JPH0526122U - Filter cloth - Google Patents

Filter cloth

Info

Publication number
JPH0526122U
JPH0526122U JP8379391U JP8379391U JPH0526122U JP H0526122 U JPH0526122 U JP H0526122U JP 8379391 U JP8379391 U JP 8379391U JP 8379391 U JP8379391 U JP 8379391U JP H0526122 U JPH0526122 U JP H0526122U
Authority
JP
Japan
Prior art keywords
filter cloth
melting point
woven fabric
dust
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8379391U
Other languages
Japanese (ja)
Other versions
JP2554259Y2 (en
Inventor
邦夫 俣木
一成 福嶋
Original Assignee
ダイワボウ・クリエイト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイワボウ・クリエイト株式会社 filed Critical ダイワボウ・クリエイト株式会社
Priority to JP1991083793U priority Critical patent/JP2554259Y2/en
Publication of JPH0526122U publication Critical patent/JPH0526122U/en
Application granted granted Critical
Publication of JP2554259Y2 publication Critical patent/JP2554259Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Abstract

(57)【要約】 【目的】 流体用の濾過布において、濾過布の強度を低
下させることなく微粒子の集塵効率およびダストの払い
落し性を向上させ、濾過布の交換周期を延長させる。 【構成】 低融点成分と高融点成分とからなる0.5デ
ニール以下の極細繊維を不織布層(2) として織物基布
(3) の表面に接合して濾過面となし、さらにこの濾過面
側に熱カレンダー加工を施して表面の低融点成分の軟化
により繊維間を接着(8) して表面を平滑化し、通気度が
3〜15ml/cm2/secに抑制されかつ寸法安定性と強度に
優れた濾過布(1) となした。
(57) [Abstract] [Purpose] In a filter cloth for fluid, it improves the dust collection efficiency of fine particles and the dust removal property without lowering the strength of the filter cloth, and prolongs the replacement cycle of the filter cloth. [Structure] A woven fabric base fabric with an ultrafine fiber of 0.5 denier or less composed of a low melting point component and a high melting point component as a nonwoven fabric layer (2)
It is joined to the surface of (3) to form a filtration surface, and the filtration surface side is heat calendered to bond the fibers by softening the low melting point component of the surface (8) to smooth the surface and improve air permeability. Was suppressed to 3 to 15 ml / cm 2 / sec and the filter cloth (1) was excellent in dimensional stability and strength.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、流体中の微細なダストを捕捉集塵するに好適なバグフィルター用の 濾過布に関するものである。 The present invention relates to a filter cloth for a bag filter suitable for capturing and collecting fine dust in a fluid.

【0002】[0002]

【従来の技術】[Prior Art]

バグフィルターのように気体中の微細なダストの捕集に使用されている濾過布 は、高強度と形態安定性のほかに緻密性が要求されるため、濾過布には従来から 重厚な織物や不織布が用いられている。 ところが近年においては種々な分野においてより高精度な集塵性が要求される に至り、従来の濾過布ではこれらの要求に対応することが困難であることから濾 過精度の高い濾過布が要望されている。そしてかかる要望に対応して例えば特開 平3−60712号公報にみられるようにニードルフェルトの表面に平均繊度0 .2デニール以下の極細繊維からなる不織布シートをラミネートした濾過布が提 案されている。 The filter cloth used to collect the fine dust in the gas, such as a bag filter, requires high strength and morphological stability as well as denseness, so that the filter cloth has conventionally been made of heavy fabric or Nonwoven fabric is used. However, in recent years, more accurate dust collection performance has been required in various fields, and it is difficult for conventional filter cloths to meet these requirements, and therefore filter cloths with high filtration accuracy are required. ing. In response to such a demand, for example, as shown in JP-A-3-60712, the average fineness of 0. A filter cloth laminated with a non-woven fabric sheet made of ultrafine fibers of 2 denier or less has been proposed.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながらニードルフェルトの表面に平均繊度0.2デニール以下の極細繊 維からなる不織布シートをラミネートしてなる濾過布は、強力、形態安定性に優 れ、また微粒子の集塵効率も良いという多くの長所を具備しているが、濾過面( ダスト供給側)はラミネート時における加圧により平滑化されているに留まり、 濾過面に付着したダストの払い落とし性において必ずしも満足すべきものではな い。そしてこの払い落とし性の良し悪しは、圧力損失や濾過布の交換周期に影響 を及ぼしすことになる。 本考案は上記課題を改善することを目的としてなされたものである。 However, a filter cloth obtained by laminating a non-woven fabric sheet made of ultrafine fibers with an average fineness of 0.2 denier or less on the surface of the needle felt is excellent in strength and morphological stability, and also has a high dust collection efficiency for fine particles. Although it has advantages, the filtration surface (dust supply side) is only smoothed by the pressure applied during lamination, and it is not always satisfactory in terms of removing dust adhered to the filtration surface. The goodness and badness of the removal property affect the pressure loss and the replacement cycle of the filter cloth. The present invention has been made for the purpose of improving the above problems.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、織物基布の上に接合する不織布の少なくとも一部に低融点極細繊維 と高融点極細繊維を使用し、熱ロールによる濾過面側の平滑化処理時に低融点極 細繊維を軟化させることによって通気度を抑制とともに濾過面の平滑性をより高 め、ダストの払い落とし性を向上させた。 即ち本考案は、目付が200〜800g/m2の織物基布の上に、太さ0.5デニー ル以下の低融点極細繊維と高融点極細繊維とが1:1の割合で混在した極細繊維 材料が少なくとも50重量%以上含有してなる目付60〜250g/m2の不織布を バインダーを介して接合し、その不織布表面に熱カレンダー処理を施して濾過面 の上記低融点成分を軟化し隣接繊維間を接着することによって濾過面を平滑化し 、通気度を3〜15ml/cm2/secに抑制して濾過布となしたものである。The present invention uses low-melting point ultrafine fibers and high-melting point ultrafine fibers in at least a part of the non-woven fabric that is bonded onto the woven base fabric, and softens the low-melting point ultrafine fibers during the smoothing process on the filtration surface side with a heat roll. As a result, the air permeability was suppressed and the smoothness of the filtration surface was further improved, improving the dust removal property. That is, the present invention is an ultrafine fiber in which a low melting point ultrafine fiber having a thickness of 0.5 denier or less and a high melting point ultrafine fiber are mixed in a ratio of 1: 1 on a woven fabric having a basis weight of 200 to 800 g / m 2. A non-woven fabric having a basis weight of 60 to 250 g / m 2 containing at least 50% by weight of the fibrous material is joined with a binder, and the non-woven fabric surface is subjected to thermal calendering to soften the low melting point component of the filtration surface and adjoin it. By bonding the fibers to each other, the filtration surface was made smooth, and the air permeability was suppressed to 3 to 15 ml / cm 2 / sec to give a filter cloth.

【0005】 低融点極細繊維と高融点極細繊維とが1:1の割合で混在した0.5デニール 以下の極細繊維材料は、分割型複合繊維を分割することによって得ることができ る。この分割型複合繊維の構成成分としては、例えばポリエチレン、ポリプロピ レン、ポリ4−メチルペンテン−1、エチレン−ビニルアルコール共重合体、エ チレン−酢酸ビニル共重合体等のポリオレフィン系重合体もしくは共重合体、ポ リエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系重 合体もしくは共重合体、ナイロン6、ナイロン66、ナイロン12等のポリアミ ド系重合体もしくは共重合体等の中から適宜選択することができるが、20℃以 上の融点差を有する2成分以上で構成するとよい。分割型複合繊維の繊維断面形 状も種々考えられ、特に限定するものではないが、放射線状型が好ましい。An ultrafine fiber material of 0.5 denier or less in which low melting ultrafine fibers and high melting ultrafine fibers are mixed in a ratio of 1: 1 can be obtained by dividing a splittable conjugate fiber. Examples of the constituent components of the splittable conjugate fiber include polyolefin-based polymers such as polyethylene, polypropylene, poly-4-methylpentene-1, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymer, or copolymers. It can be appropriately selected from a polymer, a polyester-based polymer or copolymer such as polyethylene terephthalate and polybutylene terephthalate, and a polyamide-based polymer or copolymer such as nylon 6, nylon 66 and nylon 12. It is preferable that it is composed of two or more components having a melting point difference of 20 ° C. or higher. There are various conceivable fiber cross-sectional shapes of the splittable conjugate fiber, and although not particularly limited, a radial type is preferable.

【0006】 濾過面となる不織布層は、上記分割型複合繊維を分割した0.5デニール以下 の極細繊維を50重量%以上、好ましくは85重量%以上含有した目付60〜2 50g/m2の不織布が好ましい。不織布は、上記繊維をカード法、クロスレイヤー 法、ランダムウェバー法、湿式抄造法、乾式または湿熱接着法、ニードルパンチ 法、高圧液流法等により不織布となすが、この時点で分割が不十分のものは更に ニードルパンチ処理、高圧液流処理、超音波処理等の処理を施すが特に高圧液体 流処理が好ましく、条件としては、吐出水圧が30〜200kg/cm2、 好ましくは 80〜150kg/cm2、速度が1〜5m/min で少なくとも表裏各2回処理すること が好ましい。吐出水圧が30kg/cm2未満、速度が5m/min より速いと分割不十分 となり、微粒子集塵効率があがらず、吐出水圧200kg/cm2より大きく、速度が 1m/min 未満であると過剰処理となり、不経済である。また、不織布には50重 量%未満の他繊維を混綿することができるが、他繊維としては綿、麻等の天然繊 維、レーヨン等の半合成繊維、ポリオレフィン、ポリエステル、ポリアミド等の 合成繊維の中から使用用途に応じて適宜選択すればよい。極細繊維が0.5デニ ールを超えたり、上記極細繊維の含有量が50重量%未満であり、また目付が6 0g/m2未満であると微粒子捕捉が期待できない。また逆に上記不織布の目付を2 50g/m2以上となしてもさほど微粒子捕捉効率が上がらず価格が高くつくのみと なる。The non-woven fabric layer serving as a filtration surface has a basis weight of 60 to 250 g / m 2 containing 50% by weight or more, preferably 85% by weight or more, of ultrafine fibers of 0.5 denier or less obtained by dividing the splittable conjugate fiber. Nonwoven fabrics are preferred. The non-woven fabric is formed by the card method, the cross-layer method, the random webber method, the wet papermaking method, the dry or wet heat bonding method, the needle punch method, the high-pressure liquid flow method, etc., but the division is insufficient at this point. The product is further subjected to treatments such as needle punching, high-pressure liquid flow treatment, and ultrasonic treatment, but high-pressure liquid flow treatment is particularly preferable, and the discharge water pressure is 30 to 200 kg / cm 2 , preferably 80 to 150 kg / cm 2 . 2. It is preferable to perform the treatment at a speed of 1 to 5 m / min at least twice for each of the front and back sides. If the discharge water pressure is less than 30 kg / cm 2 and the speed is faster than 5 m / min, the division will be insufficient and the particulate collection efficiency will not be improved. If the discharge water pressure is greater than 200 kg / cm 2 and the speed is less than 1 m / min, it will be over-treated. It is uneconomical. In addition, the non-woven fabric can be mixed with other fibers of less than 50% by weight. As the other fibers, natural fibers such as cotton and hemp, semi-synthetic fibers such as rayon, synthetic fibers such as polyolefin, polyester and polyamide. It may be appropriately selected from among these depending on the intended use. If the ultrafine fibers are more than 0.5 denier, the content of the ultrafine fibers is less than 50% by weight, and the basis weight is less than 60 g / m 2 , fine particles cannot be expected to be captured. On the contrary, even if the basis weight of the above-mentioned non-woven fabric is set to 250 g / m 2 or more, the efficiency of capturing fine particles is not improved so much and the cost is increased.

【0007】 織物基布としては、上記不織布層の低融点成分より融点の高い繊維からなる基 布であればよく、例えば1.5デニール以上の合成繊維スパン糸、マルチフィラ メントで構成され、濾過布として強度と形態を保てる織物が好ましい。織物基布 に使用する合成繊維としては、単一成分繊維あるいは並列型、芯鞘型、分割型、 海島型等の複合繊維等いずれをも用いることができるが、経済的にみて単一成分 繊維が好ましく、例えば上記記載のポリオレフィン、ポリエステル、ポリアミド 等繊維を用いるとよい。織物基布の目付としては、200〜800g/m2、好まし くは400〜600g/m2であり、目付が200g/m2未満であると濾過布としての 形態保持が難しく、800g/m2より大きくなると濾過布として嵩張ったものとな る。The woven base fabric may be a base fabric composed of fibers having a higher melting point than the low melting point component of the non-woven fabric layer, for example, synthetic fiber spun yarn of 1.5 denier or more, multifilament, and filtration. A woven fabric that can maintain strength and form is preferable as the cloth. As the synthetic fiber used for the woven base fabric, a single component fiber or a composite fiber such as a parallel type, a core-sheath type, a split type or a sea-island type can be used. Are preferable, and for example, fibers such as the above-mentioned polyolefin, polyester, polyamide, etc. may be used. The basis weight of the woven base fabric is 200 to 800 g / m 2 , preferably 400 to 600 g / m 2 , and when the basis weight is less than 200 g / m 2, it is difficult to maintain the shape as a filter fabric, and 800 g / m 2 If it is larger than 2 , the filter cloth becomes bulky.

【0008】 本考案の濾過布は、上記で得られた不織布と織物基布との間にホットメルト剤 を介在させて熱カレンダー加工を施し一体化して形成する。この熱カレンダー加 工時に不織布層表面の低融点極細繊維を軟化あるいは部分溶融させて隣接繊維と 接合させ、この軟化あるいは溶融度合いを加減することによって通気度3〜15 ml/cm2/sec、好ましくは5〜10ml/cm2/secに抑制された濾過布とする。低融点 極細繊維の軟化溶融が過度となると表面の樹脂化が顕著となり通気度が3ml/cm2 /sec未満となってダストの払い落とし性はよくなるが使用時における圧力損失が 大きくなり、モーターに負荷がかかり短期間で濾過布交換が必要となる。また不 織布層表面の低融点極細繊維を軟化が不足であると繊維間接着ができず、通気度 が15ml/cm2/secを超えて使用時における圧力損失は小さくなるが、表面の平滑 性が不十分となって不織布面に付着したダストの払い落し性が悪くなって集塵効 率が低下する。The filter cloth of the present invention is formed by intercalating a hot-melting agent between the non-woven fabric obtained above and the woven fabric base, and subjecting it to thermal calendering. During this heat calendering, the low melting ultrafine fibers on the surface of the non-woven fabric layer are softened or partially melted to be bonded to the adjacent fibers, and the softening or melting degree is adjusted to adjust the air permeability to 3 to 15 ml / cm 2 / sec, preferably. Is a filter cloth suppressed to 5 to 10 ml / cm 2 / sec. Low melting point If the softening and melting of the ultrafine fibers becomes excessive, the surface becomes resinous and the air permeability becomes less than 3 ml / cm 2 / sec, and the dust removal property improves, but the pressure loss during use increases and the motor The load is high and it is necessary to replace the filter cloth in a short period of time. If the softening point of the low melting point ultrafine fibers on the surface of the non-woven fabric layer is insufficient, fiber-to-fiber bonding cannot be achieved and the air permeability exceeds 15 ml / cm 2 / sec and the pressure loss during use is small, but the surface is smooth. As the property becomes insufficient, the dust removal efficiency of the dust adhering to the non-woven fabric surface deteriorates, and the dust collection efficiency decreases.

【0009】 不織布層と織物基布とを接合するためのホットメルト剤としては、ポリアミド 系、ポリエステル系、ポリオレフィン系など汎用されている低融点のものを用い るとよく、特に濾過布に使用する素材と同族系のホットメルト剤が好ましい。As the hot-melt agent for joining the non-woven fabric layer and the woven fabric, a commonly used low-melting agent such as polyamide, polyester, or polyolefin may be used, which is particularly used for the filter cloth. A hot-melting agent of the same family as the material is preferable.

【0010】 不織布層と織物基布とを接合する熱カレンダー加工の条件としては、不織布層 の低融点極細繊維の軟化点以上高融点成分の融点以下の範囲にある熱ロールと常 温ロールとの2本のカレンダーロールを用い、不織布層側を熱ロールとして線圧 50〜100kg/cm、速度3〜7m/min でもって処理するとよい。線圧が100kg /cm 以上、速度3m/min 未満であると低融点極細繊維の軟化溶融樹脂化が過度と なり、通気性が低下する。また線圧が50kg/cm より低く、処理速度が7m/min より大きいと不織布層表面の低融点極細繊維の軟化が不十分となって繊維間接着 ができず、ダスト払い落し性のよい平滑な表面となすことができない。。The conditions for the thermal calendaring for joining the non-woven fabric layer and the woven base fabric are as follows: a heat roll and a normal temperature roll in the range from the softening point of the low melting point ultrafine fibers of the non-woven fabric layer to the melting point of the high melting point component It is advisable to use two calender rolls, the non-woven fabric layer side as a heat roll, and a linear pressure of 50 to 100 kg / cm at a speed of 3 to 7 m / min. When the linear pressure is 100 kg / cm or more and the speed is less than 3 m / min, the low melting point ultrafine fibers are excessively softened and made into a molten resin, and the air permeability is lowered. If the linear pressure is lower than 50 kg / cm and the processing speed is higher than 7 m / min, the softening of the low-melting ultrafine fibers on the surface of the non-woven fabric will be insufficient and interfiber bonding will not be possible, resulting in a smooth and dust-dispelling property. Can't do with the surface. .

【0011】[0011]

【作用】[Action]

本考案の濾過布は、織物基布でもって強度と寸法安定性とを保持し、濾過面( ダスト供給側面)を形成しているところの0.5デニール以下の極細繊維を含む 不織布層は微細なダストを捕集する。そして低融点極細繊維の軟化による繊維接 着により形成された平滑な表面は、毛羽を抑制し、微粒子の集塵効率をより向上 させるとともにダスト払い落し性を良くする。 The filter cloth of the present invention has strength and dimensional stability with a woven base cloth, and contains the ultrafine fibers of 0.5 denier or less forming the filter surface (dust supply side). Fine dust. The smooth surface formed by the fiber attachment by softening the low-melting ultrafine fibers suppresses fluff, improves the dust collection efficiency of fine particles, and improves the dust removal property.

【0012】[0012]

【実施例】【Example】

以下本考案の実施例を示している図にもとづいて説明すると、図1において、 (1) は濾過布、(2) は不織布層、そして(3) は織物基布を示している。 不織布層(2) には、図2に示しているように、低融点極細繊維となるA成分( 4)としてナイロン6(融点214℃)、高融点極細繊維となるのB成分(5) とし てポリエチレンテレフタレート(融点256℃)とを放射状に交互に配してなる 分割型複合繊維(16分割型)を紡糸温度290℃で溶融複合押出紡糸し、75 ℃の温水中で3倍延伸後、切断を行い、3デニール、45mmの分割型複合繊維(6 ) のステープルとなし、この分割型複合繊維(6) を100重量%用いてカード機 によりカードウェブとしたのち、水圧150kg/cm2、速度3m/min で表裏各3回 高圧液体流処理して分割型複合繊維(6) をA成分(4) の低融点極細繊維(太さ0 .19デニール)とB成分(5) の高融点極細繊維(太さ0.19デニール)に分 割するとともに繊維間交絡させた目付120g/m2の不織布を使用した。Referring to the drawings showing the embodiments of the present invention, in FIG. 1, (1) shows a filter cloth, (2) shows a non-woven fabric layer, and (3) shows a woven base cloth. As shown in FIG. 2, the non-woven fabric layer (2) has nylon 6 (melting point 214 ° C.) as the A component (4) which becomes the low melting point ultrafine fiber and B component (5) which becomes the high melting point ultrafine fiber. Polyethylene terephthalate (melting point 256 ° C) are alternately arranged in a radial pattern. Splittable conjugate fibers (16 splittables) are melt-composite-spun at a spinning temperature of 290 ° C and stretched 3 times in warm water at 75 ° C. It was cut into 3 denier and 45 mm split-type composite fiber (6) staples. 100% by weight of this split-type composite fiber (6) was used to make a card web with a card machine, and then water pressure was 150 kg / cm 2 , Split-type composite fiber (6) is treated with high-pressure liquid flow at a speed of 3 m / min three times for each of the front and back sides, and the splitting type composite fiber (6) has a low melting point of A component (4) and a high melting point of B component (5) Divide into ultrafine fibers (thickness 0.19 denier) and entangle the fibers Using basis weight 120 g / m 2 nonwoven fabric.

【0013】 織物基布(3) には、綿番手5S のポリエステル紡績糸を三本撚り合わしてなる 撚糸を経糸および緯糸に使用して織成している目付400g/m2の平織物を使用し た。As the woven base fabric (3), a plain weave having a basis weight of 400 g / m 2 is used, which is formed by weaving three twisted polyester spun yarns of cotton count 5 S for warp and weft. It was

【0014】 そして上記不織布層(2) と織物基布(3) の間に目付25g/m2の低融点ポリエス テル系のホットメルト剤(7) を介在させ、不織布層(2) 側を温度195℃の熱ロ ーラ、織物基布(3) 側を常温ローラとしたカレンダーローラを使用し、線圧10 0kg/cm、速度4m/min でカレンダー加工を行い、不織布層(2) の表面側の低融点 極細繊維を軟化させて隣接する繊維間を接着(8) すると共にホットメルト剤(7) を溶融して不織布層(2) と織物基布(3) とを一体化して濾過布(1) となした。こ の濾過布(1) の通気度は6.2ml/cm2/secであった。Then, a low-melting-point polyester hot-melt agent (7) having a basis weight of 25 g / m 2 is interposed between the non-woven fabric layer (2) and the woven base fabric (3), and the non-woven fabric layer (2) side is heated to a temperature of The surface of the non-woven fabric layer (2) was calendered at a linear pressure of 100 kg / cm and a speed of 4 m / min using a 195 ° C heat roller and a calender roller with the woven base fabric (3) side at room temperature. Low melting point on the side Softening the ultrafine fibers to bond adjacent fibers (8) and melting the hot melt agent (7) to integrate the non-woven fabric layer (2) and woven base fabric (3) into a filter cloth (1) The air permeability of this filter cloth (1) was 6.2 ml / cm 2 / sec.

【0015】 [比較例1] 実施例の不織布層の目付を50g/m2とし、実施例と同じ織物基 布を使用して実施例と同じ要領により濾過布となした。この濾過布の通気度は9 .6ml/cm2/secであった。Comparative Example 1 A non-woven fabric layer of Example was made to have a basis weight of 50 g / m 2 , and the same woven fabric fabric as in Example was used to obtain a filter fabric in the same manner as in Example. The air permeability of this filter cloth is 9. It was 6 ml / cm 2 / sec.

【0016】 [比較例2] 不織布層として実施例と同じ目付120g/m2の不織布を使用し 、実施例と同じ織物基布の上に低融点のホットメルト剤を介在させ、熱カレンダ ーローラでもって接着して表面の極細繊維に軟化や溶融のない濾過布となした。 この濾過布の通気度は18ml/cm2/secであった。[Comparative Example 2] A non-woven fabric having the same basis weight of 120 g / m 2 as in the example was used as the non-woven fabric layer, and the hot-melting agent having a low melting point was interposed on the same woven base fabric as in the example, and the heat calender roller was used. The filter cloth was adhered to form a filter cloth without softening or melting of the ultrafine fibers on the surface. The air permeability of this filter cloth was 18 ml / cm 2 / sec.

【0017】 「表1」は実施例および比較例1,2の濾過布の濾過性能評価結果をしめして いる。“Table 1” shows the filtration performance evaluation results of the filter cloths of Examples and Comparative Examples 1 and 2.

【0018】 尚、濾過性能については、次のように評価した。 JIS試験用ダスト10種を使用し、パルス型集塵試験機でテストした。該試 験機の条件は、次の通り設定した。風量2.5m3/min、濾過面積0.66m2、パ ルス間隔2min,0.1sec/1ハ゜ルス 、パルス圧3kg/cm2、試験時間7hr、温度(室温 )とし、加速のためと一次付着層を形成するため濾過布面圧力ΔP=150mmH2 O に達するまでダストを払い落とさずに行った。The filtration performance was evaluated as follows. Ten types of JIS test dust were used and tested with a pulse type dust collector. The conditions of the test machine were set as follows. Air volume 2.5 m 3 / min, filtration area 0.66 m 2 , pulse interval 2 min, 0.1 sec / 1 pulse, pulse pressure 3 kg / cm 2 , test time 7 hr, temperature (room temperature) for acceleration and primary adhesion layer In order to form the film, dust was not removed until the pressure on the surface of the filter cloth reached ΔP = 150 mmH 2 O.

【0019】 ダスト洩れ量(g):濾過布を通過したダスト0.1μmまで捕集可能な濾紙 で捕集した重量。 集塵効率(%):ダスト供給機より入口ダスト濃度A(g/m3)を測定し、濾過 布を通過した風量と上記ダスト洩れ量により出口ダスト濃度B(g/m3)を測定し 、集塵効率(%)=[1−(B/A)]×100の式より算出した。 通気低下度(%):上記試験前の通気度C(ml/cm2/sec)と試験後の通気度D (ml/cm2/sec)とを測定し、通気低下度(%)=[1−(D/C)]×100の 式より算出した。 圧力損失(mmH2O ):上記試験ΔP=150mmH2O 後の最大値。 ダスト払い落し性[ダスト付着量(g/m2)]:上記試験後の濾過布の重量を測 定し試験前の濾過布の重量を差し引いたダスト重量。(ダスト重量が少ない程、 剥離性がよい。)Dust leakage amount (g): Dust that has passed through the filter cloth and is collected by a filter paper capable of collecting up to 0.1 μm of dust. Dust collection efficiency (%): Inlet dust concentration A (g / m 3 ) was measured from the dust feeder, and outlet dust concentration B (g / m 3 ) was measured by the air volume passing through the filter cloth and the above-mentioned dust leakage amount. , Dust collection efficiency (%) = [1- (B / A)] × 100. Permeability decrease (%): The air permeability C (ml / cm 2 / sec) before the above test and the air permeability D (ml / cm 2 / sec) after the test were measured, and the air permeability decrease (%) = [ 1- (D / C)] × 100. Pressure loss (mmH 2 O): the test ΔP = 150mmH 2 maximum value after O. Dust removal property [Amount of dust adhered (g / m 2 )]: Dust weight obtained by measuring the weight of the filter cloth after the above test and subtracting the weight of the filter cloth before the test. (The smaller the dust weight, the better the peelability.)

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【考案の効果】[Effect of the device]

本考案の濾過布(1) は、目付が200〜800g/m2の織物基布(3)の上に、太 さ0.5デニール以下の低融点極細繊維と高融点極細繊維とが1:1の割合で混 在した極細繊維材料を少なくとも50重量%以上含有してなる不織布がバインダ ーを介して接合され、その不織布層(2) 表面に熱カレンダー処理が施されて表面 の上記低融点成分が軟化され隣接繊維間が接着(4) されて平滑化され、通気度が 3〜15ml/cm2/secに抑制されてなるものであるから、不織布層(2) の極細繊維 の交絡緻密性と通気度規制により濾過精度を著しく向上させることができ、しか も濾過面の低融点極細繊維の軟化による繊維間接着(4) により毛羽が抑えられ、 ダスト払い落し性が良好となり、圧力損失が減少する。そして織物基布(3) が濾 過布(1) の寸法安定性と強度を保持しているから苛酷な使用に耐える。したがっ て特にバグフィルター用として好適なものとなる。The filter cloth (1) of the present invention has a low-melting point ultrafine fiber having a thickness of 0.5 denier or less and a high-melting point ultrafine fiber on a woven fabric base cloth (3) having a basis weight of 200 to 800 g / m 2. A non-woven fabric containing at least 50% by weight or more of the ultrafine fiber material mixed in a ratio of 1 is joined through a binder, and the non-woven fabric layer (2) is subjected to a thermal calendering treatment to the above-mentioned low melting point of the surface. Since the component is softened and the adjacent fibers are bonded (4) to make it smooth, and the air permeability is suppressed to 3 to 15 ml / cm 2 / sec, the entangled denseness of the ultrafine fibers of the nonwoven fabric layer (2) The filtration accuracy can be significantly improved by controlling the air permeability and air permeability.However, the fluff is suppressed by the interfiber bonding (4) due to the softening of the low-melting ultrafine fibers on the filtration surface, which improves the dust removal performance and reduces the pressure loss. Is reduced. And since the woven base fabric (3) retains the dimensional stability and strength of the filtration fabric (1), it can withstand severe use. Therefore, it is particularly suitable for bag filters.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の濾過布の断面図である。1 is a cross-sectional view of a filter cloth of the present invention.

【図2】複合繊維の一例を示した繊維断面図である。FIG. 2 is a fiber cross-sectional view showing an example of a composite fiber.

【符号の説明】[Explanation of symbols]

1 濾過布 2 不織布層 3 織物基布 4 A成分 5 B成分 6 分割型複合繊維 7 ホットメルト剤 8 繊維間接着 DESCRIPTION OF SYMBOLS 1 Filter cloth 2 Nonwoven fabric layer 3 Textile base cloth 4 A component 5 B component 6 Splittable composite fiber 7 Hot melt agent 8 Adhesion between fibers

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 目付が200〜800g/m2の織物基布の
上に、太さ0.5デニール以下の低融点極細繊維と高融
点極細繊維とが1:1の割合で混在した極細繊維材料を
少なくとも50重量%以上含有してなる目付60〜25
0g/m2の不織布がバインダーを介して接合され、その不
織布表面に熱カレンダー処理が施されて表面の上記低融
点成分が軟化され隣接繊維間が接着されて平滑化され、
通気度が3〜15ml/cm2/secに抑制されていることを特
徴とする濾過布。
1. An ultrafine fiber in which a low melting point ultrafine fiber having a thickness of 0.5 denier or less and a high melting point ultrafine fiber are mixed at a ratio of 1: 1 on a woven fabric having a basis weight of 200 to 800 g / m 2. Fabric weight 60-25 containing at least 50% by weight of material
A non-woven fabric of 0 g / m 2 is joined via a binder, and the non-woven fabric surface is subjected to a heat calendering treatment to soften the low melting point component on the surface and to bond and smooth adjacent fibers,
A filter cloth having an air permeability of 3 to 15 ml / cm 2 / sec.
JP1991083793U 1991-09-18 1991-09-18 Filter cloth Expired - Fee Related JP2554259Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991083793U JP2554259Y2 (en) 1991-09-18 1991-09-18 Filter cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991083793U JP2554259Y2 (en) 1991-09-18 1991-09-18 Filter cloth

Publications (2)

Publication Number Publication Date
JPH0526122U true JPH0526122U (en) 1993-04-06
JP2554259Y2 JP2554259Y2 (en) 1997-11-17

Family

ID=13812531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991083793U Expired - Fee Related JP2554259Y2 (en) 1991-09-18 1991-09-18 Filter cloth

Country Status (1)

Country Link
JP (1) JP2554259Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361431B1 (en) * 2000-07-14 2002-11-22 주식회사 프리챌홀딩스 Gas filter manufactured with fine yarn
KR100361430B1 (en) * 2000-07-14 2002-11-22 주식회사 프리챌홀딩스 Gas filter manufactured with ultra-fine yarn

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932595A (en) * 1982-08-19 1984-02-22 フジタ工業株式会社 Gas balloon
JPS5944500A (en) * 1982-09-02 1984-03-12 株式会社ハツコ− Dehumidifying system in large diameter pipe
JPH0360712A (en) * 1989-07-28 1991-03-15 Ichikawa Woolen Textile Co Ltd Filter cloth for collecting dust

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932595A (en) * 1982-08-19 1984-02-22 フジタ工業株式会社 Gas balloon
JPS5944500A (en) * 1982-09-02 1984-03-12 株式会社ハツコ− Dehumidifying system in large diameter pipe
JPH0360712A (en) * 1989-07-28 1991-03-15 Ichikawa Woolen Textile Co Ltd Filter cloth for collecting dust

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361431B1 (en) * 2000-07-14 2002-11-22 주식회사 프리챌홀딩스 Gas filter manufactured with fine yarn
KR100361430B1 (en) * 2000-07-14 2002-11-22 주식회사 프리챌홀딩스 Gas filter manufactured with ultra-fine yarn

Also Published As

Publication number Publication date
JP2554259Y2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
CN101674873B (en) Bag house filters and media
EP0960645B1 (en) Vacuum cleaner bag or filter, and method of filtering a gas
JPH1190135A (en) Pleated filter
US7601659B2 (en) Dewatering fabrics
JP5080041B2 (en) Air filter medium, streamer filter using the same, and method for producing air filter medium
WO2008053741A1 (en) Highly rigid air filters
JP3233988B2 (en) Filter cloth and method for producing the same
JP4083951B2 (en) Cylindrical filter
JP4900675B2 (en) Composite nonwoven fabric for air filter
JP3326808B2 (en) filter
JPH0526122U (en) Filter cloth
JP2559872B2 (en) Heat resistant non-woven fabric
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JP3295132B2 (en) Filter media for dust collection
JP4137602B2 (en) Surface filter material with high efficiency and low pressure loss
JP3573861B2 (en) Filter material for air cleaner and method for producing the same
JP2554254Y2 (en) Filter cloth
JP3165979B2 (en) Disposable paper bag filter for vacuum cleaner
JP2014198303A (en) Filter medium for solid-liquid separation
JP2555514Y2 (en) Filter cloth
JPH0143135Y2 (en)
TW200303185A (en) Filter bag for a vacuum cleaner
JP3596150B2 (en) Filter and manufacturing method thereof
JPH04210203A (en) Filter cloth
JP3526320B2 (en) Air conditioning filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees