JPH0526016B2 - - Google Patents

Info

Publication number
JPH0526016B2
JPH0526016B2 JP58215420A JP21542083A JPH0526016B2 JP H0526016 B2 JPH0526016 B2 JP H0526016B2 JP 58215420 A JP58215420 A JP 58215420A JP 21542083 A JP21542083 A JP 21542083A JP H0526016 B2 JPH0526016 B2 JP H0526016B2
Authority
JP
Japan
Prior art keywords
compression ratio
piston
lock
engine
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58215420A
Other languages
Japanese (ja)
Other versions
JPS60108531A (en
Inventor
Akitoshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21542083A priority Critical patent/JPS60108531A/en
Publication of JPS60108531A publication Critical patent/JPS60108531A/en
Publication of JPH0526016B2 publication Critical patent/JPH0526016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length

Description

【発明の詳細な説明】 A 発明の目的 本発明は、車両用内燃機関において、特にその
シリンダに摺動自在に嵌合されるピストンの、ク
ランク軸に対する相対位置の調節により、圧縮比
を変更できるようにした形式の圧縮比可変装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION A. Purpose of the Invention The present invention is an internal combustion engine for a vehicle, in which the compression ratio can be changed by adjusting the relative position of a piston, which is slidably fitted in a cylinder thereof, with respect to a crankshaft. The present invention relates to a variable compression ratio device of the above type.

(2) 従来の技術 従来、内燃機関の圧縮比を可変、例えば機関の
低負荷運転時に圧縮比を高くし、高負荷運転時に
圧縮比を低くするよう切換えて、ノツキング等の
異常燃焼の発生を抑えつつ燃費、出力性能の向上
を図るようにしたものは公知である(例えば特開
昭58−38344号公報参照)。
(2) Conventional technology Conventionally, the compression ratio of an internal combustion engine is varied, for example, the compression ratio is increased when the engine is operating at low load, and the compression ratio is lowered when the engine is operated at high load, thereby preventing the occurrence of abnormal combustion such as knocking. A device that aims to improve fuel consumption and output performance while reducing fuel consumption is known (see, for example, Japanese Patent Laid-Open No. 58-38344).

(3) 発明が解決しようとする課題 ところが上記従来公知のものでは、ピストンを
高圧縮比位置および低圧縮比位置にそれぞれ固縛
するための一対のロツクピン孔と、その両ピン孔
の何れにも嵌入し得る共通のロツクピンとでロツ
ク装置が構成され、圧縮比を切換える際には、先
ずロツク装置を作動解除してピストンとピストン
ピンとが慣性で高圧縮比位置と低圧縮比位置との
間を自由に動き得る状態としておき、この状態で
両者が切換えようとする圧縮比位置まで来たとき
を見計らつて瞬時にロツクピンを油圧で作動させ
るようにしている。
(3) Problems to be Solved by the Invention However, in the above-mentioned conventionally known pistons, there is a pair of lock pin holes for locking the piston in the high compression ratio position and the low compression ratio position, and neither of the pin holes is connected to the lock pin holes. A locking device is made up of a common locking pin that can be fitted into the piston, and when switching the compression ratio, the locking device is first deactivated and the piston and piston pin move between the high compression ratio position and the low compression ratio position due to inertia. The lock pin is left in a state where it can move freely, and when both of them reach the desired compression ratio position, the lock pin is hydraulically actuated instantaneously.

ところが上記共通のロツクピンが高圧縮比側の
ロツクピン孔に係合し得るタイミングは、内燃機
関の1サイクル中、排気行程の終わりの極短期間
だけであつて、低圧縮比側のロツクピン孔に係合
し得るタイミングに比べて非常に短いので、ロツ
クピンを高圧縮比側のロツクピン孔に係合させよ
うとする場合に、その該ロツクピンに加えるべき
作動油圧の導入タイミングを高精度に制御する必
要があつてそれだけコストが嵩み、またその導入
タイミングが僅かでもずれる(このずれは、機関
が高速運転されるほど生じ易くなる)とロツクピ
ンを高圧縮比側のロツクピン孔にすぐには係合さ
せ得ないばかりか、低圧縮比側のロツクピン孔に
誤つて係合させてしまう虞れもあり、そのため機
関の運転状態に応じて圧縮比を迅速的確には切換
えることができなくなり、燃焼が良好な運転領域
がそれだけ狭められる等の諸問題がある。
However, the timing at which the common lock pin can engage with the lock pin hole on the high compression ratio side is only for a very short period at the end of the exhaust stroke during one cycle of an internal combustion engine, and it cannot engage with the lock pin hole on the low compression ratio side. Since the timing is very short compared to the timing when the lock pin can be engaged with the lock pin hole on the high compression ratio side, it is necessary to control the introduction timing of the hydraulic pressure to be applied to the lock pin with high precision. If the engine is operated at high speed, the cost will increase, and if the timing of introduction is even slightly different (this deviation becomes more likely to occur as the engine is operated at higher speeds), the lock pin cannot be immediately engaged with the lock pin hole on the high compression ratio side. Not only that, but there is also the risk of accidentally engaging the lock pin hole on the low compression ratio side, making it impossible to quickly and accurately switch the compression ratio depending on the operating condition of the engine. There are various problems such as the area being narrowed accordingly.

本願発明は上記に鑑み提案されたもので、ピス
トンを高圧縮比位置に固縛する高圧縮比専用のロ
ツク装置と、同ピストンを低圧縮比位置に固縛す
る低圧縮比専用のロツク装置とを互いに独立して
設けて、その両ロツク装置を機関運転状態に応じ
て選択的に作動させることにより、従来装置の上
記問題を解決できるようにし、しかも上記高圧縮
比位置と低圧縮比位置との切換えを常に円滑的確
に行うことができる、車両用内燃機関における圧
縮比可変装置を提供することを目的とする。
The present invention was proposed in view of the above, and includes a lock device exclusively for high compression ratios that locks the piston in a high compression ratio position, and a lock device exclusively for low compression ratios that locks the piston in a low compression ratio position. By providing the two locking devices independently from each other and selectively operating both locking devices according to the engine operating state, the above-mentioned problems of the conventional device can be solved. An object of the present invention is to provide a variable compression ratio device for a vehicle internal combustion engine that can always smoothly and accurately switch the compression ratio.

B 発明の構成 (1) 課題を解決するための手段 上記目的を達成するために本発明は、シリンダ
に摺動自在に嵌合されるピストンの、クランク軸
に対する相対位置の調節により、圧縮比を変更で
きるようにした、車両用内燃機関における圧縮比
可変装置において、作動時には前記ピストンを低
圧縮比位置に固縛する第1ロツク装置と、この第
1ロツク装置から独立して構成され作動時には前
記ピストンを高圧縮比位置に固縛する第2ロツク
装置と、それら第1及び第2ロツク装置に接続さ
れ、機関回転数が第1設定値よりも低く、且つ該
第1設定値より低くアイドル回転数よりは高い第
2設定値よりも高い時にだけ前記第1及び第2ロ
ツク装置を機関運転状態に応じて選択的に作動さ
せ、また機関回転数が前記第2設定値よりも低い
時には前記第1ロツク装置だけを作動させる制御
装置とを備えることを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems In order to achieve the above object, the present invention improves the compression ratio by adjusting the relative position of the piston, which is slidably fitted into the cylinder, with respect to the crankshaft. The variable compression ratio device for a vehicle internal combustion engine is configured to include a first lock device that locks the piston at a low compression ratio position when activated, and a first lock device that is independent of this first lock device and that locks the piston at a low compression ratio position when activated. a second locking device that locks the piston at a high compression ratio position; and a second locking device that is connected to the first and second locking devices, and that is connected to the first and second locking devices so that the engine speed is lower than the first set value and the engine is at idle speed lower than the first set value. The first and second locking devices are selectively actuated depending on the engine operating condition only when the engine speed is higher than a second set value, and when the engine speed is lower than the second set value, the first and second locking devices are selectively activated. The invention is characterized in that it includes a control device that operates only one lock device.

(2) 作用 ピストンを高圧縮比位置にロツクし得る高圧縮
比専用のロツク装置と、同ピストンを低圧縮比位
置にロツクし得る低圧縮比専用のロツク装置とを
互いに独立して設け、その両ロツク装置が機関運
転状態に応じて選択的に作動させるようにしたか
ら、上記圧縮比位置を切換える際には、その切換
えようとする圧縮比に対応したロツク装置を作動
状態に、またその他方のロツク装置を非作動状態
に単に保持するだけで、ロツク切換えを迅速的確
に行わせることができ、このため、前記従来装置
の如く切換えを誤まる虞れはなくなる。
(2) Effect A locking device exclusively for high compression ratios capable of locking the piston at a high compression ratio position and a locking device exclusively for low compression ratios capable of locking the same piston at a low compression ratio position are provided independently from each other. Since both lock devices are configured to operate selectively depending on the engine operating condition, when switching the compression ratio position, the lock device corresponding to the compression ratio to be switched is activated, and the other lock devices are activated. By simply holding the locking device in an inoperative state, lock switching can be effected quickly and accurately, thereby eliminating the risk of erroneous switching as in the prior art devices.

また特に斯かる高圧縮比位置と低圧縮比位置と
の切換作動は、限られた上記所定回転領域だけで
可能であるため、その切換作動を常に円滑且つ的
確に行わせることができる。また特に機関回転数
が前記第2設定値よりも低く、アクセルの僅かな
動きによつても吸気負圧変動が大きいアイドル回
転数ないしはその近傍領域では、ピストンを上記
低圧縮比位置にホールドして前記切換作動を制限
することができるため、負圧変動に比べ圧縮比切
換の応答性が悪いことに起因した不都合(例えば
ドライバビリテイや機関性能の悪化)の発生は回
避される。
In particular, since the switching operation between the high compression ratio position and the low compression ratio position is possible only in the limited predetermined rotation range, the switching operation can always be performed smoothly and accurately. In addition, especially when the engine speed is lower than the second set value and the intake negative pressure fluctuates greatly even with the slightest movement of the accelerator, at or near the idle speed, the piston is held at the low compression ratio position. Since the switching operation can be restricted, problems (for example, deterioration of drivability and engine performance) caused by poor responsiveness of compression ratio switching compared to negative pressure fluctuations can be avoided.

(3) 実施例 以下、図面により本発明の実施例について説明
する。
(3) Examples Examples of the present invention will be described below with reference to the drawings.

第1,2A,2B図には、機関が低圧縮比にあ
り圧縮終りの状態が示される。シリンダ1に摺動
自在に嵌合されるピストン2には、その直径方向
に対をなす左、右ピンボス3,4が形成され、そ
れらのピンボス3,4には、ピストンピンPがス
リーブ5,6を介して回転自在に横架される。前
記ピストンピンPは両端の左、右ジヤーナル部
7,8と、中央のクランク部9とよりなり、クラ
ンク部の中心O2は前記左、右ジヤーナル部7,
8の中心O1に対して偏心量eを以て偏心してい
る。
1, 2A, and 2B show the engine at a low compression ratio and at the end of compression. A piston 2 that is slidably fitted into a cylinder 1 is formed with left and right pin bosses 3 and 4 that form a pair in the diametrical direction. It is rotatably suspended horizontally via 6. The piston pin P consists of left and right journal parts 7, 8 at both ends and a crank part 9 in the center, and the center O2 of the crank part is located between the left and right journal parts 7, 8.
It is eccentric with respect to the center O 1 of 8 by an eccentric amount e.

一方のジヤーナル部の端部には、円板上のフラ
ンジ部10が一体に形成され、このフランジ部1
0は前記一方のピンボスの外端面に形成した環状
凹部11に収容される。第1図に示すように前記
フランジ部10には、その上、下に、高圧縮比側
ロツクピン孔12と低圧縮比側ロツクピン孔13
とが穿設され、前記ロツクピン孔13には後述す
る第1ロツク装置L1のロツクピン201が、また
前記ロツクピン孔12には後述する第2ロツク装
置L2のロツクピン202(第3,4A図)がそれぞ
れ抜差可能に嵌入されるようになつている。
A disk-like flange portion 10 is integrally formed at the end of one journal portion, and this flange portion 1
0 is housed in an annular recess 11 formed on the outer end surface of the one pin boss. As shown in FIG. 1, the flange portion 10 has a high compression ratio side lock pin hole 12 and a low compression ratio side lock pin hole 13 on the top and bottom.
The lock pin hole 13 is provided with a lock pin 20 1 of a first lock device L 1 (described later), and the lock pin hole 12 is provided with a lock pin 20 2 (third and fourth A) of a second lock device L 2 (described later). (Fig.) are fitted in such a way that they can be inserted and removed.

ピストンピンPのクランク部9には、コンロツ
ド14の、2つ割り小端部14aが回転自在に連
結され、また該コンロツド14の2つ割り大端部
14bはクランク軸15のクランクピン15aに
回転自在に連結される。
A halved small end 14a of a connecting rod 14 is rotatably connected to the crank portion 9 of the piston pin P, and a halved large end 14b of the connecting rod 14 is rotatably connected to a crank pin 15a of a crankshaft 15. Can be freely connected.

ピストン2とピストンピンP間には、第2A,
2B図に示すようにピストンピンPのクランク部
9がその左、右ジヤーナル部7,8に対して上向
き位置、すなわちピストンピンPに対しピストン
2を低圧縮比位置にロツクし得る第1ロツク装置
L1と、第4A,4B図に示すようにピストンピ
ンPのクランク部9がその左,右ジヤーナル部
7,8に対して下向き位置、即ちピストンピンP
に対しピストン2を高圧縮比位置にロツクし得る
第2ロツク装置L2とが、シリンダ1の縦中心線
l−lに対して対称的に設けられている。
Between the piston 2 and the piston pin P, a second A,
As shown in FIG. 2B, a first locking device is provided that can lock the crank portion 9 of the piston pin P in an upward position with respect to its left and right journal portions 7 and 8, that is, the piston 2 with respect to the piston pin P in a low compression ratio position.
L1 , and as shown in FIGS. 4A and 4B, the crank part 9 of the piston pin P is in a downward position relative to the left and right journal parts 7 and 8, that is, the piston pin P
On the other hand, a second locking device L2 capable of locking the piston 2 in the high compression ratio position is provided symmetrically with respect to the longitudinal center line l--l of the cylinder 1.

次に第1,2A,2B図を参照して前記第1ロ
ツク装置L1の構造を説明すると、ピストン2の
一方のピンボス4には、ピストンピンPと平行な
シリンダ孔171が形成され、このシリンダ171
内には、ロツクピストン181が摺動自在に嵌合
され、このロツクピストン181によつて油圧室
191が画成される。前記ロツクピストン181
は、ピンボス4の外端面より出没し得るロツクピ
ン201が一体に設けられ、このロツクピン201
は前記油圧室191内の油圧を受けて突出し、ま
たシリンダ171内に設けた戻しばね211によつ
てピンボス4内に没入される。
Next, the structure of the first locking device L1 will be explained with reference to FIGS. 1, 2A, and 2B. One pin boss 4 of the piston 2 has a cylinder hole 171 parallel to the piston pin P. This cylinder 17 1
A lock piston 18 1 is slidably fitted therein, and a hydraulic chamber 19 1 is defined by the lock piston 18 1 . The lock piston 18 1 is integrally provided with a lock pin 20 1 that can protrude and retract from the outer end surface of the pin boss 4.
is projected in response to the hydraulic pressure in the hydraulic chamber 19 1 and retracted into the pin boss 4 by a return spring 21 1 provided in the cylinder 17 1 .

前記シリンダ171の油圧室191は、ピストン
ピンPに形成した通油路221を介してコンロツ
ド14に形成した給油路231に連通され、さら
にこの給油路231はクランク軸15に形成した
分配油路241に連通される。分配油路241は、
後に詳述するように切換弁V、およびレギユレタ
Rを介してオイルポンプPuに連通される。
The hydraulic chamber 19 1 of the cylinder 17 1 communicates with an oil supply passage 23 1 formed in the connecting rod 14 via an oil passage 22 1 formed in the piston pin P, and furthermore, this oil supply passage 23 1 is formed in the crankshaft 15. The distribution oil passage 24 1 is connected to the distribution oil passage 24 1 . The distribution oil passage 24 1 is
It is communicated with the oil pump Pu via a switching valve V and a regulator R, as will be described in detail later.

前記通油路221は第1図に示すようにピスト
ンピンPの横断面方向からみて二股状をなしてお
り、その両開口端が前記油圧室191および給油
路231に連通するようになつている。そして前
記切換弁Vが低圧縮比側に切換えられると、オイ
ルポンプPuからの圧力油は分配油路241、給油
路231および通油路221を通つてシリンダ17
の油圧室191に供給される。
As shown in FIG. 1, the oil passage 22 1 has a bifurcated shape when viewed from the cross-sectional direction of the piston pin P, and both opening ends thereof communicate with the hydraulic chamber 19 1 and the oil supply passage 23 1 . It's summery. When the switching valve V is switched to the low compression ratio side, the pressure oil from the oil pump Pu passes through the distribution oil passage 24 1 , the oil supply passage 23 1 and the oil passage 22 1 to the cylinder 17.
1 hydraulic chamber 19 1 .

次に第3,4A,4B図を参照して前記高圧縮
比側の前記第2ロツク装置L2の構成を説明する
と、これは前記低圧縮比側の前記第1ロツク装置
L1から独立して構成され、しかも該装置L1と同
一の構造を備え且つシリンダ1の縦中心線l−l
に対して対称的に設けられる。即ち、一方のピン
ボス4にはシリンダ172が形成され、このシリ
ンダ172内にロツクピストン182が摺動自在に
嵌合され、このロツクピストン182で油圧室1
2が画成される。ロツクピストン182にはロツ
クピン202が一体に設けられ、このロツクピン
202は油圧室192内の油圧をうけて突出し、ま
たシリンダ172内に設けた戻しばね212によつ
てピンボス4内に没入される。
Next, the configuration of the second lock device L2 on the high compression ratio side will be explained with reference to FIGS. 3, 4A, and 4B. This is similar to the first lock device L2 on the low compression ratio side.
It is constructed independently from L 1 and has the same structure as L 1 , and the longitudinal centerline l-l of cylinder 1.
symmetrically provided. That is, one pin boss 4 is formed with a cylinder 17 2 , and a lock piston 18 2 is slidably fitted into this cylinder 17 2 , and this lock piston 18 2 opens the hydraulic chamber 1 .
9 2 is defined. A lock pin 20 2 is integrally provided with the lock piston 18 2 , and this lock pin 20 2 protrudes in response to the hydraulic pressure in the hydraulic chamber 19 2 , and is moved into the pin boss 4 by a return spring 21 2 provided in the cylinder 17 2 be immersed in.

前記シリンダ172の油圧室192は、ピストン
ピンPに形成した通油路222を介してコンロツ
ド14に形成した給油路232に連通され、さら
にこの給油路232はクランク軸15に形成した
分配油路242を通り切換弁Vを介してオイルポ
ンプPuに連通される。ピストンピンPが高圧縮
比位置に回動したとき、通油路222は、油圧室
192および給油路232に連通される。そして切
換弁Vが高圧縮比側に切換えられると、オイルポ
ンプPuからの圧力油は分配油路242、給油路2
2および通油路222を通つてシリンダ172
油圧室192に供給される。
The hydraulic chamber 19 2 of the cylinder 17 2 communicates with an oil supply passage 23 2 formed in the connecting rod 14 via an oil passage 22 2 formed in the piston pin P, and furthermore, this oil supply passage 23 2 is formed in the crankshaft 15. It passes through the distribution oil passage 24 2 and communicates with the oil pump Pu via the switching valve V. When the piston pin P rotates to the high compression ratio position, the oil passage 22 2 is communicated with the hydraulic chamber 19 2 and the oil supply passage 23 2 . When the switching valve V is switched to the high compression ratio side, the pressure oil from the oil pump Pu is transferred to the distribution oil path 24 2 and the oil supply path 2.
3 2 and the oil passage 22 2 to the hydraulic chamber 19 2 of the cylinder 17 2 .

第5図には4気筒機関において、各気筒のシリ
ンダ171…,172…に圧油を供給するための給
油系が示される。ここで低圧縮比側給油系S1が実
線で、また高圧縮比側給油系S2が点線で示され
る。
FIG. 5 shows an oil supply system for supplying pressure oil to the cylinders 17 1 . . . , 17 2 . . . in a four-cylinder engine. Here, the low compression ratio side oil supply system S 1 is shown by a solid line, and the high compression ratio side oil supply system S 2 is shown by a dotted line.

先ず低圧縮比側給油系S1(実線)について説明
すると、切換弁Vに連なる主給油路251は二本
の分配油路241()と241()とに分岐さ
れ、一方の分配油路241()は、左半部の2つ
の気筒の低圧縮比側給油路231(),231()
に連通され、また他方の分配油路241()は右
半部の2つの気筒の低圧縮比側給油路231(),
231()に連通される。
First, to explain the low compression ratio side oil supply system S 1 (solid line), the main oil supply passage 25 1 connected to the switching valve V is branched into two distribution oil passages 24 1 () and 24 1 (), and one distribution The oil passage 24 1 () is the low compression ratio side oil supply passage 23 1 (), 23 1 () for the two cylinders on the left half.
The other distribution oil passage 24 1 () is connected to the low compression ratio side oil supply passage 23 1 () of the two cylinders in the right half,
23 1 ().

次に高圧縮比側給油系S2(点線)について説明
すると、切換弁Vに連なる他の主給油路252
2本の分配油路242(),242()に分岐さ
れ、一方の分配油路242()は左半部の2つの
気筒の高圧縮比側給油路232(),232()
に連通され、また他方の分配油路242()は右
半部の2つの気筒の高圧縮比側給油路232(),
232()に連通される。
Next, to explain the high compression ratio side oil supply system S 2 (dotted line), the other main oil supply passage 25 2 connected to the switching valve V is branched into two distribution oil passages 24 2 (), 24 2 (); The distribution oil passage 24 2 () is the high compression ratio side oil supply passage 23 2 (), 23 2 () for the two left cylinders.
The other distribution oil passage 24 2 () is connected to the high compression ratio side oil supply passage 23 2 () of the two cylinders in the right half,
23 2 ().

前記切換弁Vの入口ポートはレギユレタRを介
してオイルポンプPuに連通される。
An inlet port of the switching valve V is communicated with an oil pump Pu via a regulator R.

前記切換弁Vはロジツク回路26からの出力信
号によつて切換制御される。ロジツク回路26に
は、スタータスイツチ27、チヨーク開度28、
マニホールド負圧29、車速30、ミツシヨンの
シフト位置31、および機関回転数32等の機関
の運転状態を検知するパラメータが入力されるよ
うになつている。
The switching valve V is controlled by an output signal from a logic circuit 26. The logic circuit 26 includes a starter switch 27, a throttle opening 28,
Parameters for detecting the operating state of the engine, such as manifold negative pressure 29, vehicle speed 30, transmission shift position 31, and engine speed 32, are input.

而して前記オイルポンプPu、レギユレータR、
切換弁V及びロジツク回路26、並びに該切換弁
Vと各油圧シリンダ171,172間を結ぶ各油路
は、互いに協働して本願発明の制御装置Cを構成
している。
The oil pump Pu, the regulator R,
The switching valve V, the logic circuit 26, and the oil passages connecting the switching valve V and each of the hydraulic cylinders 17 1 and 17 2 cooperate with each other to constitute the control device C of the present invention.

〔〕 機関の低圧縮比(圧縮比約9.5)運転 前記ロジツク回路26からの信号を受けて切換
弁Vが低圧縮比側に切換えられると、該弁Vはオ
イルポンプPuを主給油路251に連通する。
[] Low compression ratio (compression ratio approximately 9.5) operation of the engine When the switching valve V is switched to the low compression ratio side in response to the signal from the logic circuit 26, the valve V switches the oil pump Pu to the main oil supply path 25 1 communicate with.

いまピストンピンが第1、第2ロツク装置L1
L2のいずれにもロツクされていない。すなわち
ピストンピンPのフリー状態で機関が運転されて
いると仮定して、これが吸入行程に入りピストン
が下降し、その加速度が漸次減少して零になる点
を越えると、該ピストン2には下死点に至るまで
負の加速度が加わるので、この間ピストン2には
制動がかかる。ところがピストン2はその質量に
よる慣性で下向きに移動しようとするので、不安
定な状態にあるピストンピンPは前記慣性をうけ
て低圧縮比側、すなわち第2A,2B図に示すよ
うにそのクランク部9が左、右ジヤーナル部7,
8に対して上向きになるように回動する。このピ
ストン2の吸入終りでピストンピンPに設けた通
油路221が、給油路231を第1ロツク装置L1
シリンダ171内の油圧室191に連通するととも
に低圧縮比側ロツクピン孔13がロツクピストン
181のロツクピン201と一致するに至る(第7
図イ)。したがつてロツクピン201は油圧室19
内の油圧力を受けて外方に突出してロツクピン
孔13に嵌入する。これによりピストンピンPは
ロツクされ、低圧縮比位置(第1,2A,2B
図)に保持される。そして油圧室191内に圧油
が作用しているかぎりロツクピン201はロツク
ピン孔13から抜け出ることがないので、ピスト
ン2は低圧縮比位置に保持されたまま、第6図鎖
線で示すような運動曲線C1を描き、かつピスト
ンピンは低位置l(鎖線)に保持されたまま吸入、
圧縮、爆発および排気の行程を繰返し機関は低圧
縮比状態での運転が行われる。
Now the piston pin is the first and second lock device L 1 ,
Not locked to any of L 2 . In other words, assuming that the engine is operating with the piston pin P free, the piston enters the suction stroke and the piston descends, and when the acceleration gradually decreases and exceeds the point where it becomes zero, the piston 2 Since negative acceleration is applied until the piston reaches the dead center, braking is applied to the piston 2 during this period. However, since the piston 2 tries to move downward due to inertia due to its mass, the piston pin P, which is in an unstable state, is affected by the inertia and moves toward the low compression ratio side, that is, its crank portion as shown in Figures 2A and 2B. 9 is the left, right journal part 7,
Rotate it so that it faces upward relative to 8. At the end of suction of the piston 2, the oil passage 22 1 provided in the piston pin P communicates the oil supply passage 23 1 with the hydraulic chamber 19 1 in the cylinder 17 1 of the first lock device L 1 and also connects the low compression ratio side lock pin. The hole 13 coincides with the lock pin 20 1 of the lock piston 18 1 (7th
Figure A). Therefore, the lock pin 201 is the hydraulic chamber 19.
The lock pin protrudes outward under the hydraulic pressure in the lock pin hole 13 and fits into the lock pin hole 13. As a result, the piston pin P is locked and moved to the low compression ratio position (1st, 2A, 2B
(Fig.) is maintained. As long as pressure oil is acting in the hydraulic chamber 191 , the lock pin 201 will not come out of the lock pin hole 13, so the piston 2 will remain at the low compression ratio position as shown by the chain line in FIG. Draw a motion curve C 1 , and while the piston pin is held at the low position l (dashed line), inhale,
The engine is operated at a low compression ratio by repeating compression, explosion, and exhaust strokes.

また圧縮および爆発行程では、シリンダ1内の
内部圧力が高いので、ピストン2はその圧力で下
方に付勢されて低圧縮比側へとどまる傾向が大き
く、第7図ロ,ハに示すように圧縮及び爆発行程
の終了近くでもロツクピン201はロツクピン孔
13に嵌入し得る機会があり、したがつて第1ロ
ツク装置L1による低圧縮比側へロツクタイミン
グとしては第7図イ,ロ,ハに示すように吸入、
圧縮および爆発の各行程の終了近くの3回であ
る。
Also, during the compression and explosion strokes, the internal pressure inside the cylinder 1 is high, so the piston 2 is biased downward by that pressure and tends to stay on the low compression ratio side, resulting in compression as shown in Figure 7 B and C. Even near the end of the explosion stroke, there is a chance that the lock pin 201 can fit into the lock pin hole 13. Therefore, the timing for locking to the low compression ratio side by the first locking device L1 is as shown in Fig. 7 A, B, and C. Inhalation as shown,
Three times near the end of each compression and explosion stroke.

また機関の高負荷運転から低負荷運転へ移行す
べく、第1ロツク装置L1への圧油の供給をカツ
トすれば、ピストン2は吸入、あるいは排気行程
の途中でピストン2の加速度が零近くになり、そ
こにかゝる力が最小になつた時点で第1ロツク装
置のロツクピン201とロツクピン孔13間のフ
リクシヨンが減少し、ロツクピン201は戻しば
ね211の弾発力でロツクピン孔13から抜けて
ピンボス4内に没し、ピストンピンPは自動的に
フリー状態となる。
Furthermore, if the supply of pressure oil to the first locking device L1 is cut off in order to shift the engine from high-load operation to low-load operation, the acceleration of the piston 2 will be close to zero during the suction or exhaust stroke. When the force thereon becomes minimum, the friction between the lock pin 201 of the first locking device and the lock pin hole 13 decreases, and the lock pin 201 returns to the lock pin hole by the elastic force of the return spring 211 . 13 and sinks into the pin boss 4, the piston pin P automatically becomes free.

〔〕 機関の高圧縮比(圧縮比約13)運転 また前記ロジツク回路26からの信号を受けて
切換弁Vが高圧縮比側に切換えられると、該弁V
はオイルポンプPuを主給油路252に連通する。
いまピストンピンPが第1、第2ロツク装置L1
L2の何れにもロツクされていない、即ちピスト
ンピンPのフリー状態で機関が運転されていると
き、機関が排気行程に入つてその終了近くにくる
と、シリンダ1内の内部圧力は大気圧に近いので
ピストン2はそれ自体の慣性によつてコンロツド
14に対して上向きに単独で移動し、その際ピス
トンピンPは約180゜回転して高圧縮比側、すなわ
ち第3,4A,4B図に示すようにそのクランク
部9が、その左、右ジヤーナル部7,8に対して
下向きになるように回動する。このピストン2の
回動過程で、ピストンピンPに設けた通油路22
が、給油路232を第2ロツク装置L2のシリンダ
172内の油圧室192に連通するとともにロツク
ピン孔12がロツクピストン182のロツクピン
202と一致するに至る(第8図ニ)。したがつて
ロツクピン202は、ロツクピン孔12に嵌入し
てピストンピンPはロツクされ、高圧縮比位置
(第3,4A,4B図)に保持される。そして第
2ロツク装置L2の油圧室192内に圧油が作用し
ているかぎりロツクピン202はロツクピン孔1
2から抜け出ることがないので、ピストン2は高
圧縮比位置に保持されたまゝ第6図点線で示すよ
うな運動曲線C2を描き、またピストン2は高位
置h(点線)に保持されたまゝ吸入、圧縮、爆発
および排気の行程を繰り返す。ピストン2が上死
点に至れば、該ピストン2の上死点位置は前述の
圧縮比運転時の上死点位置に比べて偏心量eの2
倍だけ高位に達し、機関は高圧縮比での運転が行
われる。
[] Operation of the engine at a high compression ratio (compression ratio approximately 13) When the switching valve V is switched to the high compression ratio side in response to a signal from the logic circuit 26, the valve V
connects the oil pump Pu to the main oil supply path 252 .
Now the piston pin P is connected to the first and second locking devices L 1 ,
When the engine is running with the piston pin P free and not locked by any of L2 , when the engine enters the exhaust stroke and nears its end, the internal pressure in the cylinder 1 drops to atmospheric pressure. Since the piston 2 is close to the piston 2 due to its own inertia, the piston 2 moves independently upwards with respect to the conrod 14, and at this time the piston pin P rotates approximately 180 degrees to the high compression ratio side, that is, Figs. 3, 4A, and 4B. As shown in , the crank portion 9 is rotated downward relative to the left and right journal portions 7 and 8. During the rotation process of the piston 2, the oil passage 22 provided in the piston pin P
2 communicates the oil supply passage 23 2 with the hydraulic chamber 19 2 in the cylinder 17 2 of the second lock device L 2 , and the lock pin hole 12 coincides with the lock pin 20 2 of the lock piston 18 2 (see FIG. 8). ). Therefore, the lock pin 202 fits into the lock pin hole 12, and the piston pin P is locked and held at the high compression ratio position (FIGS. 3, 4A, and 4B). As long as the pressure oil is acting in the hydraulic chamber 192 of the second lock device L2 , the lock pin 202 will be locked in the lock pin hole 1.
2, the piston 2 remains at the high compression ratio position and draws a motion curve C 2 as shown by the dotted line in Figure 6, and the piston 2 remains at the high position h (dotted line). The process of suction, compression, explosion and exhaust is repeated. When the piston 2 reaches the top dead center, the top dead center position of the piston 2 is 2 of the eccentricity e compared to the top dead center position during the compression ratio operation described above.
The engine is operated at a high compression ratio.

尚、第8図イ〜ハの状態ではピストンピンPは
高圧縮比位置にロツクされる機会はない。
Incidentally, in the states shown in FIG. 8A to 8C, the piston pin P has no chance of being locked at the high compression ratio position.

第2ロツク装置L2のシリンダ172への圧油の
供給を解除すれば、ピストン2は加速度が零に近
く、そこにかゝる力が最も小さくなつた吸入行程
もしくは排気行程の途中でロツクピン202は戻
しばね212の弾発力でピストン2内に内没して
ピストンピンPとピストン2とのロツク状態が自
動的に解除され、ピストン2はフリー状態とな
る。
When the supply of pressure oil to the cylinder 172 of the second locking device L2 is released, the acceleration of the piston 2 is close to zero, and the locking pin is locked in the middle of the suction or exhaust stroke, when the acceleration is close to zero. 20 2 sinks into the piston 2 by the elastic force of the return spring 21 2 , and the locked state between the piston pin P and the piston 2 is automatically released, and the piston 2 becomes free.

而して前述の低圧縮比運転から高圧縮比運転、
あるいはその逆に切換える間には、ピストンピン
Pは一時的にフリー状態となるが、この状態で機
関が運転されるときはピストンピンPの位置が変
化するので、ピストン2は第6図実線に示すよう
な運動曲線C3を描き、かつピストンピンPは高、
低位置h,l間で上下に変動(実線)しつつ往復
運動するが、この曲線は機関の回転数、負荷によ
つて変化し必ずしも一定しない。
Therefore, from the low compression ratio operation mentioned above to the high compression ratio operation,
Or, while switching to the opposite, the piston pin P is temporarily in a free state, but when the engine is operated in this state, the position of the piston pin P changes, so the piston 2 is moved to the solid line in Figure 6. Draw a motion curve C 3 as shown, and the piston pin P is high,
It reciprocates while fluctuating up and down (solid line) between the low positions h and l, but this curve changes depending on the engine speed and load and is not necessarily constant.

前記低、高圧縮比運転は、機関の回転数によつ
て切換制御される。
The low and high compression ratio operations are switched and controlled depending on the engine speed.

第9図のグラフ(横軸−機関回転数、縦軸−吸
気管内圧力、θth−スロツトル全閉曲線)に示す
ように機関回転数の高速側第1設定値A、(機関
回転数約2500rpm)とそれよりも低く且つ機関の
アイドル回転数よりも高い第2設定値B(機関回
転数100rpm弱)を定め、前記第1設定値Aより
も高速で、かつ前記第2設定値Bよりも、低速の
場合に、機関は少なくとも低圧縮比側に切換えら
れ低圧縮区域Zlでの運転が行われるようにする。
以下にその理由についてのべると、機関が高速回
転される時、即ち前記第1設定値Aよりも高いと
きはピストンの各行程における往復速度が速く切
換弁Vの切換後、圧力油がシリンダ171,172
に達するまでの時間遅れによつて、ロツクピン2
0,201が、ロツクピン孔12,13と一致す
るタイミングと、油圧室191,192に圧油が作
用するタイミングとに多少のずれを生じる機会が
多く、前述の圧縮比の切換作動が確実に行われに
くくなり、加えてピストン2にかかる慣性力が機
関回転数に比例して大きくなり、ピストンピンP
とロツクピン201,202の連結後にピストン2
が作動するとき、該ロツクピン201,202に過
大な剪断力が作用する不都合があるからであり、
さらに車両の発進時、徐行時、あるいは機関のア
イドル運転時等(即ちアイドル回転数よりは高い
前記第2設定値Bよりも低い時)には、機関の吸
気負圧が比較的高くてアクセルの僅かな働きによ
つても吸気負圧変動が大きく、しかもサイクル間
隔が比較的長いため、その負圧変動に比べ圧縮比
切換の応答性が悪く、圧縮比切換に伴い寧ろドラ
イバビリテイや機関性能が悪化することがあり、
従つて低圧縮比位置にホールドしておいた方が望
ましいからである。
As shown in the graph of Figure 9 (horizontal axis - engine speed, vertical axis - intake pipe pressure, θth - throttle fully closed curve), the first set value A on the high-speed side of the engine speed (engine speed approximately 2500 rpm) and A second set value B (engine speed slightly less than 100 rpm) lower than that and higher than the idle speed of the engine is determined, and a speed higher than the first set value A and lower than the second set value B is determined. In this case, the engine is switched to at least the low compression ratio side so as to operate in the low compression zone Zl.
The reason for this will be explained below. When the engine is rotated at high speed, that is, when the speed is higher than the first set value A, the reciprocating speed of the piston in each stroke is fast and after switching of the switching valve V, the pressure oil flows into the cylinder 17 1 ,17 2
Due to the time delay in reaching lock pin 2
0, 20 1 coincides with the lock pin holes 12, 13 and the timing at which the pressure oil acts on the hydraulic chambers 19 1 , 19 2 are often slightly different from each other, and the above-mentioned compression ratio switching operation may be delayed. In addition, the inertial force applied to the piston 2 increases in proportion to the engine speed, and the piston pin P
After connecting the lock pins 20 1 and 20 2 , the piston 2
This is because when the lock pins 20 1 and 20 2 are operated, an excessive shearing force is applied to the lock pins 20 1 and 20 2 .
Furthermore, when the vehicle is starting, slowing down, or when the engine is idling (that is, when it is lower than the second set value B, which is higher than the idle speed), the engine's intake negative pressure is relatively high and the accelerator is not pressed. Even with a small amount of action, the intake negative pressure fluctuates greatly, and the cycle interval is relatively long, so the responsiveness of compression ratio switching is poor compared to the negative pressure fluctuations, and drivability and engine performance are affected by compression ratio switching. may worsen,
Therefore, it is desirable to hold the compression ratio at a low compression ratio position.

一方、第9図に示すように機関回転数が前記第
1設定値よりも低く、かつ第2設定値Bよりも高
い区域は高圧縮比区域Zhであつて、この区域Zh
では機関は主として高圧縮比運転され、機関出力
のアツプと熱効率の向上が図られる。
On the other hand, as shown in FIG. 9, an area where the engine speed is lower than the first setting value and higher than the second setting value B is a high compression ratio area Zh, and this area Zh
In this case, the engine is mainly operated at a high compression ratio to increase engine output and improve thermal efficiency.

尚、前記高圧縮比運転区域Zhでも吸気管内圧
力が高いときは前述の理由により機関は低圧縮比
運転に切換えられる。またオーバトツプレシオで
の運転等機関の回転を下降させる方向の設定シフ
トで、車両が高速走行する場合には、高圧縮比運
転に切換える要求はむしろ少なくて、しかもアク
セルの僅かな動きで機関の回転数が変動し圧縮比
の切換頻度が増すのでかゝる場合には、機関回転
数が、前述の高圧縮比区域Zhにあつても機関は
低圧縮比区域Zlでの運転に切換えられる。
Note that even in the high compression ratio operation region Zh, when the pressure inside the intake pipe is high, the engine is switched to low compression ratio operation for the above-mentioned reason. In addition, when the vehicle is running at high speed by shifting the settings to lower the engine speed, such as when operating at an over-pressure ratio, there is actually less demand for switching to high compression ratio operation, and even a slight movement of the accelerator will increase the engine speed. In such a case, since the engine speed changes and the frequency of compression ratio switching increases, the engine is switched to operation in the low compression ratio area Zl even if the engine speed is in the high compression ratio area Zh.

C 発明の効果 以上のように本発明によれば、ピストンを低圧
縮位置に固縛し得る低圧縮比専用の第1ロツク装
置と、ピストンを高圧縮比位置に固縛し得る高圧
縮比専用の第2ロツク装置とを互いに独立して設
けると共に、その両ロツク装置を機関運転状態に
応じて選択的に作動させるようにしたので、圧縮
比位置を切換える際には、その切換えようとする
圧縮比に対応したロツク装置を作動状態に、また
その他方のロツク装置を非作動状態に単に保持す
るだけで、ロツク切換えを迅速的確に行わせるこ
とができ、従つてそのロツク切換えのための制御
が頗る簡単でコストダウンに寄与することがで
き、その上、前記従来装置のように切換えを誤ま
る虞れはなく、機関の運転状態に応じて圧縮比の
切換えが常に応答性よく行われるから、燃焼が良
好な運転領域を極力広く確保することができる。
C. Effects of the Invention As described above, according to the present invention, there is provided a first lock device exclusively for low compression ratios that can lock the piston in a low compression position, and a first lock device exclusively for high compression ratios that can lock the piston in a high compression ratio position. The second lock device and the second lock device are provided independently from each other, and both lock devices are operated selectively depending on the engine operating condition, so when changing the compression ratio position, the compression ratio position to be changed is By simply holding the corresponding locking device in the active state and the other locking device in the inactive state, the lock switching can be performed quickly and accurately, and the control for the lock switching can therefore be performed. It is extremely simple and contributes to cost reduction, and in addition, there is no risk of switching errors as in the conventional device, and the compression ratio is always switched responsively according to the operating condition of the engine. It is possible to secure as wide an operating range of good combustion as possible.

また特に第1及び第2ロツク装置を上記の如く
機関運転状態に応じて選択的に作動させるのは、
機関回転数が第1及び第2設定値の中間にある限
られた所定回転領域においてだけであるため、そ
の切換作動を常に円滑且つ的確に行わせることが
できる。しかも機関回転数が前記第2設定値より
も低く、アクセルの僅かな動きによつても吸気負
圧変動が大きいアイドル回転数ないしはその近傍
領域では、ピストンを上記低圧縮比位置にホール
ドして前記切換作動を制限することができるた
め、負圧変動に比べ圧縮比切換の応答性が悪いこ
とに起因してドライバビリテイや機関性能が悪化
するような不都合の発生を未然に回避し得る。
In particular, selectively operating the first and second lock devices according to the engine operating conditions as described above is
Since the engine rotational speed is only in a limited predetermined rotational range between the first and second set values, the switching operation can always be performed smoothly and accurately. Moreover, when the engine speed is lower than the second set value and the engine speed is at or near the idle speed where even the slightest movement of the accelerator causes large fluctuations in intake negative pressure, the piston is held at the low compression ratio position and the piston is held at the low compression ratio position. Since the switching operation can be restricted, it is possible to avoid problems such as deterioration of drivability and engine performance due to poor responsiveness of compression ratio switching compared to negative pressure fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図
はピストンが低圧縮比位置に保持された状態の機
関のピストン部分の側面図、第2A図は第1図
A−A線断面図、第2B図は第2A図の概略
図、第3図はピストンが高圧縮比位置に保持され
た状態の機関のピストン部分の側面図、第4A図
は第3図A−A線断面図、第4B図は第4A
図の概略図、第5図は給油系統の概略図、第6図
はピストンの高、低圧縮比位置とフリー状態での
ピストンの運動曲線及びピストンピンの位置を示
す線図、第7図は低圧縮比ロツクタイミングを示
す概略図、第8図は高圧縮比ロツクタイミングを
示す概略図、第9図は機関回転数と吸気管負圧に
よる高、低圧縮比運動区域を示すグラフである。 1……シリンダ、2……ピストン、15……ク
ランク軸、A,B……第1、第2設定値、C……
制御装置、L1,L2……第1、第2ロツク装置。
The drawings show one embodiment of the present invention, and FIG. 1 is a side view of the piston portion of the engine with the piston held at a low compression ratio position, and FIG. 2A is a sectional view taken along the line A-A in FIG. 1. , FIG. 2B is a schematic diagram of FIG. 2A, FIG. 3 is a side view of the piston portion of the engine with the piston held at a high compression ratio position, FIG. 4A is a sectional view taken along the line A-A in FIG. Figure 4B is Figure 4A
Figure 5 is a schematic diagram of the oil supply system, Figure 6 is a diagram showing the movement curve of the piston at high and low compression ratio positions and in the free state, and the position of the piston pin. FIG. 8 is a schematic diagram showing the low compression ratio lock timing, FIG. 8 is a schematic diagram showing the high compression ratio lock timing, and FIG. 9 is a graph showing the high and low compression ratio movement areas depending on the engine speed and intake pipe negative pressure. 1... Cylinder, 2... Piston, 15... Crankshaft, A, B... First and second setting values, C...
Control device, L 1 , L 2 . . . first and second lock devices.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダ1に摺動自在に嵌合されるピストン
2の、クランク軸15に対する相対位置の調節に
より、圧縮比を変更できるようにした、車両用内
燃機関における圧縮比可変装置において、作動時
には前記ピストン2を低圧縮比位置に固縛する第
1ロツク装置L1と、この第1ロツク装置L1から
独立して構成され作動時には前記ピストン2を高
圧縮比位置に固縛する第2ロツク装置L2と、そ
れら第1及び第2ロツク装置L1,L2に接続され、
機関回転数が第1設定値Aよりも低く、且つ該第
1設定値Aより低くアイドル回転数よりは高い第
2設定値Bよりも高い時にだけ前記第1及び第2
ロツク装置L1,L2を機関運転状態に応じて選択
的に作動させ、また機関回転数が前記第2設定値
Bよりも低い時には前記第1ロツク装置L1だけ
を作動させる制御装置Cとを備えることを特徴と
する、車両用内燃機関における圧縮比可変装置。
1 In a compression ratio variable device for a vehicle internal combustion engine, the compression ratio can be changed by adjusting the relative position of a piston 2 slidably fitted into a cylinder 1 with respect to a crankshaft 15. a first locking device L1 that locks the piston 2 in a low compression ratio position; and a second locking device L1 that is configured independently of the first locking device L1 and locks the piston 2 in a high compression ratio position when activated. 2 and connected to the first and second locking devices L 1 , L 2 ,
Only when the engine speed is lower than the first set value A and higher than the second set value B, which is lower than the first set value A and higher than the idle speed, the first and second
a control device C that selectively operates the lock devices L 1 and L 2 according to the engine operating state, and operates only the first lock device L 1 when the engine speed is lower than the second set value B; A variable compression ratio device for a vehicle internal combustion engine, comprising:
JP21542083A 1983-11-16 1983-11-16 Compression ratio varying device for internal- combustion engine for vehicle Granted JPS60108531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21542083A JPS60108531A (en) 1983-11-16 1983-11-16 Compression ratio varying device for internal- combustion engine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21542083A JPS60108531A (en) 1983-11-16 1983-11-16 Compression ratio varying device for internal- combustion engine for vehicle

Publications (2)

Publication Number Publication Date
JPS60108531A JPS60108531A (en) 1985-06-14
JPH0526016B2 true JPH0526016B2 (en) 1993-04-14

Family

ID=16672038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21542083A Granted JPS60108531A (en) 1983-11-16 1983-11-16 Compression ratio varying device for internal- combustion engine for vehicle

Country Status (1)

Country Link
JP (1) JPS60108531A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338424Y2 (en) * 1985-10-25 1991-08-14
JPH0426674Y2 (en) * 1986-10-29 1992-06-26

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838344A (en) * 1981-08-31 1983-03-05 Toyota Motor Corp Mechanism of variable compression ratio for internal-combustion engine
JPS5857040A (en) * 1981-09-29 1983-04-05 Toyota Motor Corp Variable compression ratio mechanism of internal- combustion engine
JPS5867937A (en) * 1981-10-20 1983-04-22 Toyota Motor Corp Variable compression-ratio mechanism in internal- combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838344A (en) * 1981-08-31 1983-03-05 Toyota Motor Corp Mechanism of variable compression ratio for internal-combustion engine
JPS5857040A (en) * 1981-09-29 1983-04-05 Toyota Motor Corp Variable compression ratio mechanism of internal- combustion engine
JPS5867937A (en) * 1981-10-20 1983-04-22 Toyota Motor Corp Variable compression-ratio mechanism in internal- combustion engine

Also Published As

Publication number Publication date
JPS60108531A (en) 1985-06-14

Similar Documents

Publication Publication Date Title
US6837199B2 (en) Valve actuating apparatus for internal combustion engine
JP3385717B2 (en) Variable valve train for internal combustion engine
RU2407904C2 (en) Method of adjusting mechanical compression ratio and actual compression ratio start point (versions)
JPH0526016B2 (en)
JPH0639912B2 (en) Variable compression ratio control device for internal combustion engine for vehicle
US6415748B2 (en) Exhaust control system in two-cycle internal combustion engine
JP5034404B2 (en) Control device for internal combustion engine
JP2751072B2 (en) Valve timing control device for DOHC engine
JPS5838344A (en) Mechanism of variable compression ratio for internal-combustion engine
JP2704660B2 (en) Intake device for internal combustion engine
JP4311813B2 (en) Intake system controller for spark ignition internal combustion engine
JPH07116957B2 (en) Vehicle with automatic transmission equipped with variable compression ratio mechanism of internal combustion engine
JPS5825537A (en) Multi-cylinder internal combustion engine
JPH059610B2 (en)
JPS6065232A (en) Compression ratio variable device for internal- combustion engine
JPS6065216A (en) Oil supplier of hydraulic compression-ratio variable device in multicylinder internal-combustion engine
JPS6081431A (en) Compression ratio variable device for internal- combustion engine
JPS5848733A (en) Mechanism for variable compression ratio
JPH082446Y2 (en) Internal combustion engine with sub chamber
JPS61202664U (en)
JPH05133212A (en) Multiple cylinder internal combustion engine
KR100582140B1 (en) Valve mechanism for internal combustion engine
JP2588362B2 (en) Multi-cylinder internal combustion engine
JPS61294109A (en) Multicylinder internal combustion engine
JPH0346644B2 (en)