JPH03296487A - Treatment of high concentration organic waste water - Google Patents

Treatment of high concentration organic waste water

Info

Publication number
JPH03296487A
JPH03296487A JP2099926A JP9992690A JPH03296487A JP H03296487 A JPH03296487 A JP H03296487A JP 2099926 A JP2099926 A JP 2099926A JP 9992690 A JP9992690 A JP 9992690A JP H03296487 A JPH03296487 A JP H03296487A
Authority
JP
Japan
Prior art keywords
tower
biological
gas
treatment
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099926A
Other languages
Japanese (ja)
Inventor
Yoshiaki Harada
原田 吉明
Suekazu Yamada
山田 末和
Hiroshi Fujiya
啓 冨士谷
Tadashi Takadoi
忠 高土居
Kensuke Matsui
謙介 松井
Toshio Shiibashi
椎橋 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Osaka Gas Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2099926A priority Critical patent/JPH03296487A/en
Publication of JPH03296487A publication Critical patent/JPH03296487A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To stably treat waste water in a low cost by oxidizing high concn. org. waste water in a wet catalytic oxidizing tower and filtering the liquid subjected to oxidative treatment in a filter tower using the exhaust gas from the wet catalytic oxidation tower as washing gas. CONSTITUTION:A biological filtered raw solution is introduced into a biological filter tower from an inflow pipe 19 to be passed through a granular medium bed kept aerobic along with the air from an air diffusion pipe as an ascending current. At this time, the biological filtered raw solution is subjected to not only aerobic microbiological treatment by the bacteria membranes bonded to the surfaces of granular media but also filtering action and the obtained treated water of high quality is taken out of a discharge pipe 20. Further, a biological denitrification tower 8 or the biological filter tower 9 are periodically washed but, as the washing gas thereof, the exhaust gas discharged from a wet catalyst oxidation tower 4 and separated in a gas-liquid separation tank 6 is utilized.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は高濃度有機性廃水の処理方法に係り、特に、し
尿等の高濃度有機性廃水を湿式触媒酸化処理し、更に後
処理として生物濾過等の濾過を行なう組み合せ方法にお
いて、濾過塔の洗浄用ガス源として前記湿式触媒酸化処
理において得られる使用済ガス(排ガス)を用いること
により、濾過塔洗浄用ブロワを不要とする高濃度有機性
廃水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for treating high-concentration organic wastewater, and in particular, wet catalytic oxidation treatment of high-concentration organic wastewater such as human waste, and further biological treatment as post-treatment. In a combination method of performing filtration such as filtration, the spent gas (exhaust gas) obtained in the wet catalytic oxidation treatment is used as a gas source for cleaning the filter tower, thereby eliminating the need for a blower for cleaning the filter tower. Concerning wastewater treatment methods.

[従来の技術及び先行技術] 従来、高濃度有機物含有廃水を処理する方法として、チ
ンマーマン法が知られている。このチンマーマン法は廃
水を高温高圧下に維持するとともに、その廃水中に空気
(酸素)を吹き込み固形有機物を可溶化し、アンモニア
や有機酸に変化させるものである。
[Prior Art and Prior Art] The Zimmerman method has been known as a method for treating wastewater containing high concentration organic matter. The Zimmermann method maintains wastewater under high temperature and pressure, and blows air (oxygen) into the wastewater to solubilize solid organic matter and convert it into ammonia and organic acids.

また、チンマーマン法を改良して処理効率を高めたもの
として、酸化触媒の存在下に湿式酸化を行なう湿式触媒
酸化処理法が提案されている。
In addition, a wet catalytic oxidation treatment method in which wet oxidation is performed in the presence of an oxidation catalyst has been proposed as an improvement on the Zimmermann method to increase treatment efficiency.

この湿式触媒酸化処理法に従って、酸化触媒の存在下に
湿式酸化を行なうと、反応効率が高くNH3−N (ア
ンモニア態窒素)をも効率良く分解することができる。
When wet oxidation is performed in the presence of an oxidation catalyst according to this wet catalytic oxidation treatment method, the reaction efficiency is high and even NH3-N (ammonium nitrogen) can be efficiently decomposed.

そして、窒素成分はN2ガスやNO3−イオンに分解さ
れ、また、有機炭素はCO2ガスに分解される。
Then, the nitrogen component is decomposed into N2 gas and NO3- ions, and the organic carbon is decomposed into CO2 gas.

この方法においては、更に、所定の処理効率を維持する
ために、湿式酸化処理系、特に熱交換器、配管及び酸化
触媒層を定期的に硝酸で洗浄することが行なわれている
In this method, furthermore, in order to maintain a predetermined treatment efficiency, the wet oxidation treatment system, particularly the heat exchanger, piping, and oxidation catalyst layer, are periodically cleaned with nitric acid.

しかしながら、上記湿式触媒酸化プロセスでは、反応時
間が熱処理工程に入る原液の有機物濃度に左右され、実
際に処理を行なった場合、コスト面で必ずしも有利とは
ならないという欠点があった。
However, the above-mentioned wet catalytic oxidation process has the drawback that the reaction time depends on the organic substance concentration of the raw solution entering the heat treatment step, and when the treatment is actually carried out, it is not necessarily advantageous in terms of cost.

即ち、湿式触媒酸化プロセスにより、高濃度に有機物を
含有する原液をIA理する場合、高水質のIA処理水得
るためには、反応時間を相当に長くする必要がある0反
応時間を十分長くすれば、第理水中の有機物濃度を極低
濃度まで低下させ得るのであるが、反応時間を長くする
ことは、直接、槽容量、触媒量の増大につながり、IA
埋ココスト高騰を招く。
That is, when a raw solution containing a high concentration of organic matter is subjected to IA treatment using a wet catalytic oxidation process, the reaction time must be made sufficiently long to obtain high quality IA treated water. For example, it is possible to reduce the concentration of organic matter in the treated water to an extremely low concentration, but prolonging the reaction time directly leads to an increase in the tank capacity and the amount of catalyst.
This leads to a rise in hidden cost.

本出願人らは上記問題点を解決し、高濃度有機性廃水の
湿式触媒酸化プロセスにおいて、安定かつ効率的な処理
を行なうことにより、低コストにて高水質の処理水を得
る処理方法として、湿式触媒酸化した後、残留するCO
D成分を酸素吹き込みの生物濾過により除去する方法を
提案した(特願平1−161367号)。
The present applicants have solved the above problems, and have developed a treatment method for obtaining high-quality treated water at low cost by performing stable and efficient treatment in a wet catalytic oxidation process of highly concentrated organic wastewater. After wet catalytic oxidation, residual CO
We proposed a method for removing component D by biological filtration using oxygen injection (Japanese Patent Application No. 1-161367).

[発明が解決しようとするff!!] 先願の方法に係る濾過塔内の濾材には、生物が付着して
おり、通液を続けるとその付着量が順次増して行き、つ
いには処理性能が悪化し、通水不能になる。このため、
定期的な洗浄処理が必要となる。洗浄頻度は、通水流量
や差圧上昇の程度を検知して行なうが、通常0.5〜7
日/回程度である。洗浄は、空気−水の繰り返し或いは
併用で行なわれ、空気供給のために洗浄専用ブロワが設
置される。この専用ブロワの稼動率は通常10〜30分
10.5〜7日/回と極めて低いにもかかわらず、生物
付着型濾材の洗浄には必要不可欠であり、ブロワ自体の
設備費のみならず、ブロワ騒音防止設備等の付属関連設
備コストがかさみ、上記濾過処理方法のコストを高める
要因となっていた。
[ff that the invention tries to solve! ! ] The filter media in the filtration tower according to the method of the prior application has living organisms attached to it, and as the water continues to flow through the filter, the amount of organisms that adhere to the filter material gradually increases, and eventually the treatment performance deteriorates and water cannot flow through the filter. For this reason,
Regular cleaning is required. The frequency of cleaning is determined by detecting the water flow rate and the degree of increase in differential pressure, but it is usually 0.5 to 7.
About once a day. Cleaning is performed repeatedly or in combination with air and water, and a dedicated cleaning blower is installed to supply air. Although the operating rate of this dedicated blower is usually extremely low at 10 to 30 minutes/10.5 to 7 days, it is indispensable for cleaning biofouling filter media. The cost of associated equipment such as blower noise prevention equipment is high, which is a factor that increases the cost of the above-mentioned filtration treatment method.

本発明は、上記した問題点を解決し、安定かつ低コスト
にて高濃度有機性廃水を処理することができる方法を提
供することを目的とする。
An object of the present invention is to provide a method capable of solving the above problems and treating highly concentrated organic wastewater stably and at low cost.

[課題を解決するための手段] 本発明の高濃度有機廃液の処理方法は、高濃度有機性廃
水を湿式触媒酸化塔で湿式触媒酸化し、酸化処理液を濾
過塔で濾過する方法において、濾過塔の洗浄用ガスとし
て、湿式触媒酸化塔からの排ガスを用いることを特徴と
する。
[Means for Solving the Problems] The method for treating highly concentrated organic wastewater of the present invention includes wet catalytic oxidation of highly concentrated organic wastewater in a wet catalytic oxidation tower, and filtration of the oxidized liquid in a filtration tower. It is characterized in that the exhaust gas from the wet catalytic oxidation tower is used as the cleaning gas for the tower.

[作用] 湿式触媒酸化塔における湿式触媒酸化により、原液中の
有機態窒素、NH3−Nの殆どはN2ガスとなり、液中
には一部N Os −Nとして残る。
[Operation] Due to the wet catalytic oxidation in the wet catalytic oxidation tower, most of the organic nitrogen, NH3-N in the raw solution becomes N2 gas, and a portion remains in the liquid as NOs-N.

有機物もCO2化されるが、操作条件によって、一部低
分子量の有機酸として残留する。
Organic substances are also converted into CO2, but some remain as low molecular weight organic acids depending on the operating conditions.

従って、触媒酸化処理液を気液分離して得られる分離ガ
スはNOx、SOx、CH化合物等を含まないほぼ無臭
のC02% 02、N2を含む脱臭処理が不要な排ガス
である。
Therefore, the separated gas obtained by gas-liquid separation of the catalytic oxidation treated liquid is an almost odorless exhaust gas that does not contain NOx, SOx, CH compounds, etc. and contains CO2%02 and N2, and does not require deodorizing treatment.

このため、この分離ガスはそのまま濾過塔の洗浄用ガス
として有効に利用することができる。
Therefore, this separated gas can be effectively used as it is as a cleaning gas for the filter tower.

なお、このガスは濾過等の下部に導入され、塔内の液を
バブリングする。これにより、付着物が濾材から剥離さ
れる。
Note that this gas is introduced into the lower part of the filter, etc., and bubbles the liquid in the tower. This causes the deposits to be peeled off from the filter medium.

[実施例] 以下に図面を参照して本発明の実施例について詳細に説
明する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の高濃度有機廃液の処理方法の一実施例
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the method for treating highly concentrated organic waste liquid of the present invention.

本発明においては、し尿及び/又は浄化槽汚泥等を微破
砕処理して得られる高濃度に有機物を含有する廃水を原
液として、これをまず、湿式触媒酸化処理する。
In the present invention, wastewater containing a high concentration of organic matter obtained by finely crushing human waste and/or septic tank sludge is used as a stock solution, and is first subjected to a wet catalytic oxidation treatment.

即ち、し尿及び/又は浄化槽汚泥は、配管11より破砕
工程1に送給され、微破砕処理された後、得られる高濃
度有機廃水(原液)は、配管12を経て熱交換器2に送
給され、後述の湿式触媒酸化塔処理水と熱交換して加熱
される。次いで、原液は配管13、可溶化基3、配管1
4を経て湿式触媒酸化塔4に送給される。
That is, human waste and/or septic tank sludge is sent to the crushing step 1 through a pipe 11, and after being subjected to fine crushing treatment, the obtained highly concentrated organic wastewater (undiluted solution) is sent to the heat exchanger 2 through a pipe 12. The water is then heated by exchanging heat with water treated by a wet catalyst oxidation tower, which will be described later. Next, the stock solution is transferred to pipe 13, solubilizing group 3, pipe 1
4 to the wet catalytic oxidation tower 4.

湿式触媒酸化塔4は、高圧容器に後述の触媒を充填して
触媒層を形成したものであって、原液は、この触媒層に
上向流又は下向流に通液され、高温高圧下にて酸化処理
される。即ち、熱交換器2への原液導入用配管12には
、コンプレッサ5を備える大気等の酸素含有ガスの供給
用配管12aが接続されており、原液中に空気等の酸素
含有ガスが吹き込まれた後、熱交換器2、湿式可溶上塔
3を経て湿式触媒酸化塔4に導入され、触媒の存在下、
酸化処理される。
The wet catalytic oxidation tower 4 is a high-pressure container filled with a catalyst to be described later to form a catalyst layer, and the stock solution is passed through the catalyst layer in an upward or downward direction, and is heated under high temperature and high pressure. It is then oxidized. That is, the pipe 12 for introducing the stock solution into the heat exchanger 2 is connected to the pipe 12a for supplying oxygen-containing gas such as atmospheric air, which is equipped with a compressor 5, and oxygen-containing gas such as air is blown into the stock solution. After that, it is introduced into a wet catalytic oxidation tower 4 via a heat exchanger 2 and a wet soluble upper tower 3, and in the presence of a catalyst,
Oxidized.

湿式触媒酸化塔4の処理水及び処理ガスは、配管15よ
り取り出され、熱交換器2にて常温近くまで冷却された
後、配管16により気液分離槽6に送給される。
The treated water and treated gas from the wet catalytic oxidation tower 4 are taken out through a pipe 15, cooled to near room temperature in a heat exchanger 2, and then sent to a gas-liquid separation tank 6 through a pipe 16.

なお、本発明において、湿式触媒酸化塔4に充填される
触媒の好適なものとしては、鉄、マンガン、コバルト、
ニッケル、ルテニウム、ロジウム、パラジウム、イリジ
ウム、白金、銅、金及びタングステン、並びにこれらの
酸化物、二塩化ルテニウム、二塩化白金等の塩化物、硫
化ルテニウム、硫化ロジウム等の硫化物など、水に対し
不溶性又は難溶性の化合物等が挙げられ、これらは1種
を単独で或いは2種以上を併用して使用することができ
る。
In the present invention, preferable catalysts to be filled in the wet catalytic oxidation tower 4 include iron, manganese, cobalt,
Nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold, and tungsten, as well as their oxides, chlorides such as ruthenium dichloride and platinum dichloride, and sulfides such as ruthenium sulfide and rhodium sulfide, etc., are resistant to water. Examples include insoluble or poorly soluble compounds, and these can be used alone or in combination of two or more.

これら金属又は化合物よりなる触媒は、常法に従ってチ
タニア(酸化チタン)、ジルコニア(酸化ジルコニア)
、アルミナ、シリカ、シリカ−アルミナ、活性炭、或い
は、ニッケル、ニッケルークロム、ニッケルークロム−
アルミニウム、ニッケルークロム−鉄等の金属多孔体等
の担体に担持して使用するのが好ましく、その担持量と
しては、通常、担体重量に対して0.05〜25%、好
ましくは0.5〜3%とするのが適当である。
Catalysts made of these metals or compounds can be prepared using conventional methods such as titania (titanium oxide) or zirconia (zirconia oxide).
, alumina, silica, silica-alumina, activated carbon, or nickel, nickel-chromium, nickel-chromium-
It is preferable to use it by supporting it on a carrier such as a metal porous body such as aluminum or nickel-chromium-iron, and the amount supported is usually 0.05 to 25%, preferably 0.5% based on the weight of the carrier. It is appropriate to set it to 3%.

触媒形状としては、粒状、ベレット状、円柱状、破砕片
状、ハニカム状又は粉末状等の種々の形態で使用するこ
とができる。
The catalyst can be used in various forms such as granules, pellets, cylinders, crushed pieces, honeycombs, or powders.

湿式触媒酸化塔4における反応温度は、200〜370
℃、特に200〜300℃とするのが好ましく、また、
反応圧力は、このような高温下でも原液が液相を保持す
るような加圧下、例えば30〜95 k g / cゴ
、特に70〜95k g / cゴとするのが好ましい
The reaction temperature in the wet catalytic oxidation tower 4 is 200 to 370
℃, especially preferably 200 to 300℃, and
The reaction pressure is preferably such that the stock solution maintains a liquid phase even at such high temperatures, for example, 30 to 95 kg/c, particularly 70 to 95 kg/c.

また、湿式触媒酸化塔4の原液流速はその反応時間(塔
内滞留時間)が40〜90分となるように設定するのが
好ましい。
Further, the flow rate of the raw solution in the wet catalytic oxidation tower 4 is preferably set so that the reaction time (residence time in the tower) is 40 to 90 minutes.

酸素含有ガスとしては、空気の他、酸素濃度21%以上
のガスを使用するのが好ましい、21%よりも高濃度の
酸素を含むガスの場合は吹き込みガス量の減少が図れる
。また、熱損失量が減少すると共に反応速度が高まり、
処理効率を高めることができる。酸素濃度21%以上の
ガスとしては選択性酸素透通農法、空気に純酸素を混合
する方法、プレッシャスイングアドソーブション(PS
A)法等により得られる酸素富化空気や、液体酸素を気
化させた純酸素等を用いることができる。
As the oxygen-containing gas, in addition to air, it is preferable to use a gas with an oxygen concentration of 21% or more. In the case of a gas containing oxygen with a concentration higher than 21%, the amount of blown gas can be reduced. In addition, the amount of heat loss decreases and the reaction rate increases,
Processing efficiency can be increased. Gases with an oxygen concentration of 21% or more include selective oxygen permeation farming, a method of mixing pure oxygen with air, and pressure swing adsorption (PS).
Oxygen-enriched air obtained by method A), pure oxygen obtained by vaporizing liquid oxygen, etc. can be used.

原液への酸素含有ガスの吹き込みは、熱交換器2への原
液供給用配管へ供給するほか、湿式可溶上塔3への原液
供給用配管13又は湿式可溶上塔3又は湿式触媒酸化塔
4へ直接供給して行なうこともできる。
The oxygen-containing gas is blown into the stock solution by supplying it to the pipe for supplying the stock solution to the heat exchanger 2, as well as to the pipe for supplying the stock solution to the wet soluble upper column 3, the wet soluble upper column 3, or the wet catalytic oxidation tower. It can also be carried out by directly supplying it to 4.

この酸素含有ガスによる供給酸素量は、湿式触媒酸化@
4へ供給される原液中の有機物量、N量に対して必要な
酸素量よりも多い酸素量となるように設定すれば良く、
一般には、酸素含有ガスと原液との気:液流量比(常圧
における体積比)は50〜500 : tとするのが好
ましい。
The amount of oxygen supplied by this oxygen-containing gas is
The amount of oxygen may be set to be greater than the amount of oxygen required for the amount of organic matter and the amount of N in the stock solution supplied to 4.
Generally, the gas:liquid flow rate ratio (volume ratio at normal pressure) of the oxygen-containing gas and the stock solution is preferably 50 to 500:t.

気液分離槽6で分離された液は、配管17より固液分離
槽7に送給され固液分離される。固液分離槽7において
は、液中の無機性の固形物と有機性のリン酸イオンを除
去するために、リンネ溶化剤を添加して、pHI!整を
行ない固液分離する。
The liquid separated in the gas-liquid separation tank 6 is sent to the solid-liquid separation tank 7 through a pipe 17, where it is separated into solid and liquid. In the solid-liquid separation tank 7, in order to remove inorganic solids and organic phosphate ions from the liquid, a Linnaeus solubilizing agent is added, and pHI! Perform solid-liquid separation.

リンネ溶化剤はカルシウム化合物、アルミニウム化合物
、鉄化合物などがあるが、リン酸イオンをヒドロキシア
パタイトのようなカルシウム塩として不溶化させるとケ
ーキの脱水性が良く、有利である。
Linnaeus solubilizing agents include calcium compounds, aluminum compounds, iron compounds, etc., but it is advantageous to insolubilize phosphate ions in the form of calcium salts such as hydroxyapatite because the cake has good dehydration properties.

固液分離槽7の分離液は、配管18より濾材を充填した
固定床式生物脱窒塔8に送給され、脱窒処理される。こ
こで、N O2−Nの脱窒に必要な有機物は湿式触媒酸
化塔4での残留有機物を利用するが、急激な変動等で有
機物が不足するときはメタノール、エタノール、酢酸等
の有機物を補給しても良い。生物脱窒塔8の濾材は砂、
砂利、アンスラサイト、プラスチック、活性炭、天然石
、人工材等の各種濾材を用いることができる。
The separated liquid in the solid-liquid separation tank 7 is fed through a pipe 18 to a fixed-bed biological denitrification tower 8 filled with a filter medium, where it is subjected to denitrification treatment. Here, residual organic matter in the wet catalytic oxidation tower 4 is used as the organic matter necessary for denitrification of N O2-N, but when organic matter is insufficient due to sudden fluctuations, organic matter such as methanol, ethanol, acetic acid, etc. is supplied. You may do so. The filter material of the biological denitrification tower 8 is sand,
Various filter media such as gravel, anthracite, plastic, activated carbon, natural stone, and artificial materials can be used.

生物脱窒塔8の処理液は、配管19より生物濾過塔9に
送給し、ここで生物濾過することにより、残留する低分
子量有機酸類等を分解除去する。この生物濾過塔9の濾
材としても前記生物脱窒塔8の濾材と同様のものを用い
ることができる。
The treated liquid from the biological denitrification tower 8 is sent through a pipe 19 to the biological filtration tower 9, where it is subjected to biological filtration to decompose and remove residual low molecular weight organic acids and the like. The same filter medium as that of the biological denitrification tower 8 can be used as the filter medium of this biological filter tower 9.

生物脱窒塔8の処理液(以下「生物濾過原液」と称する
。)の生物濾過は、例えば次のようにして行なうのが好
ましい0mち、生物濾過原液の流入管19及び排出管2
0と散気管(図示せず)を備え、粒状媒体層及び粒状媒
体層を支持するための支持材層を充填した生物濾過塔9
を用い、生物濾過原液を流入管19より生物濾過塔9内
に導入し、散気管からのガス(空気)と共に好気的に維
持された粒状媒体の層内を上向流で通過させる。
Biological filtration of the treated liquid in the biological denitrification tower 8 (hereinafter referred to as "biological filtration stock solution") is preferably carried out, for example, as follows:
0 and a diffuser pipe (not shown), and filled with a granular media layer and a support material layer for supporting the granular media layer.
Using this, the biological filtration stock solution is introduced into the biological filtration tower 9 through the inlet pipe 19, and passed in an upward flow through a layer of granular media maintained aerobically together with gas (air) from the aeration pipe.

この際、生物濾過原液は粒状媒体表面に付着している微
生物膜により好気的微生物処理を受けると共に濾過作用
を受け、得られる高水質の処理水は排出管20より取り
出される。
At this time, the biological filtration stock solution is subjected to aerobic microbial treatment and filtration action by the microbial membrane attached to the surface of the granular medium, and the resulting high-quality treated water is taken out from the discharge pipe 20.

本発明において、このような生物濾過処理は、生物濾過
塔のC0DC11負荷10kg/m”−日以下、好まし
くは2kg/ゴ・日程度で行なうのが好ましい。
In the present invention, such biological filtration treatment is preferably carried out at a CODC11 load of the biological filtration tower of 10 kg/m''-day or less, preferably about 2 kg/m''-day.

生物濾過塔9の処理水は配管2oより排出され、必要に
応じて更に濾過処理した後、系外に排出される。
The treated water from the biological filtration tower 9 is discharged from the pipe 2o, and after being further filtered if necessary, is discharged outside the system.

なお、このような生物濾過にあたり、生物濾過塔の余剰
の生物汚泥やその後の濾過器で分離された生物汚泥は、
微破砕工程に返送し、し尿等の原液と共に処理すること
ができる。
In addition, in this kind of biological filtration, the surplus biological sludge in the biological filtration tower and the biological sludge separated in the subsequent filter are
It can be returned to the fine crushing process and processed together with raw solutions such as human waste.

本実施例においては、このような処理にあたり、生物脱
窒塔8や生物濾過塔9を定期的に洗浄するが、その際、
洗浄用ガスとして湿式触媒酸化塔4から排出されて気液
分離槽6で分離された排ガスを利用する。即ち、本実施
例においては、5〜20 k g / c m’径程度
減圧された分離ガス(排ガス)の一部を必要な頻度で生
物脱窒塔8及び生物濾過塔9に、バルブV I−V 3
の開閉により配管21.22及び21.23を経て供給
して洗浄を行なう。
In this embodiment, the biological denitrification tower 8 and the biological filtration tower 9 are periodically cleaned for such treatment, but at that time,
The exhaust gas discharged from the wet catalytic oxidation tower 4 and separated in the gas-liquid separation tank 6 is used as the cleaning gas. That is, in this embodiment, a part of the separated gas (exhaust gas) whose pressure has been reduced to about 5 to 20 kg/cm' in diameter is sent to the biological denitrification tower 8 and the biological filtration tower 9 at the necessary frequency through the valve VI. -V 3
Cleaning is carried out by supplying water through pipes 21.22 and 21.23 by opening and closing.

余剰の排ガスは配管24より排出される。Excess exhaust gas is discharged from the pipe 24.

なお、第1図の例においては濾過塔として固定床式生物
脱窒塔及び生物濾過塔を用いたが、本発明においては、
濾過塔とは濾材を内蔵するすべての濾過塔を指し、砂濾
過塔等の他の濾過塔にも適用することができる。
In the example shown in FIG. 1, a fixed bed biological denitrification tower and a biological filtration tower were used as the filtration tower, but in the present invention,
The term filtration tower refers to all filtration towers that have a built-in filter material, and can also be applied to other filtration towers such as sand filtration towers.

即ち、例えば、生物濾過等の後段に砂濾過塔等の単純濾
過塔を併設する場合においても、その洗浄用ガス源とし
て湿式触媒酸化塔からの排ガスを用いることができる。
That is, for example, even when a simple filtration tower such as a sand filtration tower is installed downstream of biological filtration, the exhaust gas from the wet catalytic oxidation tower can be used as the cleaning gas source.

また、該排ガスは処理液の中和剤として利用することも
できる。
Further, the exhaust gas can also be used as a neutralizing agent for the treatment liquid.

本発明において、濾過塔の洗浄に使用したガスの汚染は
極めて少ないので、そのまま系外に排出することができ
るが、必要に応じて原液貯留関係の排ガス処理設備に導
入しても良く、また、別途、水洗浄、薬液洗浄、活性炭
洗浄等の処理を施してから排出しても良い。
In the present invention, since the gas used for cleaning the filter tower has very little contamination, it can be discharged from the system as it is, but if necessary, it may be introduced into exhaust gas treatment equipment related to stock solution storage. Separately, it may be discharged after being subjected to treatments such as water cleaning, chemical cleaning, activated carbon cleaning, etc.

以下に具体的な実施例を挙げて、本発明をより詳細に説
明する。
The present invention will be explained in more detail with reference to specific examples below.

実施例1 第1図に示す方法に従って、(TOD39000m g
 / 11 )のし尿i埋を行なった。各処理条件は下
記の通りとした。
Example 1 According to the method shown in FIG.
/11) Human waste was buried. Each treatment condition was as follows.

原液(し尿)通水量−31/ h r 湿式可溶上塔: 空塔容量=3u 圧力= 90 k g / cゴ 温度=270℃ 酸素源士空気 湿式触媒酸化塔: 触媒充填量ズ31 圧力= 90 k g / c rn″温度=285℃ 固液分離槽 消石灰添加量:1000mg/f (Caとして) 生物脱窒塔 濾材充填量=4J2 (50mmφx2000mmH) 上向流通水 生物濾過塔 濾材充填量=101 (80mmφxzooommH) 液、空気上向流 空気供給量二通水中、溶存酸素が検出される量 このような処理において、生物脱窒塔及び生物濾過塔の
洗浄を第1表に示す仕様にて行なうにあたり、洗浄用ガ
スとして気液分離槽で分離された湿式触媒酸化塔の排ガ
スを用し)だ。
Raw solution (human waste) water flow rate - 31/hr Wet soluble upper column: Vacant column capacity = 3 u Pressure = 90 kg/c Temperature = 270°C Oxygen source air wet catalytic oxidation column: Catalyst loading amount 31 Pressure = 90 kg/crn'' temperature = 285°C Solid-liquid separation tank slaked lime addition amount: 1000 mg/f (as Ca) Biological denitrification tower filter material filling amount = 4J2 (50 mmφ x 2000 mmH) Upward flow water biological filtration tower filter material filling amount = 101 (80mmφxzooommH) Liquid, air upward flow air supply amount 2 times Amount of dissolved oxygen detected in water In such a process, when cleaning the biological denitrification tower and biological filtration tower according to the specifications shown in Table 1. (The exhaust gas from the wet catalytic oxidation tower, which is separated in a gas-liquid separation tank, is used as the cleaning gas.)

第1表 その結果、洗浄用ブロワを用いることなく、効率的な洗
浄を行なうことができた。
Table 1 As a result, efficient cleaning could be performed without using a cleaning blower.

[発明の効果] 以上詳述した通り、本発明の高濃度有機廃水の処理方法
によれば、高濃度有機廃水を湿式触媒酸化処理した後濾
過塔で濾過する処理方法において ■ 濾過塔の洗浄用ブロワが不要となる。
[Effects of the Invention] As detailed above, according to the method for treating high-concentration organic wastewater of the present invention, in the treatment method in which high-concentration organic wastewater is subjected to wet catalytic oxidation treatment and then filtered in a filtration tower, ■ No need for a blower.

■ ブロワ騒音防止設儂等の付属間連設僅が軽減される
■ Reduces the need to connect accessories such as blower noise prevention.

■ バルブの切り換えのみで容易に洗浄を行なうことが
できる。
■ Cleaning can be easily performed by simply switching the valve.

等の効果が奏され、処理効率の向上、処理コストの低廉
化が図られる。
Effects such as these are achieved, and processing efficiency is improved and processing costs are reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高濃度有機廃水の処理方法の一実施例
を示す系統図である。 1・・・破砕工程、     2・・・熱交換器、3・
・・湿式可溶他塔、  4・・・湿式触媒酸化塔、6・
・・気液分離槽、   8・・・生物脱窒塔、9・・・
生物濾過塔。
FIG. 1 is a system diagram showing an embodiment of the method for treating highly concentrated organic wastewater of the present invention. 1... Crushing process, 2... Heat exchanger, 3...
・・Wet type soluble type tower, 4・・Wet type catalytic oxidation tower, 6・
... Gas-liquid separation tank, 8... Biological denitrification tower, 9...
Biological filtration tower.

Claims (1)

【特許請求の範囲】[Claims] (1)高濃度有機性廃木を湿式触媒酸化塔で湿式触媒酸
化し、酸化処理液を濾過塔で濾過する方法において、濾
過塔の洗浄用ガスとして、湿式触媒酸化塔からの排ガス
を用いることを特徴とする高濃度有機性廃水の処理方法
(1) In a method in which high-concentration organic waste wood is subjected to wet catalytic oxidation in a wet catalytic oxidation tower and the oxidized liquid is filtered in a filtration tower, exhaust gas from the wet catalytic oxidation tower is used as a cleaning gas for the filtration tower. A method for treating highly concentrated organic wastewater.
JP2099926A 1990-04-16 1990-04-16 Treatment of high concentration organic waste water Pending JPH03296487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099926A JPH03296487A (en) 1990-04-16 1990-04-16 Treatment of high concentration organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099926A JPH03296487A (en) 1990-04-16 1990-04-16 Treatment of high concentration organic waste water

Publications (1)

Publication Number Publication Date
JPH03296487A true JPH03296487A (en) 1991-12-27

Family

ID=14260366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099926A Pending JPH03296487A (en) 1990-04-16 1990-04-16 Treatment of high concentration organic waste water

Country Status (1)

Country Link
JP (1) JPH03296487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275836A (en) * 2018-01-26 2018-07-13 鄂尔多斯职业学院 A kind of processing method of chlor-alkali industrial waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275836A (en) * 2018-01-26 2018-07-13 鄂尔多斯职业学院 A kind of processing method of chlor-alkali industrial waste water

Similar Documents

Publication Publication Date Title
JP2628089B2 (en) Wastewater treatment method
JP3358066B2 (en) Wastewater treatment method and plant
JP4907289B2 (en) Wastewater treatment method
JPH04256495A (en) Method for treating water with ozone
JP4703227B2 (en) Wastewater treatment method
JPH11285696A (en) Device and method for sewage treatment
JP2004097856A (en) Equipment and method for waste liquid treatment
JPH03296487A (en) Treatment of high concentration organic waste water
JP2000117272A (en) Waste water treatment
JP2845642B2 (en) Nitrogen removal equipment
JP3433601B2 (en) Wastewater recovery and purification equipment
JPS62132589A (en) Wet oxidation treatment of waste water
JP5078373B2 (en) Wastewater treatment method
JPH04215899A (en) Treatment of waste water ane sludge
JP4986491B2 (en) Wastewater treatment method
JPH0466200A (en) Treatment of waste water and sludge
JPH05261394A (en) Treatment of high-concentration organic waste liquid
CN109796105A (en) A kind of highly difficult organic wastewater treatment process
JPH0326399A (en) Treatment of concentrated organic waste liquid
JPH0454515B2 (en)
JPS62225294A (en) Biological denitrification device
JPH11347574A (en) Method for reacting substance dissolved in liquid with hardly dissolvable gas
JP2000167570A (en) Treatment of waste water
JPH03296500A (en) Treatment of high concentration organic waste water
JPH0311836B2 (en)