ° C. for 10 minutes to obtain a prepreg. .. 20 sheets of this prepreg are stacked and heated at a pressure of 50 kgf / cm 2 and a temperature of 130 ° C. for 30 minutes,
Further, hot pressing was performed at 180 ° C. for 1 hour and 210 ° C. for 2 hours to obtain a laminated plate. In Comparative Examples 10 and 11, after air-drying, a solvent (DMF: N, N'-dimethylformamide) was used.
Since it has a high boiling point, the conditions are the same as those in Examples 18 to 22 except that it was dried at 140 ° C. for 3 minutes. The bending characteristics and the weight reduction rate were measured by cutting out a part of the molded product under the conditions outlined above.
For water resistance, the amount of water absorption was determined from the weight change after soaking for 24 hours at room temperature. The results are shown in Table 3.

【0019】[0019]

【表3】 [Table 3]

【0020】本発明の実施例による積層材は従来の2官
能無水酸及び1官能無水酸単独で用いた比較例に比べて
耐熱、耐湿性が改良されている。又、レジンの溶剤とし
て一般的な低沸点の材料が使用できるためボイドの無い
良好な積層品が得られた。
The laminated materials according to the examples of the present invention have improved heat resistance and moisture resistance as compared with the conventional comparative examples using only bifunctional anhydrous acid and monofunctional anhydrous acid. Moreover, since a general low boiling point material can be used as a solvent for the resin, a good laminated product without voids was obtained.

【0021】実施例23〜27、比較例13〜15 実施例18〜22及び比較例10〜12で示したレジン
組成を用い又、前記した同じ条件でプリプレグを作製
し、該プリプレグの両面に表面を粗化した銅箔(厚さ3
5μm)を積層して、圧力30kgf/cm2 、温度1
30℃30分間加熱し、更に、170℃で1時間、21
0℃で2時間加熱プレスを行い、銅張り積層板を得た。
得られた銅張り積層板をフォトエッチング法により信号
層、電源層、整合層等の内層回路パターンを形成し、銅
表面を接着前処理し、両面配線単位回路シートを作製し
た。
Examples 23 to 27, Comparative Examples 13 to 15 Using the resin compositions shown in Examples 18 to 22 and Comparative Examples 10 to 12, prepregs were prepared under the same conditions as described above, and the surfaces of both sides of the prepregs were prepared. Roughened copper foil (thickness 3
5 μm), pressure 30 kgf / cm 2 , temperature 1
Heat at 30 ℃ for 30 minutes, then at 170 ℃ for 1 hour, 21
A hot press was performed at 0 ° C. for 2 hours to obtain a copper-clad laminate.
An inner layer circuit pattern such as a signal layer, a power source layer, and a matching layer was formed on the obtained copper-clad laminate by a photoetching method, and the copper surface was pretreated for adhesion to produce a double-sided wiring unit circuit sheet.

【0022】前記回路シートをプリプレグを交互に且
つ、最外層が銅箔になるように積層し圧力40kgf/
cm2 、温度170℃で1時間、200℃で2時間加熱
プレスを行い多層プリント回路板の原形を作製した。更
に該多層プリント回路板の原形にマイクロドリルにより
0.3mm又は0.6mmの穴を明け、全面に化学銅め
っきを行ってスルホール形成させた。次に、最外層をエ
ッチングにより形成し多層プリント回路板を作製した。
表4に多層プリント回路板の一部を切り出し、半田耐熱
性及び熱衝撃性を測定した結果を示した。表中、半田耐
熱性は、〇は良好で、×は銅箔との剥離有りを示す。
The circuit sheets are laminated alternately with prepregs and the outermost layer is a copper foil, and the pressure is 40 kgf /
cm 2, 1 hour at a temperature 170 ° C., to produce a prototype of a multilayer printed circuit board for 2 hours heating press at 200 ° C.. Further, a 0.3 mm or 0.6 mm hole was formed in the original form of the multilayer printed circuit board by a micro drill, and chemical copper plating was performed on the entire surface to form a through hole. Next, the outermost layer was formed by etching to produce a multilayer printed circuit board.
Table 4 shows a result of cutting out a part of the multilayer printed circuit board and measuring solder heat resistance and thermal shock resistance. In the table, regarding the solder heat resistance, ◯ indicates good, and x indicates peeling from the copper foil.

【0023】[0023]

【表4】 [Table 4]

【0024】半田耐熱性は、260℃、300秒で外観
の異常の有無を、熱衝撃試験は、−60℃から+125
℃を1サイクルとして、クラックの入るサイクルを測定
した。本発明の実施例による多層プリント回路板は半田
耐熱性、熱衝撃性が従来の2官能無水酸及び1官能無水
酸を単独で用いた比較例に比べて優れ、信頼性が向上し
ている。又、レジンの溶剤として一般的な低沸点の材料
が使用できるためボイドの無い良好な多層プリント回路
板が得られた。
The solder heat resistance is 260 ° C. for 300 seconds, and the appearance is not abnormal. The thermal shock test is −60 ° C. to +125.
The cycle in which cracks were generated was measured with the temperature of 1 ° C as one cycle. The multilayer printed circuit boards according to the examples of the present invention are superior in solder heat resistance and thermal shock resistance to the comparative examples using the conventional bifunctional anhydride and monofunctional anhydride alone, and have improved reliability. Also, since a general low boiling point material can be used as a solvent for the resin, a good multilayer printed circuit board without voids was obtained.

【0025】実施例28〜32、比較例16〜18 本実施例では、半導体封止用エポキシ樹脂組成物を得る
ために、それぞれの配合物を、2本ロールの混練機で7
0〜90℃、10分間加熱混練を行った後、冷却、粗粉
砕した。次いで、該エポキシ樹脂組成物を用いて、4M
bit D.RAM(ダイナミック.ランダムアクセ
スメモリ)LSIをトランスファ成形機を用いて封止し
た。成形条件は、180℃、15分、70kgf/cm
2 である。得られた封止品を121℃、2気圧過飽和水
蒸気釜(PCT釜)に投入し、所定時間ごとに取り出
し、LSIの電気的導通チェックを行い、素子上のアル
ミ配線の腐食断線を確認した。それぞれの封止品につい
ては、100個の試験片を投入した。表5に配合物の組
成と、試験結果を示す。硬化促進剤はエポキシと無水酸
の合計量に対する添加割合であり、その他の添加剤は全
重量に対する割合である。
Examples 28 to 32, Comparative Examples 16 to 18 In this example, in order to obtain a semiconductor encapsulating epoxy resin composition, each compound was mixed with a two-roll kneader.
After heating and kneading at 0 to 90 ° C. for 10 minutes, the mixture was cooled and coarsely pulverized. Then, using the epoxy resin composition, 4M
bit D. A RAM (dynamic random access memory) LSI was sealed using a transfer molding machine. Molding conditions: 180 ° C, 15 minutes, 70 kgf / cm
Is 2 . The obtained sealed product was put into a 121 ° C., 2-atmosphere supersaturated steam kettle (PCT kettle), taken out at predetermined intervals, and the electrical continuity of the LSI was checked to confirm corrosion breakage of aluminum wiring on the element. For each sealed product, 100 test pieces were introduced. Table 5 shows the composition of the formulation and the test results. The curing accelerator is the ratio of addition to the total amount of epoxy and anhydrous acid, and the other additives are the ratio to the total weight.

【0026】[0026]

【表5】[Table 5]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/29 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/29 23/31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂と、下記式化1のテトラカ
ルボン酸二無水物とを含有することを特徴とするエポキ
シ樹脂組成物。 【化1】 それぞれH、アルキル基、アルケニル基、アルケノイル
基を示し、R1 ,R2 はそれぞれH、炭素数1〜18の
アルキル基である。)
1. An epoxy resin composition comprising an epoxy resin and a tetracarboxylic acid dianhydride represented by the following formula 1. [Chemical 1] Each represents H, an alkyl group, an alkenyl group, and an alkenoyl group, and R 1 and R 2 are each H and an alkyl group having 1 to 18 carbon atoms. )
【請求項2】 請求項1記載のエポキシ樹脂組成物を使
用することを特徴とする電気絶縁コイルの絶縁用ワニ
ス。
2. A varnish for insulating an electrically insulating coil, which comprises using the epoxy resin composition according to claim 1.
【請求項3】 請求項1記載のエポキシ樹脂組成物を使
用することを特徴とするFRP積層材のマトリックス用
樹脂。
3. A resin for a matrix of an FRP laminated material, which uses the epoxy resin composition according to claim 1.
【請求項4】 請求項1記載のエポキシ樹脂組成物を使
用することを特徴とするプリント基板の絶縁用樹脂。
4. An insulating resin for a printed circuit board, comprising the epoxy resin composition according to claim 1.
【請求項5】 請求項1記載のエポキシ樹脂組成物を使
用することを特徴とする半導体素子の封止用樹脂。
5. A resin for sealing a semiconductor element, which uses the epoxy resin composition according to claim 1.
JP11392792A 1992-03-17 1992-03-17 Epoxy resin composition and use thereof Pending JPH05262855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11392792A JPH05262855A (en) 1992-03-17 1992-03-17 Epoxy resin composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11392792A JPH05262855A (en) 1992-03-17 1992-03-17 Epoxy resin composition and use thereof

Publications (1)

Publication Number Publication Date
JPH05262855A true JPH05262855A (en) 1993-10-12

Family

ID=14624684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11392792A Pending JPH05262855A (en) 1992-03-17 1992-03-17 Epoxy resin composition and use thereof

Country Status (1)

Country Link
JP (1) JPH05262855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521566A (en) * 2005-12-22 2009-06-04 ダウ グローバル テクノロジーズ インコーポレイティド Curable epoxy resin composition and laminate made therefrom
JP2010031150A (en) * 2008-07-29 2010-02-12 Honshu Chem Ind Co Ltd New bis(trimellitic anhydride)esters and polyesterimide precursor obtained from the same and diamine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521566A (en) * 2005-12-22 2009-06-04 ダウ グローバル テクノロジーズ インコーポレイティド Curable epoxy resin composition and laminate made therefrom
JP2010031150A (en) * 2008-07-29 2010-02-12 Honshu Chem Ind Co Ltd New bis(trimellitic anhydride)esters and polyesterimide precursor obtained from the same and diamine

Similar Documents

Publication Publication Date Title
JP5015591B2 (en) Epoxy resin composition
TWI429692B (en) Pre-paste, paste metal foil laminates and use these printed circuit boards
JP5387872B2 (en) Epoxy resin composition and cured product thereof
JP2002080693A (en) Epoxy resin composition and its cured product
JP6917636B2 (en) Resin composition, thermosetting film using it, resin cured product, laminated board, printed wiring board, and semiconductor device
JP3989026B2 (en) Modified polyamide resin and heat resistant resin composition containing the same
JP2000345035A (en) Heat-resistant resin composition, adhesive film using the same, and polyimide film having adhesive layer
JP2001220557A (en) Epoxy resin composition adhesive sheet
JP5811974B2 (en) Varnish, prepreg, film with resin, metal foil-clad laminate, printed wiring board
JP2001081282A (en) Epoxy resin composition and flexible printed wiring board material containing the same
JPH05262855A (en) Epoxy resin composition and use thereof
JPH11343476A (en) Adhesive composition and copper-clad laminate
KR100511482B1 (en) Novel Ester Compound And Thermosetting Resin Composition Using The Same
JPH02132114A (en) Phenolic resin having unsaturated imide group, its composition and use thereof
JPH036280A (en) Flame-retardant adhesive composition and flame retardant flexible printed wiring board
JP4042886B2 (en) Epoxy resin composition and flexible printed wiring board material using the same
JP4225853B2 (en) Flame retardant adhesive composition and flexible printed wiring board using the same
JPH11158251A (en) Epoxy resin composition for laminate and prepreg and laminate prepared by using the same
JP2004014636A (en) Flexible epoxy laminated substrate and flexible epoxy printed wiring board
WO2011104905A1 (en) Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
JPH0412727B2 (en)
JPH04304227A (en) Epoxy resin composition and material for sealing electronic part
JP2005053990A (en) Flame-retardant adhesive composition and substrate for flexible printed wiring obtained by using the same
JPH11171980A (en) Epoxy resin composition for laminate and prepreg and laminate using the same
JP3550543B2 (en) Adhesive tape for semiconductor devices