JPH05262528A - Production of nheedlelike goethite grain powder - Google Patents

Production of nheedlelike goethite grain powder

Info

Publication number
JPH05262528A
JPH05262528A JP3108827A JP10882791A JPH05262528A JP H05262528 A JPH05262528 A JP H05262528A JP 3108827 A JP3108827 A JP 3108827A JP 10882791 A JP10882791 A JP 10882791A JP H05262528 A JPH05262528 A JP H05262528A
Authority
JP
Japan
Prior art keywords
aqueous solution
particles
axis diameter
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3108827A
Other languages
Japanese (ja)
Other versions
JP3036553B2 (en
Inventor
Toshiharu Harada
俊治 原田
Yoshiro Okuda
嘉郎 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP3108827A priority Critical patent/JP3036553B2/en
Publication of JPH05262528A publication Critical patent/JPH05262528A/en
Application granted granted Critical
Publication of JP3036553B2 publication Critical patent/JP3036553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the quality by adding specific amounts of a water-soluble silicate and a water-soluble Al salt to an aqueous solution of an alkali or its reactional solution with an aqueous solution of a ferrous salt, then aerating the solution with an O2-containing gas and carrying out the oxidizing reaction. CONSTITUTION:A water-soluble silicate such as Na2SiO3 is added to an alkaline aqueous solution such as NaOH to prepare a mixture solution. A water-soluble Al salt such as Al2(SO4)3 is added to an aqueous solution of a ferrous salt such as FeCl2 and the obtained mixture solution is then added and mixed with the prepared mixture solution so as to afford 0.1-0.7 atomic% of Si/Fe and 0.1-3.0 atomic% of Al/Fe. The resultant solution is then warmed at a prescribed temperature and pH is regulated to >=11. Thereby, a suspension containing Fe(OH)2 and Al(OH)3 is obtained and then aerated with an oxygen-containing gas such as air in a prescribed quantity to carry out the oxidizing reaction. As a result, the objective needlelike goethite grain powder having a high axial ratio (major axis diameter/minor axis diameter) and a uniform grain size without containing dendritic grains mixed therein is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録用磁性粒子粉
末を製造する際の出発原料として好適である大きな軸比
(長軸径/短軸径)を有し、しかも、粒度がより均斉で
あって樹枝状粒子が混在していない針状ゲータイト粒子
粉末を、生産効率を高めることによって工業的、経済的
に有利に提供することを目的とする。
FIELD OF THE INVENTION The present invention has a large axial ratio (major axis diameter / minor axis diameter) suitable as a starting material for producing magnetic particle powder for magnetic recording, and has a more uniform particle size. It is an object of the present invention to provide a needle-shaped goethite particle powder in which dendritic particles are not mixed, by increasing production efficiency, industrially and economically.

【0002】[0002]

【従来の技術】近年、磁気記録再生用機器の小型軽量化
が進むにつれて、磁気テープ、磁気ディスク等の記録媒
体に対する高性能化の必要性が益々生じてきている。即
ち、高記録密度、高感度特性及び高出力特性等が要求さ
れる。
2. Description of the Related Art In recent years, with the progress of miniaturization and weight reduction of magnetic recording / reproducing devices, there is an increasing need for higher performance of recording media such as magnetic tapes and magnetic disks. That is, high recording density, high sensitivity characteristics and high output characteristics are required.

【0003】磁気記録媒体に対する上記のような要求を
満足させる為に要求される磁性材料粒子粉末の特性は、
高い保磁力と優れた分散性を有することである。
The characteristics of the magnetic material particle powder required to satisfy the above requirements for the magnetic recording medium are as follows:
It has high coercive force and excellent dispersibility.

【0004】即ち、磁気記録媒体の高感度化及び高出力
化の為には磁性粒子粉末が出来るだけ高い保磁力を有す
ることが必要であり、この事実は、例えば、株式会社総
合技術センター発行「磁性材料の開発と磁粉の高分散化
技術」(1982年)の第310頁の「磁気テープ性能
の向上指向は、高感度化と高出力化‥‥にあったから、
針状γ−Fe2 3 粒子粉末の高保磁力化‥‥を重点と
するものであった。」なる記載から明らかである。
That is, in order to increase the sensitivity and output of the magnetic recording medium, it is necessary for the magnetic particle powder to have a coercive force as high as possible. "Development of magnetic materials and high-dispersion technology for magnetic powder" (1982), page 310, "The direction of improving magnetic tape performance was to improve sensitivity and output.
The focus was on increasing the coercive force of the acicular γ-Fe 2 O 3 particle powder. It is clear from the description.

【0005】また、磁気記録媒体の高記録密度の為に
は、前出「磁性材料の開発と磁粉の高分散化技術」第3
12頁の「塗布型テープにおける高密度記録のための条
件は、短波長信号に対して、低ノイズで高出力特性を保
持できることであるが、その為には保磁力Hcと残留磁
化Brが共に大きいことと塗布膜の厚みがより薄いこと
が必要である。」なる記載の通り、磁気記録媒体が高い
保磁力と大きな残留磁化Brを有することが必要であ
り、その為には磁性粒子粉末が高い保磁力を有し、ビー
クル中での分散性、塗膜中での配向性及び充填性が優れ
ていることが要求される。
Further, in order to achieve a high recording density of the magnetic recording medium, the above-mentioned "Development of Magnetic Materials and Highly Dispersion Technology of Magnetic Powder", No. 3,
The condition for high-density recording on the coated tape on page 12 is that it can maintain high output characteristics with low noise for short-wavelength signals. Therefore, coercive force Hc and residual magnetization Br are both As described above, it is necessary that the magnetic recording medium has a high coercive force and a large remanent magnetization Br. It is required to have a high coercive force, excellent dispersibility in a vehicle, orientation in a coating film, and filling property.

【0006】周知のごとく、磁性粒子粉末の保磁力の大
きさは、形状異方性、結晶異方性、歪異方性及び交換異
方性のいずれか、若しくはそれらの相互作用に依存して
いる。
As is well known, the magnitude of coercive force of magnetic particle powder depends on any of shape anisotropy, crystal anisotropy, strain anisotropy and exchange anisotropy, or their interaction. There is.

【0007】現在、磁気記録用磁性粒子粉末として使用
されている針状晶マグネタイト粒子粉末、針状マグヘマ
イト粒子粉末等の磁性酸化鉄粒子粉末又は鉄を主成分と
する金属磁性粒子粉末は、その形状に由来する異方性を
利用すること、即ち、軸比(長軸径/短軸径)を大きく
することによって比較的高い保磁力を得ている。
At present, magnetic iron oxide particles such as acicular magnetite particles and acicular maghemite particles, which are currently used as magnetic particles for magnetic recording, or metallic magnetic particles containing iron as a main component, have the same shape. A relatively high coercive force is obtained by utilizing the anisotropy derived from, that is, by increasing the axial ratio (major axis diameter / minor axis diameter).

【0008】これら既知の磁性粒子粉末は、出発原料で
あるゲータイト粒子を、水素等還元性ガス中300〜4
00℃で還元してマグネタイト粒子又は鉄を主成分とす
る金属粒子とし、または次いで、該マグネタイト粒子
を、空気中200〜300℃で酸化してマグヘマイト粒
子とすることにより得られている。
In these known magnetic particle powders, the starting material, goethite particles, is added in a reducing gas such as hydrogen in an amount of 300-4.
It is obtained by reducing at 00 ° C. to magnetite particles or metal particles containing iron as a main component, or subsequently oxidizing the magnetite particles at 200 to 300 ° C. in air to give maghemite particles.

【0009】磁気記録媒体の残留磁化Brは、磁性粒子
粉末のビークル中での分散性、塗膜中での配向性及び充
填性に依存しており、これら特性の向上の為には、ビヒ
クル中に分散させる磁性粒子粉末が大きな軸比(長軸径
/短軸径)を有し、しかも、粒度が均斉であって樹枝状
粒子が混在していないことが要求される。
The remanent magnetization Br of the magnetic recording medium depends on the dispersibility of the magnetic particle powder in the vehicle, the orientation in the coating film, and the filling property. It is required that the magnetic particle powder to be dispersed in has a large axial ratio (major axis diameter / minor axis diameter), has a uniform particle size, and does not contain dendritic particles.

【0010】上述した通り、大きな軸比(長軸径/短軸
径)を有し、しかも、粒度が均斉であって、樹枝状粒子
が混在していない磁性粒子粉末は、現在、最も要求され
ているところであり、このような特性を備えた磁性粒子
粉末を得るためには、出発原料であるゲータイト粒子粉
末が大きな軸比(長軸径/短軸径)を有し、しかも、粒
度が均斉であって、樹枝状粒子が混在していないことが
必要である。
As described above, the magnetic particle powder having a large axial ratio (major axis diameter / minor axis diameter), a uniform particle size and no mixed dendritic particles is currently most demanded. In order to obtain magnetic particle powder having such characteristics, the starting material, goethite particle powder, has a large axial ratio (major axis diameter / minor axis diameter), and the particle size is uniform. However, it is necessary that dendritic particles are not mixed.

【0011】従来、出発原料であるゲータイト粒子粉末
を製造する方法としては、第一鉄塩水溶液に当量以上
の水酸化アルカリ水溶液を加えて得られる水酸化第一鉄
コロイドを含む懸濁液をpH11以上にて80℃以下の
温度で酸素含有ガスを通気して酸化反応を行うことによ
り針状ゲータイト粒子を生成させる方法(特公昭39−
5610号公報)、第一鉄塩水溶液と炭酸アルカリ水
溶液とを反応させて得られたFeCO3 を含む懸濁液に
酸素含有ガスを通気して酸化反応を行うことにより紡錘
状を呈したゲータイト粒子を生成させる方法(特開昭5
0−80999号公報)等が知られている。
Conventionally, as a method for producing goethite particle powder as a starting material, a suspension containing ferrous hydroxide colloid obtained by adding an equivalent amount or more of an alkali hydroxide aqueous solution to a ferrous salt aqueous solution has a pH of 11. As described above, a method of generating needle-shaped goethite particles by carrying out an oxidation reaction by passing an oxygen-containing gas at a temperature of 80 ° C. or lower (Japanese Patent Publication No. 39-39).
5610 gazette), spindle-shaped goethite particles obtained by aerating an oxygen-containing gas through a suspension containing FeCO 3 obtained by reacting a ferrous salt aqueous solution with an alkali carbonate aqueous solution to carry out an oxidation reaction. Method for generating the
0-80999) and the like are known.

【0012】また、前出の方法において、生成する
針状ゲータイト粒子の粒度を改良する為に反応中に水可
溶性ケイ酸塩を添加する方法(特公昭55−8461号
公報、特公昭55−32652号公報)、生成する針
状ゲータイト粒子の粒度及び軸比(長軸径/短軸径)を
改良する為に反応中に水可溶性ケイ酸塩及び水可溶性亜
鉛塩を添加する方法(特公昭55−6575号公報、特
公昭55−6576号公報)等が知られている。
In the above method, a water-soluble silicate is added during the reaction in order to improve the particle size of the acicular goethite particles formed (Japanese Patent Publication No. 55-8461 and Japanese Patent Publication No. 55-32652). Japanese Patent Publication No. JP-A-2003-242242), a method of adding a water-soluble silicate and a water-soluble zinc salt during the reaction in order to improve the particle size and axial ratio (major axis diameter / minor axis diameter) of the acicular goethite particles produced (JP-B-55) No. 6575, Japanese Patent Publication No. 55-6576) and the like are known.

【0013】[0013]

【発明が解決しようとする課題】大きな軸比(長軸径/
短軸径)を有し、しかも、粒度が均斉であって、樹枝状
粒子が混在していない磁性粒子粉末は、現在最も要求さ
れているところであるが、出発原料であるゲータイト粒
子粉末を製造する前出の方法による場合には、軸比
(長軸径/短軸径)の大きな殊に、10以上の針状晶ゲ
ータイト粒子が生成するが、樹枝状粒子が混在してお
り、また、粒度から言えば、均斉な粒度を有した粒子と
は言い難い。
SUMMARY OF THE INVENTION Large axial ratio (major axis diameter /
A magnetic particle powder having a (minor axis diameter), a uniform particle size and no mixed dendritic particles is currently most demanded, but it produces a goethite particle powder as a starting material. In the case of the above-mentioned method, acicular goethite particles having a large axial ratio (major axis diameter / minor axis diameter), especially 10 or more, are generated, but dendritic particles are mixed and the particle size is Therefore, it cannot be said that the particles have a uniform particle size.

【0014】前出の方法による場合には、粒度が均斉
であり、また、樹枝状粒子が混在していない紡錘状を呈
した粒子が生成するが、一方、軸比(長軸径/短軸径)
は高々7程度であり、軸比(長軸径/短軸径)の大きな
粒子が生成し難いという欠点があり、殊に、この現象は
生成粒子の長軸径が小さくなる程顕著になるという傾向
にある。
In the case of the above-mentioned method, particles having a uniform particle size and having a spindle shape in which dendritic particles are not mixed are produced, while the axial ratio (major axis diameter / minor axis) is used. Diameter)
Is about 7 at most, and there is a drawback that particles with a large axial ratio (major axis diameter / minor axis diameter) are difficult to be generated. In particular, this phenomenon becomes more remarkable as the major axis diameter of generated particles becomes smaller. There is a tendency.

【0015】前出の方法による場合には、粒度が均斉
であって樹枝状粒子が混在しない針状ゲータイト粒子が
生成するが、軸比(長軸径/短軸径)は高々9程度であ
り、水可溶性ケイ酸塩の添加量の増加に伴って粒度が均
斉であって樹枝状粒子が混在しなくなるが、一方、軸比
(長軸径/短軸径)は急激に小さくなるという傾向にあ
る。
In the case of the above-mentioned method, needle-shaped goethite particles having a uniform particle size and containing no dendritic particles are produced, but the axial ratio (major axis diameter / minor axis diameter) is about 9 at most. As the amount of water-soluble silicate added increases, the particle size becomes uniform and dendritic particles do not coexist, but the axial ratio (major axis diameter / minor axis diameter) tends to decrease rapidly. is there.

【0016】前出の方法による場合には、大きな軸比
(長軸径/短軸径)を有する針状ゲータイト粒子が生成
するが、軸比(長軸径/短軸径)を向上させる効果を有
する水可溶性亜鉛の添加により粒度が不均斉となって樹
枝状粒子が混在しやすくなり、しかも、単位時間当り・
単位容積当りの生成量(以下、生成量という。)の低下
によって生産効率が低下する為工業的、経済的ではない
という問題がある。
In the case of the above-mentioned method, acicular goethite particles having a large axial ratio (major axis diameter / minor axis diameter) are produced, but the effect of improving the axial ratio (major axis diameter / minor axis diameter) is obtained. With the addition of water-soluble zinc having a particle size, the particle size becomes asymmetric, and dendritic particles are likely to be mixed.
Since the production amount per unit volume (hereinafter referred to as the production amount) is reduced, the production efficiency is reduced, which is not industrially or economically problematic.

【0017】そこで、本発明は、大きな軸比(長軸径/
短軸径)を有するとともに、粒度がより均斉で樹枝状粒
子が混在していない針状ゲータイト粒子を生成量をより
増加させて生産効率を高めることによって工業的、経済
的に有利に生成させることを技術的課題とする。
Therefore, in the present invention, a large axial ratio (major axis diameter /
(Minor axis diameter), with more uniform particle size and no dendritic particles mixed in, acicular goethite particles can be produced in an industrially and economically advantageous manner by increasing the production amount and increasing production efficiency. Is a technical issue.

【0018】[0018]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。
The above technical problems can be achieved by the present invention as follows.

【0019】即ち、本発明は、第一鉄塩水溶液とアルカ
リ水溶液とを反応させて得られた水酸化第一鉄を含むp
H11以上の懸濁液に酸素含有ガスを通気して酸化する
ことにより針状ゲータイト粒子を製造する方法におい
て、前記アルカリ水溶液及び酸素含有ガスを通気して酸
化反応を行なわせる前の前記懸濁液のいずれかの液中に
水可溶性ケイ酸塩をFeに対しSi換算で0.1〜0.
7原子%添加しておき、且つ、前記第一鉄塩水溶液、前
記アルカリ水溶液及び酸素含有ガスを通気して酸化反応
を行なわせる前の前記懸濁液のいずれかの液中に水可溶
性アルミニウム塩をFeに対しAl換算で0.1〜3.
0原子%添加しておくことにより、Si及びAlを含有
する針状ゲータイト粒子を生成させることからなる針状
ゲータイト粒子粉末の製造法である。
That is, according to the present invention, p containing ferrous hydroxide obtained by reacting a ferrous salt aqueous solution with an alkaline aqueous solution.
In the method for producing acicular goethite particles by passing an oxygen-containing gas through a suspension of H11 or more to oxidize the suspension, the suspension before the oxidizing reaction is performed by passing the alkaline aqueous solution and the oxygen-containing gas. Water-soluble silicate in any one of the liquids of 0.1 to 0.
A water-soluble aluminum salt is added in an amount of 7 atomic% and is added to any one of the suspensions before the oxidation reaction is performed by passing the ferrous salt aqueous solution, the alkaline aqueous solution and the oxygen-containing gas. Is 0.1 to 3 in terms of Al with respect to Fe.
This is a method for producing acicular goethite particle powder, which comprises producing acicular goethite particles containing Si and Al by adding 0 atomic%.

【0020】[0020]

【作用】先ず、本発明において最も重要な点は、第一鉄
塩水溶液とアルカリ水溶液とを反応させて得られた水酸
化第一鉄を含むpH11以上の懸濁液に酸素含有ガスを
通気して酸化することにより針状ゲータイト粒子を製造
する方法において、前記アルカリ水溶液及び酸素含有ガ
スを通気して酸化反応を行なわせる前の前記懸濁液のい
ずれかの液中に水可溶性ケイ酸塩をFeに対しSi換算
で0.1〜0.7原子%添加しておき、且つ、前記第一
鉄塩水溶液、前記アルカリ水溶液及び酸素含有ガスを通
気して酸化反応を行なわせる前の前記懸濁液のいずれか
の液中に水可溶性アルミニウム塩をFeに対しAl換算
で0.1〜3.0原子%添加しておいた場合には、大き
な軸比(長軸径/短軸径)を有するとともに、粒度がよ
り均斉で樹枝状粒子が混在していない針状ゲータイト粒
子を生産量をより増加させて効率よく生成させることが
出来るという事実である。
First, the most important point in the present invention is to ventilate an oxygen-containing gas into a suspension having a pH of 11 or more containing ferrous hydroxide obtained by reacting an aqueous ferrous salt solution with an aqueous alkaline solution. In the method for producing acicular goethite particles by oxidizing the water-soluble silicate in the liquid of any of the suspensions before the oxidation reaction by aeration of the alkaline aqueous solution and oxygen-containing gas. The suspension before adding 0.1 to 0.7 atom% in terms of Si in terms of Si and aerating the aqueous solution of ferrous salt, the aqueous alkaline solution and an oxygen-containing gas to cause an oxidation reaction. When a water-soluble aluminum salt is added to any one of the liquids in an amount of 0.1 to 3.0 atom% in terms of Al with respect to Fe, a large axial ratio (major axis diameter / minor axis diameter) is obtained. Having dendritic grains with a more uniform grain size There is a fact that can be mixed acicular goethite particles not more increased production by efficiently generated.

【0021】本発明において、大きな軸比(長軸径/短
軸径)を有するとともに、粒度がより均斉で樹枝状粒子
が混在していない針状ゲータイト粒子を効率よく生成さ
せることが出来る理由について、本発明者は、後出比較
例に示す通り、ゲータイト粒子の生成反応において水可
溶性ケイ酸塩又は水可溶性アルミニウム塩のそれぞれを
単独で添加しておくいずれの方法による場合にも、目的
とする針状ゲータイト粒子を効率よく生成させることが
できないことから、水可溶性ケイ酸塩と水可溶性アルミ
ニウム塩の相乗効果によるものと考えている。
In the present invention, the reason why needle-shaped goethite particles having a large axial ratio (major axis diameter / minor axis diameter), a more uniform particle size and no mixed dendritic particles can be efficiently produced. As described in Comparative Examples below, the present inventor has an object in any method in which each of water-soluble silicate or water-soluble aluminum salt is added alone in the reaction for producing goethite particles. Since acicular goethite particles cannot be efficiently generated, it is considered to be due to the synergistic effect of the water-soluble silicate and the water-soluble aluminum salt.

【0022】尚、針状ゲータイト粒子の生成反応におい
て、ケイ素化合物及びアルミニウム化合物を添加するも
のとして特開昭64−33019号公報に記載の方法が
ある。この方法は、水酸化第一鉄を含む懸濁液中に、ケ
イ素化合物及びアルミニウム化合物を添加しながら酸素
含有ガスを供給するものであり、高濃度反応により針状
ゲータイト粒子の生成量を増加させる程、粒度が不均斉
となり樹枝状粒子が増加する傾向が大きくなり、本発明
とはその作用効果が全く相違するものである。
There is a method described in JP-A-64-33019 for adding a silicon compound and an aluminum compound in the reaction for forming acicular goethite particles. This method is to supply an oxygen-containing gas to a suspension containing ferrous hydroxide while adding a silicon compound and an aluminum compound, and increase the production amount of acicular goethite particles by a high-concentration reaction. The more the particle size becomes asymmetric and the dendritic particles increase, the more the effect and effect of the present invention are completely different.

【0023】次に、本発明方法実施にあたっての諸条件
について述べる。
Next, various conditions for carrying out the method of the present invention will be described.

【0024】本発明において使用される第一鉄塩として
は、硫酸第一鉄水溶液、塩化第一鉄水溶液等がある。
Examples of the ferrous salt used in the present invention include ferrous sulfate aqueous solution and ferrous chloride aqueous solution.

【0025】本発明において使用されるアルカリ水溶液
としては、水酸化ナトリウム水溶液、水酸化カリウム水
溶液等がある。
Examples of the alkaline aqueous solution used in the present invention include sodium hydroxide aqueous solution and potassium hydroxide aqueous solution.

【0026】本発明において使用される水可溶性ケイ酸
塩としては、ナトリウム、カリウムのケイ酸塩等があ
る。
Examples of the water-soluble silicate used in the present invention include sodium silicate and potassium silicate.

【0027】水可溶性ケイ酸塩の添加量は、Feに対し
Si換算で0.1〜0.7原子%である。0.1原子%
未満である場合には、本発明の目的とする粒度がより均
斉であって樹枝状粒子が混在していない針状ゲータイト
粒子粉末を生成させることが困難である。0.7原子%
を越える場合には、大きな軸比(長軸径/短軸径)を有
する針状ゲータイト粒子を得ることができない。
The amount of the water-soluble silicate added is 0.1 to 0.7 atom% in terms of Si with respect to Fe. 0.1 atom%
If it is less than the above range, it is difficult to produce a needle-shaped goethite particle powder in which the particle size targeted by the present invention is more uniform and dendritic particles are not mixed. 0.7 atom%
If it exceeds, the acicular goethite particles having a large axial ratio (major axis diameter / minor axis diameter) cannot be obtained.

【0028】本発明における水可溶性ケイ酸塩は、生成
する針状ゲータイト粒子の粒度や樹枝状粒子等の形態に
関与するものであるからその添加時期は、酸素含有ガス
を通気して酸化反応を行なわせる前であることが必要で
あり、アルカリ水溶液及び水酸化第一鉄を含む懸濁液中
のいずれかの液中に添加しておくことができる。
The water-soluble silicate in the present invention is involved in the particle size of the acicular goethite particles produced and the morphology of dendritic particles and the like. It needs to be performed before the addition, and can be added to any of the solutions in the suspension containing the alkaline aqueous solution and ferrous hydroxide.

【0029】本発明において使用される水可溶性アルミ
ニウム塩としては、硫酸アルミニウム、アルミン酸ソー
ダ、塩化アルミニウム等がある。
The water-soluble aluminum salt used in the present invention includes aluminum sulfate, sodium aluminate, aluminum chloride and the like.

【0030】水可溶性アルミニウム塩の添加量は、Fe
に対しAl換算で0.1〜3.0原子%である。0.1
原子%未満である場合には、本発明の目的とする粒度が
より均斉であって樹枝状粒子が混在していない針状ゲー
タイト粒子粉末を生成させることが困難である。3.0
原子%を越える場合にも、本発明の目的とする効果は得
られるが、生成した針状ゲータイト粒子を用いて得られ
た針状磁性酸化鉄粒子粉末の飽和磁化が低下する。
The amount of the water-soluble aluminum salt added is Fe
On the other hand, it is 0.1 to 3.0 atom% in terms of Al. 0.1
When the content is less than atomic%, it is difficult to produce the acicular goethite particle powder which is more uniform in particle size and does not contain dendritic particles, which is the object of the present invention. 3.0
When the content exceeds the atomic%, the effect of the present invention can be obtained, but the saturation magnetization of the acicular magnetic iron oxide particle powder obtained by using the acicular goethite particles produced is lowered.

【0031】本発明における水可溶性アルミニウム塩
は、生成する針状ゲータイト粒子の軸比(長軸径/短軸
径)、粒度、樹枝状粒子等粒子の形態に関与するもので
あるから、その添加時期は、酸素含有ガスを通気して酸
化反応を行わせる前であることが必要であり、第一鉄塩
水溶液、アルカリ水溶液及び水酸化第一鉄を含む懸濁液
中のいずれの液中に添加しておくことができる。
The water-soluble aluminum salt in the present invention is involved in the axial ratio (major axis diameter / minor axis diameter) of the acicular goethite particles produced, particle size, morphology of dendritic particles and the like, and therefore its addition. It is necessary that the time is before the oxygen-containing gas is ventilated to carry out the oxidation reaction, and in any solution of the ferrous salt aqueous solution, the alkaline aqueous solution and the suspension containing ferrous hydroxide. It can be added.

【0032】本発明における酸化手段は、酸素含有ガス
(例えば空気)を液中に通気することにより行う。
The oxidizing means in the present invention is carried out by passing an oxygen-containing gas (for example, air) through the liquid.

【0033】次に、実施例並びに比較例により、本発明
を説明する。
Next, the present invention will be described with reference to examples and comparative examples.

【0034】尚、以下の実施例並びに比較例における粒
子の長軸径、軸比(長軸径/短軸径)は、いずれも電子
顕微鏡写真から測定した数値の平均値で示した。
The major axis diameter and the axial ratio (major axis diameter / minor axis diameter) of the particles in the following Examples and Comparative Examples are all shown as the average value of the numerical values measured from electron micrographs.

【0035】粒子の粒度分布は、以下の方法により求め
た幾何標準偏差値(σg)で示した。即ち、12万倍の
電子顕微鏡写真に写っている粒子350個の長軸径を測
定し、その測定値から計算して求めた粒子の実際の長軸
径と個数から統計学的手法に従って対数正規確率紙上に
横軸に粒子の長軸径を、縦軸に等間隔にとった長軸径区
間のそれぞれに属する粒子の累積個数を百分率でプロッ
トする。そして、このグラフから粒子の個数が50%及
び84.13%のそれぞれに相当する長軸径の値を読み
とり、幾何標準偏差値(σg)=個数50%の時の長軸
径(μm)/個数84.13%の時の長軸径(μm)
に従って算出した値で示した。
The particle size distribution of the particles is shown by the geometric standard deviation value (σg) obtained by the following method. That is, the major axis diameter of 350 particles shown in an electron micrograph at 120,000 times is measured, and the logarithmic normal is calculated from the actual major axis diameter and the number of particles calculated from the measured values according to a statistical method. On the probability paper, the major axis diameter of the particles is plotted on the horizontal axis, and the cumulative number of particles belonging to each major axis diameter section equally spaced on the vertical axis is plotted as a percentage. Then, the values of the major axis diameters corresponding to the numbers of particles of 50% and 84.13% are read from this graph, and the geometric standard deviation value (σg) = the major axis diameter when the number of particles is 50% (μm) / Long axis diameter (μm) when the number is 84.13%
The value calculated according to

【0036】針状ゲータイト粒子に含有されるSi量及
びAl量は蛍光X線分析により測定した。
The amounts of Si and Al contained in the acicular goethite particles were measured by fluorescent X-ray analysis.

【0037】実施例1 Al/Fe換算で1.0原子%を含むように硫酸アルミ
ニウムを添加して得られた硫酸第一鉄1.5mol/l
水溶液24 lを、あらかじめ、反応器中に準備された
Si/Fe換算で0.50原子%を含むようにケイ酸ソ
ーダ(3号)(SiO2 28.55wt%)37.8
gを添加(Si/Fe換算で0.50原子%に該当す
る。)して得られた6.7−NのNaOH水溶液26
lに加え、pH13.1、温度50℃においてFe(O
H)2 とAl(OH)3 とを含む水溶液を得た。
Example 1 Ferrous sulfate 1.5 mol / l obtained by adding aluminum sulfate so as to contain 1.0 atom% in terms of Al / Fe.
Sodium silicate (No. 3) (SiO 2 28.55 wt%) 37.8 was added so that 24 l of the aqueous solution contained 0.50 atomic% in terms of Si / Fe prepared in advance in the reactor.
6.7-N NaOH aqueous solution obtained by adding g (corresponding to 0.50 atomic% in terms of Si / Fe) 26
In addition to 1, Fe (O
An aqueous solution containing H) 2 and Al (OH) 3 was obtained.

【0038】上記Fe(OH)2 とAl(OH)3 とを
含む水溶液に、温度50℃において毎分100 lの空
気を9時間通気して針状ゲータイト粒子を生成した。生
成量は7.1g/l/時間であった。酸化反応終点は、
1%塩酸酸性赤血塩溶液を用いてFe2+の青色呈色反応
の有無で判定した。生成粒子は常法により、水洗、濾
別、乾燥、粉砕した。この針状ゲータイト粒子は、Si
/Feが0.61原子%、Al/Feが1.0原子%で
あった。
Needle-like goethite particles were produced by bubbling 100 l / min of air at a temperature of 50 ° C. for 9 hours through the aqueous solution containing Fe (OH) 2 and Al (OH) 3 . The production amount was 7.1 g / l / hour. The end point of the oxidation reaction is
It was judged by the presence or absence of blue color reaction of Fe 2+ using a 1% hydrochloric acid acidic red blood salt solution. The produced particles were washed with water, filtered, dried and pulverized by a conventional method. The acicular goethite particles are made of Si
/ Fe was 0.61 atomic%, and Al / Fe was 1.0 atomic%.

【0039】また、図1に示す電子顕微鏡写真(×30
000)から、明らかなように、平均値で長軸0.46
μm、軸比(長軸径/短軸径)25であり、標準偏差値
が0.78の粒度が均斉な粒子であって、樹枝状粒子が
混在しないものであった。
Further, the electron micrograph (× 30
000), it is clear that the long axis is 0.46 on average.
The average particle size was 25 μm, the axial ratio (major axis diameter / minor axis diameter) was 25, the standard deviation value was 0.78, and the particle size was uniform, and dendritic particles were not mixed.

【0040】実施例2〜4 第一鉄塩水溶液の種類、Fe2+濃度、NaOH水溶液の
濃度、水可溶性アルミニウム塩の種類、添加量及び添加
時期、水可溶性ケイ酸塩の添加量を種々変化させた以外
は、実施例1と同様にして針状ゲータイト粒子を生成し
た。この時の主要製造条件を表1に諸特性を表2に示
す。実施例2〜4で得られた針状ゲータイト粒子粉末
は、いずれも電子顕微鏡観察の結果、軸比(長軸径/短
軸径)が大きく、樹枝状粒子が混在しないものであり、
幾何標準偏差値が0.70以上の粒度が均斉な粒子であ
った。また、生成量は、6.3g/l/時間好ましく、
6.5g/l/時間以上であり、生産効率が優れたもの
であった。
Examples 2 to 4 Various changes of ferrous salt aqueous solution type, Fe 2+ concentration, NaOH aqueous solution concentration, type of water-soluble aluminum salt, addition amount and timing, addition amount of water-soluble silicate Needle-shaped goethite particles were produced in the same manner as in Example 1 except that the above-mentioned procedure was performed. The main manufacturing conditions at this time are shown in Table 1, and various characteristics are shown in Table 2. The needle-shaped goethite particle powders obtained in Examples 2 to 4 all have a large axial ratio (major axis diameter / minor axis diameter) as a result of electron microscope observation, and do not contain dendritic particles.
The particles having a geometric standard deviation value of 0.70 or more were uniform. Also, the production amount is preferably 6.3 g / l / hour,
It was 6.5 g / l / hour or more, and the production efficiency was excellent.

【0041】比較例1 水可溶性アルミニウム塩及び水可溶性ケイ酸塩を添加し
ないで、他の諸条件は、実施例4と同様にして針状ゲー
タイト粒子粉末を生成した。この時の主要製造条件を表
1に、諸特性を表2に示す。得られた針状ゲータイト粒
子粉末は、図2に示す電子顕微鏡写真(×30000)
に示す通り、樹枝状粒子が混在しており、幾何標準偏差
値が0.52と不均斉な粒子であった。
Comparative Example 1 A needle-shaped goethite particle powder was produced in the same manner as in Example 4 except that the water-soluble aluminum salt and the water-soluble silicate were not added. The main manufacturing conditions at this time are shown in Table 1, and various characteristics are shown in Table 2. The obtained acicular goethite particle powder is an electron micrograph (× 30000) shown in FIG.
As shown in (1), dendritic particles were mixed, and the geometric standard deviation value was 0.52, and the particles were asymmetrical.

【0042】比較例2 硫酸アルミニウムを添加せず、ケイ酸ソーダ(3号)
(SiO2 28.55wt%)をSi/Fe換算で
0.50原子%とした以外は、実施例4と同様にして針
状ゲータイト粒子粉末を生成した。この時の主要製造条
件を表1に、諸特性を表2に示す。得られた針状ゲータ
イト粒子粉末は、図3に示す電子顕微鏡写真(×300
00)に示す通り、軸比(長軸径/短軸径)が小さい粒
子であった。
Comparative Example 2 Without adding aluminum sulfate, sodium silicate (No. 3)
Needle-shaped goethite particle powder was produced in the same manner as in Example 4 except that (SiO 2 28.55 wt%) was changed to 0.50 atom% in terms of Si / Fe. The main manufacturing conditions at this time are shown in Table 1, and various characteristics are shown in Table 2. The obtained acicular goethite particle powder is an electron micrograph (× 300) shown in FIG.
As shown in (00), the particles had a small axial ratio (major axis diameter / minor axis diameter).

【0043】比較例3 水可溶性ケイ酸塩を添加せず、硫酸アルミニウムの添加
量をAl/Fe換算で1.0原子%とし添加時期を変え
た以外は、実施例4と同様にして針状ゲータイト粒子粉
末を生成した。この時の主要製造条件を表1に、諸特性
を表2に示す。得られた針状ゲータイト粒子粉末は、図
4に示す電子顕微鏡写真(×30000)に示す通り、
樹枝状粒子が混在しており、幾何標準偏差が0.52と
粒度が不均斉な粒子であった。
Comparative Example 3 A needle-shaped material was prepared in the same manner as in Example 4 except that the water-soluble silicate was not added and the addition amount of aluminum sulfate was changed to 1.0 atom% in terms of Al / Fe to change the addition timing. A goethite particle powder was produced. The main manufacturing conditions at this time are shown in Table 1, and various characteristics are shown in Table 2. The obtained acicular goethite particle powder is as shown in the electron micrograph (× 30000) shown in FIG.
Dendritic particles were mixed, and the geometric standard deviation was 0.52, and the particles were asymmetric in particle size.

【0044】比較例4 水可溶性アルミニウム塩及び水可溶性ケイ酸塩の添加方
法を変化させた以外は、実施例1と同様にして生成反応
を行った。この時の主要製造条件を表1に、諸特性を表
2に示す。比較例4で得られた粒子粉末は、幾何標準偏
差0.57と不均斉な粒子であった。また、生成量は
3.6g/l/時間であり、生産効率が極めて悪いもの
であった。
Comparative Example 4 A production reaction was carried out in the same manner as in Example 1 except that the method of adding the water-soluble aluminum salt and the water-soluble silicate was changed. The main manufacturing conditions at this time are shown in Table 1, and various characteristics are shown in Table 2. The particle powder obtained in Comparative Example 4 was an asymmetric particle with a geometric standard deviation of 0.57. Moreover, the production amount was 3.6 g / l / hour, and the production efficiency was extremely poor.

【0045】[0045]

【発明の効果】本発明に係る針状ゲータイト粒子粉末の
製造法によれば、前出実施例に示した通り、大きな軸比
(長軸径/短軸径)を有し、しかも粒度が均斉であって
樹脂状粒子が混在していない針状ゲータイト粒子粉末を
生成量を増加させて生産効率を高めることにより工業
的、経済的に有利に得ることができる。
EFFECTS OF THE INVENTION According to the method for producing acicular goethite particles according to the present invention, as shown in the above-mentioned examples, a large axial ratio (major axis diameter / minor axis diameter) and a uniform particle size are obtained. However, the needle-shaped goethite particle powder in which the resinous particles are not mixed can be obtained industrially and economically by increasing the production amount and increasing the production efficiency.

【0046】このようにして得られた針状ゲータイト粒
子粉末を出発原料とし、加熱還元して得られた針状マグ
ネタイト粒子粉末、又は加熱還元した後更に酸化して得
られた針状マグヘマイト粒子もまた、大きな軸比(長軸
径/短軸径)を有し、しかも、粒度がより均斉であって
樹枝状粒子が混在していない粒子であるので、現在最も
要求されている高記録密度、高感度、高出力用磁性粒子
粉末として好適である。
The needle-shaped goethite particle powder thus obtained is used as a starting material, and the needle-shaped magnetite particle powder obtained by heating and reducing, or the needle-shaped maghemite particles obtained by further oxidizing after heating and reducing. In addition, since the particles have a large axial ratio (major axis diameter / minor axis diameter), and the particle size is more uniform and dendritic particles are not mixed, the high recording density currently required most, It is suitable as a magnetic particle powder for high sensitivity and high output.

【0047】[0047]

【図面の簡単な説明】[Brief description of drawings]

図1乃至図5は、それぞれ「実施例1」、「比較例1」
乃至「比較例4」で得られた針状ゲータイト粒子の粒子
構造を示す電子顕微鏡写真(×30000)である。
1 to 5 show "Example 1" and "Comparative Example 1", respectively.
8 to 10 are electron micrographs (× 30000) showing the particle structure of the acicular goethite particles obtained in “Comparative Example 4”.

【表1】 [Table 1]

【表2】 [Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一鉄塩水溶液とアルカリ水溶液とを反
応させて得られた水酸化第一鉄を含むpH11以上の懸
濁液に酸素含有ガスを通気して酸化することにより針状
ゲータイト粒子を製造する方法において、前記アルカリ
水溶液及び酸素含有ガスを通気して酸化反応を行なわせ
る前の前記懸濁液のいずれかの液中に水可溶性ケイ酸塩
をFeに対しSi換算で0.1〜0.7原子%添加して
おき、且つ、前記第一鉄塩水溶液、前記アルカリ水溶液
及び酸素含有ガスを通気して酸化反応を行なわせる前の
前記懸濁液のいずれかの液中に水可溶性アルミニウム塩
をFeに対しAl換算で0.1〜3.0原子%添加して
おくことにより、Si及びAlを含有する針状ゲータイ
ト粒子を生成させることを特徴とする針状ゲータイト粒
子粉末の製造法。
1. Needle-shaped goethite particles obtained by reacting a ferrous salt aqueous solution with an alkaline aqueous solution, which is obtained by reacting a ferrous hydroxide aqueous solution, with a suspension having a pH of 11 or more and passing an oxygen-containing gas to oxidize the suspension. In the method for producing, a water-soluble silicate is added to Fe in an amount of 0.1 in terms of Si in the liquid of any one of the suspensions before the oxidation reaction is performed by passing the alkaline aqueous solution and the oxygen-containing gas. To 0.7 atomic% of water, and water is added to any one of the suspensions before the oxidation reaction is performed by aerating the ferrous salt aqueous solution, the alkaline aqueous solution, and the oxygen-containing gas. A needle-shaped goethite particle powder characterized by producing acicular goethite particles containing Si and Al by adding a soluble aluminum salt to Fe in an amount of 0.1 to 3.0 atom% in terms of Al. Manufacturing method.
JP3108827A 1991-04-11 1991-04-11 Method for producing acicular goethite particle powder Expired - Fee Related JP3036553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108827A JP3036553B2 (en) 1991-04-11 1991-04-11 Method for producing acicular goethite particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108827A JP3036553B2 (en) 1991-04-11 1991-04-11 Method for producing acicular goethite particle powder

Publications (2)

Publication Number Publication Date
JPH05262528A true JPH05262528A (en) 1993-10-12
JP3036553B2 JP3036553B2 (en) 2000-04-24

Family

ID=14494549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108827A Expired - Fee Related JP3036553B2 (en) 1991-04-11 1991-04-11 Method for producing acicular goethite particle powder

Country Status (1)

Country Link
JP (1) JP3036553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034830A1 (en) * 1996-03-21 1997-09-25 Dowa Mining Co., Ltd. Powder for lower layer of coating type magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034830A1 (en) * 1996-03-21 1997-09-25 Dowa Mining Co., Ltd. Powder for lower layer of coating type magnetic recording medium
US6040043A (en) * 1996-03-21 2000-03-21 Dowa Mining Co., Ltd. Particles for lower layer of coating type magnetic recording medium
US6171692B1 (en) 1996-03-21 2001-01-09 Dowa Mining Co., Ltd. Particle for lower layer of coating type magnetic recording medium

Also Published As

Publication number Publication date
JP3036553B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JPH05262528A (en) Production of nheedlelike goethite grain powder
JP2640817B2 (en) Spindle-shaped goethite particles and method for producing the same
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP3011221B2 (en) Method for producing acicular goethite particle powder
JP3087778B2 (en) Method for producing acicular goethite particle powder
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JP2743000B2 (en) Spindle-shaped goethite particles and method for producing the same
JP2704537B2 (en) Method for producing spindle-shaped goethite particles
JP2840779B2 (en) Method for producing acicular goethite particle powder
JP3166780B2 (en) Method for producing spindle-shaped goethite particles
JP2883962B2 (en) Method for producing acicular goethite particle powder
JP2704540B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP2704539B2 (en) Method for producing spindle-shaped goethite particles
JP2935291B2 (en) Method for producing acicular goethite particle powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS6313941B2 (en)
JP2704544B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JPS6278119A (en) Production of fusiform goethite particle powder
JPH0120201B2 (en)
JPS6313943B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees