JPH0526154B2 - - Google Patents

Info

Publication number
JPH0526154B2
JPH0526154B2 JP1231635A JP23163589A JPH0526154B2 JP H0526154 B2 JPH0526154 B2 JP H0526154B2 JP 1231635 A JP1231635 A JP 1231635A JP 23163589 A JP23163589 A JP 23163589A JP H0526154 B2 JPH0526154 B2 JP H0526154B2
Authority
JP
Japan
Prior art keywords
radiation
plate
scintillator
light
detection elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1231635A
Other languages
Japanese (ja)
Other versions
JPH02132396A (en
Inventor
Minoru Yoshida
Takamichi Yamada
Yoko Uchida
Hideki Kono
Hiroshi Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP1231635A priority Critical patent/JPH02132396A/en
Publication of JPH02132396A publication Critical patent/JPH02132396A/en
Publication of JPH0526154B2 publication Critical patent/JPH0526154B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、X線、γ線などの放射線により発光
するシシチレータを用いたシンチレーシヨン放射
線検出器、特にX線断層装置(X線CT)に用い
て好適な放射線検出器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a scintillation radiation detector using a cicitillator that emits radiation due to radiation such as X-rays and γ-rays, and particularly to an X-ray tomography device (X-ray CT). The present invention relates to a radiation detector suitable for use.

〔従来の技術〕[Conventional technology]

X線CT装置は、そのスキヤン方式の違いによ
り種々のタイプがある。その一例を第1図に示
す。扇状に広がつたX線ビーム2とX線源1を中
心とする円弧状に配置された複数個(30〜2000)
の小型放射線検出器3よりなる多素子放射線検出
器4で構成されている。この放射線検出器には気
体の電離作用を利用する電離箱形検出器や、シン
チレータと光検出器とを組合わせたシンチレーシ
ヨン検出器などが一般に用いられている。
There are various types of X-ray CT devices depending on their scanning methods. An example is shown in FIG. X-ray beam 2 spread out in a fan shape and multiple X-ray beams (30 to 2000) arranged in an arc with the X-ray source 1 at the center
The multi-element radiation detector 4 includes a small radiation detector 3. Generally used as the radiation detector are an ionization box type detector that utilizes the ionization effect of gas, and a scintillation detector that combines a scintillator and a photodetector.

シンチレーシヨン検出器において、光検出器と
して光電子増倍管を用いたもの、マイクロチヤン
ネルプレートを用いたもの、半導体受光素子(Si
フオトダイオードなど)を用いたものなどが一般
的である。高密度多素子のX線CT用検出器を実
現するためには、光検出器としては高密度配列が
可能な小形の半導体受光素子を用いることが有効
である。
Scintillation detectors include those that use a photomultiplier tube as a photodetector, those that use a microchannel plate, and those that use a semiconductor photodetector (Si
The most common type is one that uses a photodiode (such as a photodiode). In order to realize a high-density multi-element X-ray CT detector, it is effective to use small semiconductor light-receiving elements that can be arranged in high density as photodetectors.

このような、シンチレータ及び半導体受光素子
を、用いたX線CT用の放射線検出器の例は特開
昭54−58484号公報などに示される。
An example of a radiation detector for X-ray CT using such a scintillator and a semiconductor light-receiving element is shown in Japanese Patent Application Laid-Open No. 58484/1984.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

X線CT用の検出器では、配列する検出素子間
のわずかな感度差が最終的なCT画像上のリング
状アーテイフアクトの原因となることが知られて
いる。したがつて、上記のようなシンチレータ及
びフオトダイオードを用いた検出器では、各々の
シンチレータの光出力、及び各々のフオトダイオ
ードの光検出感度の均一化が必要になる。さら
に、これらが十分に均一化されていても、もしあ
る隣接する2つの検出素子間で光、もしくはX線
の漏れがあれば、その2つの検出素子の見かけ上
の感度が他の検出素子より高くなり、やはりリン
グ状アーテイフアクトが発生する。
In X-ray CT detectors, it is known that slight sensitivity differences between arrayed detection elements cause ring-shaped artifacts on the final CT image. Therefore, in a detector using a scintillator and a photodiode as described above, it is necessary to equalize the optical output of each scintillator and the photodetection sensitivity of each photodiode. Furthermore, even if these are sufficiently uniform, if there is light or X-ray leakage between two adjacent detection elements, the apparent sensitivity of those two detection elements will be higher than that of the other detection elements. It becomes high, and a ring-shaped artifact also occurs.

そこで、本発明の目的は簡単な構成で、検出素
子間の感度差やクロストークを極めて小さくでき
る放射線検出器を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a radiation detector that has a simple configuration and can minimize sensitivity differences and crosstalk between detection elements.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴は、微小間〓をおいて基板上に配
列された複数のフオトダイオードと、該フオダイ
オードの各々の上に配置されたシンチレータとに
より配列する複数の検出素子が形成され、上記基
板には上記検出素子同志の間〓の位置に合わせて
複数の溝が形成され、検出素子間を放射線的、及
び光学的に隔離する仕切板が上記間〓と溝とにわ
たつて挿入された放射線検出器にある。
A feature of the present invention is that a plurality of detection elements are formed by a plurality of photodiodes arranged on a substrate with minute intervals and a scintillator arranged on each of the photodiodes, and A plurality of grooves are formed in accordance with the positions between the detection elements, and a partition plate for radiologically and optically isolating the detection elements is inserted between the gaps and the grooves. It's in the detector.

〔作用〕[Effect]

フオトダイオードの配列面が真に平坦であり、
また仕切板の先端も真に直線状であれば、両者を
密直させることが可能であり、隣接する素子に光
やX線がもれ込むことはない。ところが実際に
は、基板に微小な凹凸やそりがある場合があり、
また周囲温度の変化により基板にそりが生じるこ
ともある。このような場合でも上記の構成によれ
ば、仕切板の先端は基板の溝の中に挿入されてい
るため仕切板の先端部のすき間から隣接する素子
にもれ込む光や散乱X線の量を極めて小さくする
ことができ、クロストークの少ない、したがつて
素子間感度差の少ない多素子放射線検出器が得ら
れる。
The photodiode array surface is truly flat,
Further, if the tip of the partition plate is also truly straight, it is possible to make the two parts close together, and light and X-rays will not leak into adjacent elements. However, in reality, the board may have minute irregularities or warps.
Also, the substrate may warp due to changes in ambient temperature. Even in such a case, according to the above configuration, the tip of the partition plate is inserted into the groove of the substrate, so the amount of light and scattered X-rays that leak into the adjacent element through the gap at the tip of the partition plate is reduced. can be made extremely small, resulting in a multi-element radiation detector with less crosstalk and therefore less difference in sensitivity between elements.

〔実施例〕〔Example〕

本発明の実施例の高密度多素子のシンチレーシ
ヨン放射線検出器における隣接する各検出素子
(小型放射線検出器)間の仕切り方法とは、第2
図に示すような構造となつている。
The partitioning method between adjacent detection elements (small radiation detectors) in the high-density multi-element scintillation radiation detector according to the embodiment of the present invention is the second method.
The structure is as shown in the figure.

シンチレータ結晶6を光学的にカツプリングさ
れたSiフオトダイオード7を所定の間〓で配列し
て設置したプリント基板8と、遮光板5とには細
い溝が形成され、この溝に各検出素子間の間仕切
り、すなわち、光学的及び放射線的な素子間の隔
離を行なうための仕切板9が挿入されている。
A thin groove is formed in the light shielding plate 5 and a printed circuit board 8 on which Si photodiodes 7 optically coupled with a scintillator crystal 6 are arranged at a predetermined distance. A partition, ie a partition plate 9, is inserted for providing isolation between the optical and radiological elements.

遮光板5は放射線の入射口ともなるため放射線
吸収の少ない物質で、その板厚は極力薄いものが
望ましい。しかし、上述のように仕切板9を挿入
し、隣接する検出素子間の光漏れを防ぐため溝を
形成させる場合には最小1mmは必要となる。この
場合放射線の減弱は0.5〜数%となり、放射線検
出の線量利用効率を低下させている。
Since the light shielding plate 5 also serves as an entrance for radiation, it is preferably made of a material that absorbs little radiation, and its thickness is preferably as thin as possible. However, when inserting the partition plate 9 and forming a groove to prevent light leakage between adjacent detection elements as described above, a minimum width of 1 mm is required. In this case, the radiation attenuation is 0.5 to several percent, reducing the dose utilization efficiency for radiation detection.

そこで、次に第3図に示す上記の利用効率の低
下をも解消した別の実施例について更に詳しく説
明する。
Next, another embodiment shown in FIG. 3 that also eliminates the above-mentioned decrease in utilization efficiency will be described in more detail.

第3図の多素子検出器においても隣接する検出
器素子間の隔壁となる仕切板9で仕切られ各々の
検出器は独立している。仕切板9は放射線の吸収
の大きな物質、例えばW、Mo、Taなどの0.05〜
0.2mm厚の金属板が用いられている。仕切板9は
一定の間隔(1mm〜6mm)で溝が設けられた溝付
配線基板8の溝部分に挿入して固定される。溝付
配線基板8は片面に上述の溝を有し、反対側の面
に電気信号配線パターンを有する特殊なプリント
配線基板である。溝付配線基板8には溝と溝の中
間に半導体光検出器7が挿入され信号線は裏面の
電気信号配線パターンに半田で結線され、電気的
かつ機械的に固定される。この半導体光検出器7
の光電面には屈折率の比較的高い物質、例えばSi
グリース、あるいはエポキシ樹脂などを用い、単
結晶のシンチレータ6例えばCsI、CdWO4
ZnWO4を光学的に結合させる。シンチレータ6
の放射線入射方向側にはシンチレータ6から発す
る光を反射させて有効に半導体光検出器7の光電
面に導くための光反射板11が設けらている。こ
の光反射板11は20〜50μm厚のAl薄板で表面が
鏡面としたもの、あるいは高分子樹脂シート(10
〜50μm厚)にAl蒸着を施し鏡面とした反射率の
高い薄板を用いる。光板反射板11はシンチレー
タ6の反対側から空気を多量に含んだ高分子発泡
スチーロールあるいはスポンジなどのクツシヨン
材10を介し、遮光板兼おさえ板(0.2〜0.5mm厚
のAl板)12によつて仕切板9とシンチレータ
6に押し付られる構造となつている。この場合、
仕切板9はシンチレータ6の面より0.5〜1mm程
度とび出した構造とする。
In the multi-element detector shown in FIG. 3 as well, adjacent detector elements are partitioned by partition plates 9 which serve as partition walls, and each detector is independent. The partition plate 9 is made of a material with high radiation absorption, such as W, Mo, Ta, etc. from 0.05 to
A metal plate with a thickness of 0.2 mm is used. The partition plate 9 is inserted and fixed into a grooved portion of a grooved wiring board 8 in which grooves are provided at regular intervals (1 mm to 6 mm). The grooved wiring board 8 is a special printed wiring board that has the above-mentioned grooves on one side and an electrical signal wiring pattern on the opposite side. A semiconductor photodetector 7 is inserted into the grooved wiring board 8 between the grooves, and the signal line is connected to the electrical signal wiring pattern on the back surface with solder to be fixed electrically and mechanically. This semiconductor photodetector 7
The photocathode is made of a material with a relatively high refractive index, such as Si.
Using grease or epoxy resin, single crystal scintillator 6 such as CsI, CdWO 4 ,
Optically bond ZnWO4 . scintillator 6
A light reflecting plate 11 is provided on the radiation incident direction side for reflecting the light emitted from the scintillator 6 and effectively guiding it to the photocathode of the semiconductor photodetector 7. The light reflecting plate 11 is a thin Al plate with a thickness of 20 to 50 μm and has a mirror surface, or a polymer resin sheet (10
A thin plate with a high reflectance (~50 μm thick) is coated with Al evaporation to give it a mirror surface. The light plate reflection plate 11 is formed from the opposite side of the scintillator 6 through a cushion material 10 such as a polymer foamed steel roll or sponge containing a large amount of air, and a light shielding plate/pressing plate 12 (aluminum plate with a thickness of 0.2 to 0.5 mm). It has a structure in which it is pressed against the partition plate 9 and the scintillator 6. in this case,
The partition plate 9 has a structure that protrudes from the surface of the scintillator 6 by about 0.5 to 1 mm.

検出器に入射した放射線は先ず放射線を容易に
透過させ吸収されることの少ないAl材を使用し
た遮光板兼おさえ板12に入射し、透過した後大
部分が空気で放射線を吸収することのない少ない
クツシヨン材10に達し、これを透過後さらに光
反射板11を透過してシンチレータに到達する。
ここまでの放射線の吸収による損失は従来のもの
に比べ少なく、1〜3%以下である。ここで光反
射板11は薄板であるため、シンチレータ6およ
び仕切板9の凹凸に合わせて形が変形され、さら
にクツシヨン材10、遮光板兼おさえ板12によ
つて押しつけられることによりシンチレータ6お
よび仕切板に密着される。これにより光を反射さ
せるとともに隣接する検出器を光学的に隔離する
ことができる。したがつて第2図の実施例の遮光
板5のように隔離のための仕切板が挿入される溝
が不必要となり、薄切り加工が省略できる。シン
チレータに到達した放射線はシンチレータ内で光
に変換され、その光を半導体光検出器7で検出し
電気信号として取り出される。したがつて取り出
される電気信号は入射した放射線の量に比例した
量となる。
The radiation incident on the detector first enters the light shielding plate/suppressing plate 12 made of Al material that allows the radiation to easily pass through and is hardly absorbed.After passing through, most of the radiation is air and the radiation is not absorbed. The light reaches a small cushion material 10, passes through this, further passes through a light reflecting plate 11, and reaches a scintillator.
The loss due to radiation absorption up to this point is less than that of conventional products, and is 1 to 3% or less. Here, since the light reflecting plate 11 is a thin plate, its shape is deformed to match the unevenness of the scintillator 6 and the partition plate 9, and is further pressed by the cushion material 10 and the light shielding plate/pressing plate 12, thereby separating the scintillator 6 and the partition plate. Closely attached to the board. This allows light to be reflected and adjacent detectors to be optically isolated. Therefore, there is no need for a groove into which a partition plate for isolation is inserted, as in the light shielding plate 5 of the embodiment shown in FIG. 2, and slicing can be omitted. The radiation reaching the scintillator is converted into light within the scintillator, and the light is detected by the semiconductor photodetector 7 and extracted as an electrical signal. Therefore, the electrical signal extracted is proportional to the amount of incident radiation.

これらの実施例の共通した構造は、仕切板が単
に基板の表面に押しあてられているのでなく、そ
の先端が基板に設けられた溝に挿入されているこ
とであり、これにより基板のそりなどにより生じ
る仕切板先端部のすき間から光、もしくは散乱X
線が隣接する検出素子に漏れ込んで、このもれ込
みが生じた検出素子の実質感度が上昇し、配列素
子間の感度差が生まれる現象を効果的に防止する
ことができる。
The common structure of these embodiments is that the partition plate is not simply pressed against the surface of the substrate, but its tip is inserted into a groove provided in the substrate, which prevents warping of the substrate. Light or scattering from the gap at the tip of the partition plate caused by
It is possible to effectively prevent a phenomenon in which a line leaks into an adjacent detection element, and the actual sensitivity of the detection element where the leakage occurs increases, resulting in a difference in sensitivity between array elements.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、検出素子間の仕
切板の先端部での光もしくは放射線のもれによる
素子間感度差の発生を極めて少なくすることがで
き、とくにX線CT用の優れた放射線検出器を得
ることができる。
As described above, according to the present invention, it is possible to extremely reduce the occurrence of differences in sensitivity between elements due to leakage of light or radiation at the tip of the partition plate between the detection elements, and it is particularly suitable for use in X-ray CT. A radiation detector can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX線CT装置の一例の概略を示す図、
第2図及び第3図はそれぞれ本発明の実施例のシ
ンチレーシヨン放射線検出器の構造を示す斜視図
である。 2……X線ビーム、6……シンチレータ、7…
…半導体光検出器、8……溝付配線基板、9……
仕切板、10……クツシヨン材、11……光反射
板、12……遮光板兼おさえ板。
Figure 1 is a diagram schematically showing an example of an X-ray CT device;
2 and 3 are perspective views showing the structure of a scintillation radiation detector according to an embodiment of the present invention, respectively. 2...X-ray beam, 6...scintillator, 7...
...Semiconductor photodetector, 8...Grooved wiring board, 9...
Partition plate, 10...Cushion material, 11...Light reflecting plate, 12...Shading plate and holding plate.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の面に電気信号配線パターンを有する基
板の第1の面に対向する第2の面に、微小間〓を
おいて配列された複数のフオトダイオードと、該
フオトダイオードの各々の上に配置されたシンチ
レータとにより配列する複数の検出素子が形成さ
れ、上記基板の第2の面には上記検出素子同志の
間〓の位置に合わせて複数の溝が形成され、上記
検出素子間を光学的、及び放射線的に隔離する仕
切板が上記間〓と上記溝とにわたつて挿入されて
なり、放射線が上記基板の第2の面の側より入射
することを特徴とする放射線検出器。
1 A plurality of photodiodes arranged at minute intervals on a second surface opposite to the first surface of a substrate having an electrical signal wiring pattern on the first surface, and a plurality of photodiodes arranged on each of the photodiodes. A plurality of detection elements are formed by the disposed scintillators, and a plurality of grooves are formed on the second surface of the substrate in alignment with the positions between the detection elements, and an optical path is formed between the detection elements. A radiation detector characterized in that a partition plate is inserted between the space and the groove to isolate the target and radiation, and radiation is incident from the second surface side of the substrate.
JP1231635A 1989-09-08 1989-09-08 Radiation detector Granted JPH02132396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231635A JPH02132396A (en) 1989-09-08 1989-09-08 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231635A JPH02132396A (en) 1989-09-08 1989-09-08 Radiation detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57156748A Division JPS5946877A (en) 1982-09-10 1982-09-10 Radiation detector

Publications (2)

Publication Number Publication Date
JPH02132396A JPH02132396A (en) 1990-05-21
JPH0526154B2 true JPH0526154B2 (en) 1993-04-15

Family

ID=16926596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231635A Granted JPH02132396A (en) 1989-09-08 1989-09-08 Radiation detector

Country Status (1)

Country Link
JP (1) JPH02132396A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396787A (en) * 1977-02-04 1978-08-24 Toshiba Corp Multichannel type semiconductor radiation detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110362U (en) * 1980-01-26 1981-08-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396787A (en) * 1977-02-04 1978-08-24 Toshiba Corp Multichannel type semiconductor radiation detector

Also Published As

Publication number Publication date
JPH02132396A (en) 1990-05-21

Similar Documents

Publication Publication Date Title
US7326933B2 (en) Radiation or neutron detector using fiber optics
US4415808A (en) Scintillation detector array employing zig-zag plates
US5550378A (en) X-ray detector
US4180737A (en) X-ray detector
CA1185019A (en) Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters
JPS6211313B2 (en)
US6452186B1 (en) Detector for the detection for electromagnetic radiation
GB2056671A (en) High resoltuion radiation detector
JP2565278B2 (en) Radiation detector
US7875855B2 (en) Apparatus and method for detecting an image
JPH0511060A (en) Two-dimensional mosaic scintillation detector
US5118934A (en) Fiber fed x-ray/gamma ray imaging apparatus
GB2167279A (en) Radiation imaging
US6671348B2 (en) X-ray image detecting apparatus
US4621194A (en) Radiation detecting apparatus
US4931647A (en) Radiation imaging apparatus
JPH10151129A (en) Detector for tomograph
US5352896A (en) High energy radiation detector including a radiation to light converter having baffle plates extending toward a light detector
JP2851319B2 (en) Radiation detector of radiation measurement device
JPH0526154B2 (en)
GB2144960A (en) X- or gamma -ray detector array
US4598203A (en) Multielement radiation detector
JPH1184013A (en) Radiation detector
JP6808214B2 (en) Radiation measuring device
US20230280481A1 (en) Systems, devices and methods for a pencil beam x-ray scanner