JPH05261394A - Treatment of high-concentration organic waste liquid - Google Patents

Treatment of high-concentration organic waste liquid

Info

Publication number
JPH05261394A
JPH05261394A JP4061720A JP6172092A JPH05261394A JP H05261394 A JPH05261394 A JP H05261394A JP 4061720 A JP4061720 A JP 4061720A JP 6172092 A JP6172092 A JP 6172092A JP H05261394 A JPH05261394 A JP H05261394A
Authority
JP
Japan
Prior art keywords
liquid
treated
treatment
biological filtration
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4061720A
Other languages
Japanese (ja)
Inventor
Yoshiaki Harada
吉明 原田
Yutaka Tsukuda
豊 佃
Noboru Yamada
登 山田
Tadashi Takadoi
忠 高土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Osaka Gas Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4061720A priority Critical patent/JPH05261394A/en
Publication of JPH05261394A publication Critical patent/JPH05261394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To stably treat waste liquid such as excretions without performing advanced waste water treatment and to efficiently obtain treated water high in water quality at low cost by performing biological treatment in pressurization when high-concentration organic waste liquid is oxidized by a wet catalyst and thereafter the residual COD component is biologically treated. CONSTITUTION:Excretions and/or sludge of a septic tank 1 is firstly ground and treated. Then as a result, waste water containing organic substance at high concentration is obtained. The waste water is used as raw liquid and oxidized by a wet catalyst and treated. Successively the obtained reacted liquid is biologically filtered and thereby the residual organic acid low in molecular weight is decomposed and removed. At that time, biological filtration is performed is performed under Further alkali such as calcium hydroxide is added to one part of the treated liquid oxidized by the wet catalyst. The liquid regulated to weak acidity of about pH5 is preferably used for biological filtration. In other words, pH is regulated and the concentration of PO4 phosphorus is regulated for the treated liquid oxidized by the wet catalyst. The water treated by biological filtration is furthermore filtered in accordance with necessity and thereafter discharged to the outside of the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高濃度有機廃液の処理方
法に係り、特にし尿等の高濃度有機廃液を湿式触媒酸化
して処理する方法において、COD及び色度を除去する
ための高度処理プロセスを要することなく、小型反応槽
を用いて、低コストにかつ効率的に処理することができ
る高濃度有機廃液の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating high-concentration organic waste liquor, and more particularly to a method for treating CO2 and chromaticity by high-concentration organic waste liquor such as human waste by wet catalytic oxidation. The present invention relates to a method for treating a high-concentration organic waste liquid which can be efficiently processed at low cost using a small reaction tank without requiring a process.

【0002】[0002]

【従来の技術】従来、し尿液等の高濃度有機廃液を処理
する方法として、し尿の熱処理による湿式酸化プロセス
があり、これはジンプロ法(特開昭50−97160)
として知られている。このプロセスでは、図2に示す如
く、し尿又は浄化槽汚泥を含む原液を破砕後、熱処理し
て湿式酸化し、処理液を固液分離して得られる分離液を
活性汚泥処理した後再び固液分離し、更に活性炭処理又
はオゾン処理等の高度処理を施して最終処理水を得る。
湿式酸化後の固液分離により得られる固形分は脱水処理
され、一方、活性汚泥処理後の固液分離により得られる
固形分は循環再処理される。
2. Description of the Related Art Conventionally, as a method for treating high-concentration organic waste liquid such as human waste fluid, there is a wet oxidation process by heat treatment of human waste, which is a ginpro method (Japanese Patent Laid-Open No. 97160/1975).
Known as. In this process, as shown in FIG. 2, the raw solution containing human waste or septic tank sludge is crushed, heat-treated and wet-oxidized, and the treated liquid is subjected to solid-liquid separation to obtain a separated liquid, which is then subjected to activated sludge treatment and then subjected to solid-liquid separation again. Then, advanced treatment such as activated carbon treatment or ozone treatment is performed to obtain final treated water.
The solid content obtained by the solid-liquid separation after the wet oxidation is dehydrated, while the solid content obtained by the solid-liquid separation after the activated sludge treatment is circulated and reprocessed.

【0003】このような湿式酸化プロセスでは、次のよ
うな欠点があった。 湿式酸化は効率上の問題から酸化分解率が約50%
にとどまるため、活性汚泥処理が不可欠である。しか
も、窒素は、アンモニア態として残留するので、生物的
硝化脱窒法が必要となる。 湿式酸化の熱処理の段階で分解して有機酸となった
有機物は、次の生物処理(活性汚泥処理)で分解される
が、分画分子量約500以上といった高分子着色成分は
除去することができない。このため、生物処理水は約2
500〜5500度程度の色度を示すものとなり、更に
活性炭処理又はオゾン処理等の高度処理を行なってCO
D及び色度の除去を行なう必要がある。 酸化分解廃ガスが強烈な悪臭ガスであるため脱臭処
理を行なう必要があるが、その脱臭は容易でなく、燃焼
脱臭や活性炭吸着等が用いられる。
Such a wet oxidation process has the following drawbacks. Wet oxidation has an oxidative decomposition rate of about 50% due to efficiency problems.
Therefore, activated sludge treatment is essential. Moreover, since nitrogen remains in the form of ammonia, a biological nitrification denitrification method is required. Organic substances that are decomposed to organic acids in the heat treatment stage of wet oxidation are decomposed in the next biological treatment (activated sludge treatment), but high molecular colored components with a molecular weight cutoff of about 500 or more cannot be removed. .. Therefore, the biological treated water is about 2
It exhibits a chromaticity of about 500 to 5500 degrees, and further undergoes advanced treatment such as activated carbon treatment or ozone treatment to reduce CO
It is necessary to remove D and chromaticity. Since the oxidative decomposition waste gas is a strong malodorous gas, it is necessary to perform a deodorizing process, but the deodorizing is not easy, and combustion deodorizing or activated carbon adsorption is used.

【0004】一方、ジンプロ法の他の方法として、熱処
理部分に酸化触媒を併用する湿式触媒酸化プロセスが提
案されている(特開昭55−152591)。
On the other hand, as another method of the Zinpro method, a wet catalytic oxidation process has been proposed in which an oxidation catalyst is used in the heat treatment portion (Japanese Patent Laid-Open No. 55-152591).

【0005】湿式触媒酸化プロセスによれば、 触媒を用いることによって、酸化分解率は従来の5
0%から99.8%程度にまで向上し、被処理液中の有
機物及び全窒素が殆ど分解してしまうため、後続の活性
汚泥処理プロセスが不要となる。 酸化分解廃ガス中にNOx、SOx、CH化合物等
を含まないので、酸化反応プロセスから悪臭を発生させ
ない。従って、脱臭処理が不要となる。 酸化分解率が高く、脱色が十分なされているので、
色度除去のための高度処理を必要としない。 T−N(全窒素)も99%以上除去できる。 等の顕著な効果が奏される。
According to the wet catalytic oxidation process, by using a catalyst, the oxidative decomposition rate is 5
Since it is improved from 0% to about 99.8% and most of the organic substances and total nitrogen in the liquid to be treated are decomposed, the subsequent activated sludge treatment process becomes unnecessary. Since NOx, SOx, CH compounds, etc. are not contained in the oxidative decomposition waste gas, no bad odor is generated from the oxidation reaction process. Therefore, the deodorizing process becomes unnecessary. Since the oxidative decomposition rate is high and decolorization is sufficient,
It does not require advanced processing for chromaticity removal. 99% or more of TN (total nitrogen) can also be removed. And so on.

【0006】しかしながら、上記湿式触媒酸化プロセス
では、反応時間が熱処理工程に入る原液の有機物濃度に
左右され、実際に処理を行なった場合、前記湿式酸化プ
ロセスに比べてコスト面で必ずしも有利とはならないと
いう欠点があった。
However, in the above-mentioned wet catalytic oxidation process, the reaction time depends on the organic matter concentration of the stock solution which enters the heat treatment step, and when the treatment is actually carried out, it is not necessarily advantageous in cost as compared with the wet oxidation process. There was a drawback.

【0007】即ち、湿式触媒酸化プロセスにより、高濃
度に有機物を含有する原液を処理する場合、高水質の処
理水を得るためには、反応時間を相当に長くする必要が
ある。反応時間を十分長くすれば、処理水中の有機物濃
度を極低濃度まで低下させ得るのであるが、反応時間を
長くすることは、直接槽容量、触媒量の増大につなが
り、処理コストの高騰を招く。
That is, in the case of treating a stock solution containing an organic substance at a high concentration by a wet catalytic oxidation process, it is necessary to considerably lengthen the reaction time in order to obtain treated water of high water quality. If the reaction time is made sufficiently long, the concentration of organic substances in the treated water can be reduced to an extremely low concentration.However, making the reaction time longer directly leads to an increase in the tank capacity and the amount of catalyst, which causes a rise in the treatment cost. ..

【0008】上記従来の問題点を解決し、高濃度有機廃
液の湿式触媒酸化プロセスにおいて、安定かつ効率的な
処理を行なうことにより、低コストにて高水質の処理水
を得ることを可能とする高濃度有機廃液の処理方法とし
て、本出願人らは、高濃度有機廃液を湿式触媒酸化した
後、残留するCOD成分を冷却、減圧後、気液分離して
生物濾過することにより除去する高濃度有機廃液の処理
方法を提案した(特開平3−26399)。
By solving the above-mentioned conventional problems and performing stable and efficient treatment in the wet catalytic oxidation process of high-concentration organic waste liquid, it becomes possible to obtain treated water of high quality at low cost. As a method of treating a high-concentration organic waste liquid, the present applicants perform high-concentration organic waste liquid by wet-catalytic oxidation, and then cool and depressurize the remaining COD components, and then gas-liquid separation and biological filtration to remove the high-concentration organic waste liquid. A method for treating organic waste liquid has been proposed (JP-A-3-26399).

【0009】上記特開平3−26399の方法によれ
ば、 湿式触媒酸化の反応時間を大幅に短縮することが可
能とされる。このため、湿式触媒酸化塔の小容量化及び
触媒量の低減が図れる。 T−N,CODCr及び色度が効率的に除去され、後
工程の高度処理が不要となる。 臭気の発生がない。 エネルギー効率が良い。 等の優れた作用効率が奏され、イニシャルコスト、ラン
ニングコストが共に低減される。
According to the method disclosed in JP-A-3-26399, it is possible to significantly reduce the reaction time of wet catalytic oxidation. Therefore, the capacity of the wet catalytic oxidation tower and the amount of catalyst can be reduced. TN, COD Cr, and chromaticity are efficiently removed, and high-level post-treatment is not required. No odor is generated. Energy efficient. Excellent operational efficiency is achieved, and both initial cost and running cost are reduced.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記特
開平3−26399の方法で使用される生物濾過槽の大
きさは、槽下部から供給する酸素源としての空気の溶解
量に影響するため、その小型化が今後の課題として残さ
れていた。
However, the size of the biological filtration tank used in the method of Japanese Patent Laid-Open No. 3-26399 affects the amount of dissolved air as an oxygen source supplied from the lower part of the tank. Miniaturization was left as a future task.

【0011】本発明は上記特開平3−26399の方法
において、酸素の溶解効率を向上させ、生物濾過槽の小
型化を可能とする高濃度有機廃液の処理方法を提供する
ことを目的とする。
An object of the present invention is to provide a method for treating a high-concentration organic waste liquid, which is capable of improving the dissolution efficiency of oxygen and enabling downsizing of a biological filtration tank in the method disclosed in Japanese Patent Laid-Open No. 3-26399.

【0012】[0012]

【課題を解決するための手段】本発明の高濃度有機廃液
の処理方法は、高濃度有機廃液を湿式触媒酸化した後、
残留するCOD成分を生物処理する方法において、該生
物処理を加圧下で行なうことを特徴とする。
The method for treating a high-concentration organic waste liquid according to the present invention comprises:
A method for biologically treating a residual COD component is characterized in that the biological treatment is carried out under pressure.

【0013】以下に本発明を図面を参照して詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0014】図1は本発明の高濃度有機廃液の処理方法
の一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating a high-concentration organic waste liquid according to the present invention.

【0015】本発明においては、し尿及び/又は浄化槽
汚泥等を微破砕処理して得られる高濃度に有機物を含有
する廃水を原液として、これをまず、湿式触媒酸化処理
する。
In the present invention, waste water containing organic matter at a high concentration obtained by finely crushing human waste and / or septic tank sludge is used as a stock solution, which is first subjected to a wet catalytic oxidation process.

【0016】以下、湿式触媒酸化処理について図3を参
照して説明する。図3は本発明の実施に好適な湿式触媒
酸化処理方法の一実施例を示す系統図である。
The wet catalytic oxidation process will be described below with reference to FIG. FIG. 3 is a system diagram showing an embodiment of a wet catalytic oxidation treatment method suitable for carrying out the present invention.

【0017】図3において、原液は、配管11より貯留
槽1に導入された後、ポンプPにより配管12を経て湿
式触媒酸化塔2に導入される。
In FIG. 3, the undiluted solution is introduced into the storage tank 1 through the pipe 11 and then into the wet catalytic oxidation tower 2 through the pipe 12 by the pump P.

【0018】湿式触媒酸化塔2は、高圧容器に後述の触
媒を充填して触媒層2aを形成したものであって、原液
は、この触媒層2aに上向流又は下向流(図3において
は上向流)に通液され、高温高圧下にて酸化処理され
る。即ち、湿式触媒酸化塔2への原液導入用配管12に
は、コンプレッサCを備える大気等の酸素含有ガスの供
給用配管13が接続されており、原液中に空気等の酸素
含有ガスが吹き込まれた後、湿式触媒酸化塔2に導入さ
れ、触媒の存在下、酸化処理される。湿式触媒酸化塔2
の処理水及び処理ガスは、配管14より取り出され、冷
却後、気液分離され(図示せず)又は分離せずに、処理
液は中和槽15にて中和後、加圧生物濾過塔3に供給さ
れる。
The wet catalytic oxidation tower 2 has a catalyst layer 2a formed by filling a high-pressure container with a catalyst to be described later, and the stock solution flows upward or downward in the catalyst layer 2a (see FIG. 3). Is flown upward and is subjected to oxidation treatment under high temperature and high pressure. That is, a pipe 12 for introducing an undiluted solution to the wet catalytic oxidation tower 2 is connected to a pipe 13 for supplying an oxygen-containing gas such as the atmosphere, which is equipped with a compressor C, and an oxygen-containing gas such as air is blown into the undiluted solution. After that, it is introduced into the wet catalytic oxidation tower 2 and subjected to oxidation treatment in the presence of a catalyst. Wet catalytic oxidation tower 2
The treated water and treated gas are taken out from the pipe 14, cooled, gas-liquid separated (not shown) or not separated, and the treated liquid is neutralized in the neutralization tank 15 and then the pressurized biological filtration tower. 3 is supplied.

【0019】本発明において、湿式触媒酸化塔に充填さ
れる触媒の好適なものとしては、鉄、マンガン、コバル
ト、ニッケル、ルテニウム、ロジウム、パラジウム、イ
リジウム、白金、銅、金及びタングステン、並びにこれ
らの酸化物、二塩化ルテニウム、二塩化白金等の塩化
物、硫化ルテニウム、硫化ロジウム等の硫化物など、水
に対し不溶性又は難溶性の化合物等が挙げられ、これら
は1種を単独で或いは2種以上を併用して使用すること
ができる。
In the present invention, preferred catalysts to be packed in the wet catalytic oxidation tower are iron, manganese, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold and tungsten, and these. Oxides, chlorides such as ruthenium dichloride and platinum dichloride, ruthenium sulfide, sulfides such as rhodium sulfide, and other insoluble or sparingly soluble compounds in water are listed. These may be used alone or in combination. The above can be used in combination.

【0020】これら金属又は化合物よりなる触媒は、常
法に従ってチタニア(酸化チタン)、ジルコニア(酸化
ジルコニア)、アルミナ、シリカ、シリカ−アルミナ、
活性炭、或いは、ニッケル、ニッケル−クロム、ニッケ
ル−クロム−アルミニウム、ニッケル−クロム−鉄等の
金属多孔体等の担体に担持して使用するのが好ましく、
その担持量としては、通常、担体重量に対して0.05
〜25%、好ましくは0.5〜3%とするのが適当であ
る。
The catalyst composed of these metals or compounds may be titania (titanium oxide), zirconia (zirconia oxide), alumina, silica, silica-alumina, or the like according to a conventional method.
Activated carbon, or nickel, nickel-chromium, nickel-chromium-aluminum, nickel-chromium-iron is preferably used by being supported on a carrier such as a porous metal body.
The loading amount is usually 0.05 with respect to the weight of the carrier.
It is suitable to be -25%, preferably 0.5-3%.

【0021】触媒形状としては、粒状、ペレット状、円
柱状、破砕片状、ハニカム状又は粉末状等の種々の形態
で使用することができる。
The catalyst may be used in various forms such as granular form, pellet form, columnar form, crushed piece form, honeycomb form or powder form.

【0022】湿式触媒酸化塔における反応温度は、20
0〜300℃、特に250〜300℃とするのが好まし
く、また、反応圧力は、このような高温下でも原液が液
相を保持するような加圧下、例えば40〜95kg/c
2 、特に70〜95kg/cm2 とするのが好まし
い。
The reaction temperature in the wet catalytic oxidation tower is 20
The reaction pressure is preferably 0 to 300 ° C., particularly 250 to 300 ° C., and the reaction pressure is, for example, 40 to 95 kg / c under pressure such that the stock solution retains the liquid phase even under such high temperature.
It is preferably m 2 and particularly preferably 70 to 95 kg / cm 2 .

【0023】また、湿式触媒酸化塔の原液流速はその反
応時間(塔内滞留時間)が40〜90分となるように設
定するのが好ましい。
The stock solution flow rate in the wet catalytic oxidation tower is preferably set so that the reaction time (residence time in the tower) is 40 to 90 minutes.

【0024】酸素含有ガスとしては、空気の他、酸素濃
度21%以上のガスを使用するのが好ましい。21%よ
りも高濃度の酸素を含むガスの場合は吹き込みガス量の
減少が図れる。また、熱損失量が減少すると共に反応速
度が高まり、処理効率を高めることができる。酸素濃度
21%以上のガスとしては選択性酸素透過膜法、空気に
純酸素を混合する方法、プレッシャスイングアドソープ
ション(PSA)法等により得られる酸素富化空気や、
液体酸素を気化させた純酸素等を用いることができる。
As the oxygen-containing gas, it is preferable to use a gas having an oxygen concentration of 21% or more in addition to air. In the case of a gas containing oxygen at a concentration higher than 21%, the amount of blown gas can be reduced. Further, the heat loss amount is decreased and the reaction rate is increased, so that the treatment efficiency can be improved. As a gas having an oxygen concentration of 21% or more, an oxygen-enriched air obtained by a selective oxygen permeable membrane method, a method of mixing pure oxygen with air, a pressure swing adsorption (PSA) method, or the like,
Pure oxygen obtained by vaporizing liquid oxygen can be used.

【0025】原液への酸素含有ガスの吹き込みは、第3
図に示す如く、湿式触媒酸化塔2への原液供給用配管1
2へ供給するほか、湿式触媒酸化塔2へ直接供給して行
なうこともできる。
Blowing the oxygen-containing gas into the stock solution is the third step.
As shown in the figure, a pipe 1 for supplying the undiluted solution to the wet catalytic oxidation tower 2
In addition to supplying to the wet catalytic oxidation tower 2, it may be directly supplied to the wet catalytic oxidation tower 2.

【0026】なお、原液を熱交換器を介して湿式触媒酸
化塔へ供給する場合、酸素含有ガスは熱交換器の前又は
後の原液供給用配管へ供給することができる。
When the stock solution is supplied to the wet catalytic oxidation tower via the heat exchanger, the oxygen-containing gas can be supplied to the stock solution supply pipe before or after the heat exchanger.

【0027】この酸素含有ガスによる供給酸素量は、湿
式触媒酸化塔2へ供給される原液中の有機物量、N量に
対して必要な酸素量よりも多い酸素量となるように設定
すれば良く、一般には、悪臭ガスを含む酸素含有ガスと
原液との気:液流量比(常圧における体積比)は100
〜200:1とするのが好ましい。
The amount of oxygen supplied by the oxygen-containing gas may be set so that the amount of oxygen is larger than the amount of oxygen necessary for the amount of organic matter and N in the stock solution supplied to the wet catalytic oxidation tower 2. In general, the gas: liquid flow ratio (volume ratio at normal pressure) between the oxygen-containing gas containing the malodorous gas and the stock solution is 100.
It is preferably about 200: 1.

【0028】本発明においては、湿式触媒酸化塔からの
処理水と湿式触媒酸化塔への供給原液を熱交換させて熱
回収を行なうことにより、熱消費量の低減を図ることも
可能である。
In the present invention, the heat consumption can be reduced by exchanging heat between the treated water from the wet catalytic oxidation tower and the stock solution supplied to the wet catalytic oxidation tower to recover heat.

【0029】本発明においては、このような湿式触媒酸
化処理におけるCODCrの除去率(分解率)は、95%
以上、特に95〜98%とするのが好ましい。このよう
な湿式触媒酸化処理により95%以上のCODCrをCO
2 ,H2 Oに、また99%以上のT−N,色度を分解す
る。
In the present invention, the COD Cr removal rate (decomposition rate) in such a wet catalytic oxidation treatment is 95%.
Above all, it is particularly preferable to be 95 to 98%. 95% or more of COD Cr is reduced to CO
Decomposes TN and chromaticity of 99% or more into 2 , H 2 O.

【0030】次いで、このような湿式触媒酸化処理によ
り得られる処理液は、生物濾過することにより、残留す
る低分子量有機酸類等を分解除去するが、本発明におい
て、この生物濾過は加圧条件下で行なう。
Then, the treatment liquid obtained by such a wet catalytic oxidation treatment is subjected to biological filtration to decompose and remove the remaining low molecular weight organic acids and the like. In the present invention, this biological filtration is carried out under pressure. Do in.

【0031】好ましくは、生物濾過に際しては、所定の
加圧下で、湿式触媒酸化処理液の一部に水酸化カルシウ
ム、水酸化ナトリウム等のアルカリを添加してpHを5
程度の弱酸性とした液を生物濾過に供するのが望まし
い。湿式触媒酸化処理液にCa(OH)2 などを加えて
pH9以上とし、生成するリン酸カルシウムを固液分離
してから加圧生物濾過に供しても良い。
Preferably, in biological filtration, an alkali such as calcium hydroxide or sodium hydroxide is added to a portion of the wet catalytic oxidation treatment liquid under a predetermined pressure to adjust the pH to 5
It is desirable to use a slightly acidified liquid for biological filtration. It is also possible to add Ca (OH) 2 or the like to the wet catalytic oxidation treatment liquid to adjust the pH to 9 or more, to solid-liquid separate the produced calcium phosphate, and then subject it to pressurized biological filtration.

【0032】湿式触媒酸化処理液又は好ましくは上記p
H調整、PO4 −P濃度調整を行なった湿式触媒酸化処
理液(以下「生物濾過原液」と称する。)の生物濾過
は、例えば図3のようにして行なうのが好ましい。即
ち、生物濾過原液の導入管16及び排出管17と散気管
18を備え、粒状媒体層19及び粒状媒体層を支持する
ための支持材層20を充填した加圧生物濾過塔3を用
い、生物濾過原液を導入管16より加圧生物濾過塔3内
に導入し、散気管18からのガス(空気)と共に好気的
に維持された粒状媒体の層19内を上向流で通過させ
る。この際、生物濾過原液は粒状媒体表面に付着してい
る微生物膜により好気的微生物処理を受けると共に濾過
作用を受け、得られる高水質の処理水は排出管17より
取り出される。
Wet catalytic oxidation treatment liquid or preferably the above p
Biological filtration of the wet catalytic oxidation treatment liquid (hereinafter referred to as "biological filtration stock solution") after H adjustment and PO 4 -P concentration adjustment is preferably performed as shown in FIG. 3, for example. That is, using a pressurized biological filtration tower 3 equipped with an inlet pipe 16 and an outlet pipe 17 for a biological filtration stock solution and an air diffusing pipe, and filled with a granular medium layer 19 and a support material layer 20 for supporting the granular medium layer, The filtered stock solution is introduced into the pressurized biological filtration tower 3 through the introduction pipe 16 and is passed together with the gas (air) from the diffuser pipe 18 through the layer 19 of the aerobically maintained granular medium in an upward flow. At this time, the biological filtration stock solution is subjected to aerobic microbial treatment by the microbial membrane adhering to the surface of the granular medium and is subjected to a filtering action, and the resulting treated water of high quality is taken out from the discharge pipe 17.

【0033】なお、加圧生物濾過塔3に充填する粒状媒
体としては、砂利、砂、活性炭、アンスラサイト、プラ
スチック材等の粒状媒体の1種又は2種以上を用いるこ
とができる。
As the granular medium to be filled in the pressurized biological filtration tower 3, one or more types of granular medium such as gravel, sand, activated carbon, anthracite and plastic material can be used.

【0034】本発明において、このような生物濾過処理
は、圧力50kg/cm2 以下、好ましくは3〜5kg
/cm2 程度の加圧下で、加圧生物濾過塔のCODCr
荷10kg/m3 ・日以下、好ましくは5kg/m3
日程度で行なうのが好ましい。
In the present invention, such a biological filtration treatment is carried out at a pressure of 50 kg / cm 2 or less, preferably 3 to 5 kg.
In / cm 2 about pressure, hereinafter COD Cr load 10 kg / m 3 · day pressurized圧生was filtered tower, 3-preferably 5 kg / m
It is preferable to do it on a daily basis.

【0035】生物濾過により得られる処理水は、必要に
応じて更に濾過処理した後、系外に排出される。
The treated water obtained by biological filtration is optionally filtered and then discharged to the outside of the system.

【0036】なお、このような生物濾過にあたり、生物
濾過塔の余剰の生物汚泥やその後の濾過器で分離された
生物汚泥は、微破砕工程に返送し、し尿等の原液と共に
処理することができる。
In such biological filtration, surplus biological sludge in the biological filtration tower and biological sludge separated by the subsequent filter can be returned to the fine crushing step and treated together with the stock solution such as human waste. ..

【0037】[0037]

【作用】本発明者らは、湿式触媒酸化プロセスにおける
除去特性について検討した結果、次のような知見を得
た。
The present inventors have obtained the following findings as a result of examining the removal characteristics in the wet catalytic oxidation process.

【0038】即ち、湿式触媒酸化プロセスにおいて、処
理後の残留CODCrをできるだけ小さくしようとする
と、汚濁物の除去重量当りの反応時間は、非常に長くな
り効率が悪く不経済である。このようなことから、湿式
触媒酸化プロセスにおいては、湿式触媒酸化によりCO
Crを高度に除去することなく、残留CODCrを残した
状態とするのが有効である。
That is, in the wet catalytic oxidation process, if it is attempted to reduce the residual COD Cr after the treatment as much as possible, the reaction time per removed weight of contaminants becomes very long, which is inefficient and uneconomical. Therefore, in the wet catalytic oxidation process, CO is generated by the wet catalytic oxidation.
Without highly remove D Cr, it is effective to a state of leaving a residual COD Cr.

【0039】ところで、この低濃度に含有される残留C
ODCrは、低分子量の有機酸を主体とするものであり、
従来法の如く、活性汚泥法を適用すると、生物分解性は
比較的良好であるが、バルキングを起こし易く、曝気槽
容量及び沈殿池面積が大きく必要であるなどの不具合が
ある。
By the way, the residual C contained in this low concentration is
OD Cr is mainly composed of a low molecular weight organic acid,
When the activated sludge method is applied as in the conventional method, the biodegradability is relatively good, but there are disadvantages such that bulking easily occurs and the aeration tank capacity and sedimentation basin area are large.

【0040】これに対し、生物濾過を採用することによ
り、効率的な処理を行なうことが可能となり、特に、加
圧下での生物濾過により、酸素の溶解効率が大幅に向上
し、生物濾過槽の小型化を図ることが可能となる。
On the other hand, by adopting the biological filtration, it becomes possible to perform an efficient treatment, and in particular, the biological filtration under pressure significantly improves the dissolution efficiency of oxygen, and It is possible to reduce the size.

【0041】本発明においては、効率的な湿式触媒酸化
を行ない、更に加圧下における生物濾過により高水質の
処理水を得るために、湿式触媒酸化におけるCODCr
去率は95〜98%とするのが好ましい。このような処
理により、 BOD : 5mg/リットル以下 CODCr : 10mg/リットル以下 SS : 10mg/リットル以下 色度 : 30度以下 T−N : 10mg/リットル以下 といった高水質の処理水を、小型の加圧生物濾過槽を用
いる高負荷運転にて得ることが可能とされる。
In the present invention, the COD Cr removal rate in wet catalytic oxidation is set to 95 to 98% in order to perform efficient wet catalytic oxidation and to obtain treated water of high water quality by biological filtration under pressure. Is preferred. By such treatment, BOD: 5 mg / liter or less COD Cr : 10 mg / liter or less SS: 10 mg / liter or less Chromaticity: 30 degrees or less TN: 10 mg / liter or less It can be obtained by high load operation using a pressure biological filtration tank.

【0042】[0042]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0043】実施例1 図1及び図3に示す方法に従って、表1に示す水質のし
尿処理を行なった。湿式触媒酸化処理及び生物濾過処理
条件は下記の通りとした。なお、生物濾過処理は大気圧
(ケースNo.1)又は加圧下(ケースNo.2,3)
の3通りで各々実施した。
Example 1 According to the method shown in FIGS. 1 and 3, the water quality shown in Table 1 was treated as human waste. The conditions of the wet catalytic oxidation treatment and the biological filtration treatment were as follows. In addition, the biological filtration process is under atmospheric pressure (case No. 1) or under pressure (case No. 2 and 3).
Was carried out in three ways.

【0044】湿式触媒酸化処理及び各生物濾過処理によ
り得られた処理水の水質を表1に示す。
Table 1 shows the water quality of the treated water obtained by the wet catalytic oxidation treatment and each biological filtration treatment.

【0045】湿式触媒酸化処理 温度:250℃ 圧力:70kg/cm2 液流速(塔内滞留時間):90分 気/液流量比(体積比):150/1 酸化分解率(対原液):96% 生物濾過処理 ケースNo.1(比較例): 圧力=大気圧 CODCr負荷=2kg/m3 ・日 ケースNo.2(本発明例) 圧力=5kg/cm2 CODCr負荷=2kg/m3 ・日 ケースNo.3(本発明例): 圧力:5kg/cm2 CODCr負荷=5kg/m3 ・日Wet catalytic oxidation treatment Temperature: 250 ° C. Pressure: 70 kg / cm 2 Liquid flow rate (residence time in the column): 90 minutes Gas / liquid flow ratio (volume ratio): 150/1 Oxidative decomposition rate (to stock solution): 96 % Biological filtration treatment Case No. 1 (comparative example): pressure = atmospheric pressure COD Cr load = 2 kg / m 3 · day Case No. 2 (Example of the present invention) Pressure = 5 kg / cm 2 COD Cr load = 2 kg / m 3 · day Case No. 3 (Example of the present invention): Pressure: 5 kg / cm 2 COD Cr load = 5 kg / m 3 · day

【0046】[0046]

【表1】 [Table 1]

【0047】表1より明らかなように、大気圧で行なう
ケースNo.1(特開平3−26399の方法)ではC
ODCr負荷2kg/m3 ・日で良好な結果が得られる
が、加圧下で行なうケースNo.2ではより一層良好な
結果が得られ、従って、CODCr負荷を5kg/m3
日に増やしたケースNo.3でも、ケースNo.1と同
等あるいはそれ以上の結果が得られている。
As is clear from Table 1, Case No. carried out at atmospheric pressure. 1 (method of JP-A-3-26399), C
Good results are obtained with an OD Cr load of 2 kg / m 3 · day, but case No. 2, a better result was obtained, and therefore, the COD Cr load was 5 kg / m 3 ·
Case No. increased on the day Also in case 3, Results equal to or better than 1 were obtained.

【0048】即ち、本発明の方法によれば、加圧生物濾
過塔のCODCr負荷は5kg/m3・日程度、或いはそ
れ以上とすることもでき、小型の加圧生物濾過塔を用い
て高負荷運転で、高水質の処理水を得ることが可能とさ
れる。
That is, according to the method of the present invention, the COD Cr load of the pressurized biological filtration tower can be set to about 5 kg / m 3 · day or more, and a compact pressurized biological filtration tower is used. It is possible to obtain treated water of high water quality under high load operation.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明の高濃度有機
廃液の処理方法によれば、し尿等の高濃度有機物含有廃
液を高度処理を要することなく安定に処理することがで
き、高水質の処理水を低コストで効率的に得ることが可
能とされる。しかも、本発明の方法によれば、装置の小
型化が図れ、工業的に極めて有利である。
As described in detail above, according to the method for treating a high-concentration organic waste liquid of the present invention, a waste liquid containing a high-concentration organic substance such as human waste can be stably treated without requiring advanced treatment, resulting in high water quality. It is possible to efficiently obtain the treated water at low cost. Moreover, according to the method of the present invention, the device can be downsized, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高濃度有機廃液の処理方法の一実施例
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating a high-concentration organic waste liquid according to the present invention.

【図2】従来法を示す系統図である。FIG. 2 is a system diagram showing a conventional method.

【図3】本発明の実施に好適な湿式触媒酸化処理方法の
一例を示す系統図である。
FIG. 3 is a system diagram showing an example of a wet catalytic oxidation treatment method suitable for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 貯留槽 2 湿式触媒酸化塔 3 加圧生物濾過塔 P ポンプ C コンプレッサ 1 Storage Tank 2 Wet Catalytic Oxidation Tower 3 Pressurized Biological Filtration Tower P Pump C Compressor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 登 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 高土居 忠 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noboru Yamada 3-4 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industries Co., Ltd. (72) Inventor Tadashi Takadoi 3-4 Nishi-Shinjuku, Shinjuku-ku, Tokyo No. Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高濃度有機廃液を湿式触媒酸化した後、
残留するCOD成分を生物処理する方法において、該生
物処理を加圧下で行なうことを特徴とする高濃度有機廃
液の処理方法。
1. After wet-type catalytic oxidation of a high-concentration organic waste liquid,
A method for biologically treating residual COD components, wherein the biological treatment is carried out under pressure.
JP4061720A 1992-03-18 1992-03-18 Treatment of high-concentration organic waste liquid Pending JPH05261394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061720A JPH05261394A (en) 1992-03-18 1992-03-18 Treatment of high-concentration organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061720A JPH05261394A (en) 1992-03-18 1992-03-18 Treatment of high-concentration organic waste liquid

Publications (1)

Publication Number Publication Date
JPH05261394A true JPH05261394A (en) 1993-10-12

Family

ID=13179346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061720A Pending JPH05261394A (en) 1992-03-18 1992-03-18 Treatment of high-concentration organic waste liquid

Country Status (1)

Country Link
JP (1) JPH05261394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507990B1 (en) * 2003-07-08 2005-08-17 한국건설기술연구원 Facilities and method for the production of organic acids from sewage sludge by thermal oxidation
US7258793B2 (en) 2004-09-17 2007-08-21 Oki Electric Industry Co., Ltd. Method and apparatus for treating organic liquid waste
CN105601036A (en) * 2015-12-28 2016-05-25 北京北方节能环保有限公司 Method for treating chemical nickel plating waste water on basis of ozonation and biochemical technique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507990B1 (en) * 2003-07-08 2005-08-17 한국건설기술연구원 Facilities and method for the production of organic acids from sewage sludge by thermal oxidation
US7258793B2 (en) 2004-09-17 2007-08-21 Oki Electric Industry Co., Ltd. Method and apparatus for treating organic liquid waste
CN105601036A (en) * 2015-12-28 2016-05-25 北京北方节能环保有限公司 Method for treating chemical nickel plating waste water on basis of ozonation and biochemical technique

Similar Documents

Publication Publication Date Title
US5057220A (en) Process for treating waste water
US4294706A (en) Process for treating waste water
US4141828A (en) Process for treating waste water
US4699720A (en) Process for treating waste water by wet oxidations
JP3500188B2 (en) How to process photographic processing waste liquid
JP2007509740A (en) Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
CA2231193A1 (en) Advanced oxidation of water using catalytic ozonation
JPH04256495A (en) Method for treating water with ozone
JP4703227B2 (en) Wastewater treatment method
JP2000117273A (en) Waste water treatment
JPH05261394A (en) Treatment of high-concentration organic waste liquid
JP2003088892A (en) Organic waste water treatment apparatus
JP2000117272A (en) Waste water treatment
JPH11221584A (en) Pressurized ozone treating system and device
JP2002177981A (en) Waste water treatment method and equipment
JPH0326399A (en) Treatment of concentrated organic waste liquid
KR100297928B1 (en) Method of nitrogen removal in wastewater with photocatalytic technology
JPH0454515B2 (en)
JPS62225294A (en) Biological denitrification device
JP2627953B2 (en) Wastewater treatment method
JPH05277475A (en) Treatment method for water containing organic substance
JPS62132589A (en) Wet oxidation treatment of waste water
JP3496789B2 (en) Organic wastewater treatment method and treatment device
JP2000167570A (en) Treatment of waste water
JPH03296487A (en) Treatment of high concentration organic waste water