JP2751072B2 - Valve timing control device for DOHC engine - Google Patents

Valve timing control device for DOHC engine

Info

Publication number
JP2751072B2
JP2751072B2 JP18887989A JP18887989A JP2751072B2 JP 2751072 B2 JP2751072 B2 JP 2751072B2 JP 18887989 A JP18887989 A JP 18887989A JP 18887989 A JP18887989 A JP 18887989A JP 2751072 B2 JP2751072 B2 JP 2751072B2
Authority
JP
Japan
Prior art keywords
valve
camshaft
intake
exhaust
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18887989A
Other languages
Japanese (ja)
Other versions
JPH0354307A (en
Inventor
薫 奥井
学 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP18887989A priority Critical patent/JP2751072B2/en
Publication of JPH0354307A publication Critical patent/JPH0354307A/en
Application granted granted Critical
Publication of JP2751072B2 publication Critical patent/JP2751072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L2001/34486Location and number of the means for changing the angular relationship
    • F01L2001/34496Two phasers on different camshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、DOHC(2頭上カム軸式)エンジンにおける
吸・排気弁を開閉するタイミングを制御するためのバル
ブタイミング制御装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a valve timing control device for controlling the timing of opening and closing an intake / exhaust valve in a DOHC (double overhead camshaft type) engine.

(発明の背景) 高速出力を重視した4サイクルエンジンにおいては、
高速時の出力増大のために、バルブリフトとバルブ開度
の広角化(カム作動角の増大化)を行うことが考えられ
るが、この場合にはアイドリング運転が不安定になる。
特に1気筒に対し複数づつの吸気弁と排気弁とを設け、
例えば4バルブあるいは5バルブとしたエンジンでは、
実質的にバルブオーバーラップが増大したのと等価にな
るため、混合気の吹き抜け、あるいは吸・排気系の干渉
等の影響が大きくなり、アイドリング運転の不安定化が
一層顕著になる。そこでバルブ作動角を大きくしつつバ
ルブオーバーラップを小さくすることが考えられるが、
この場合には吸気弁の開期間全体を遅らせる必要が生
じ、吸気弁の閉じるタイミングが遅くなる。このため低
中速時において、吸気の吹き返しが発生して充填効果が
落ち、低速トルクが低下するという問題が生じる。
(Background of the Invention) In a four-stroke engine emphasizing high-speed output,
To increase the output at high speed, it is conceivable to increase the valve lift and the valve opening angle (increase the cam operating angle). In this case, idling becomes unstable.
In particular, a plurality of intake valves and exhaust valves are provided for one cylinder,
For example, in an engine with 4 or 5 valves,
Since this is substantially equivalent to an increase in valve overlap, the influence of air-fuel mixture blow-through or interference between the intake and exhaust systems increases, and the idling operation becomes more unstable. Therefore, it is conceivable to reduce the valve overlap while increasing the valve operating angle,
In this case, it is necessary to delay the entire opening period of the intake valve, and the closing timing of the intake valve is delayed. For this reason, at the time of low and medium speeds, there arises a problem that the air is blown back, the filling effect is reduced, and the low-speed torque is reduced.

そこで吸気弁と排気弁とを独立に別々のカム軸で開閉
する2頭上カム軸式とし、吸気側のカム軸を低中速高負
荷時に進角させるバルブタイミング制御システムが提案
されている。この既提案のものは、吸気側カム軸とタイ
ミングベルトプーリとの間に、これらにスパイラルスプ
ラインによって係合するピストンを介在させ、このピス
トンを油圧によって移動させることによりカム軸の位相
を変化させるものである。すなわち油圧の断・続によっ
てカム軸を2つの位相位置に切換えるものである。
Therefore, there has been proposed a valve timing control system in which the intake valve and the exhaust valve are of a two-headed camshaft type that can be independently opened and closed by separate camshafts, and the camshaft on the intake side is advanced at low, medium, and high loads. In this proposed device, a piston is engaged between the intake side camshaft and the timing belt pulley by a spiral spline, and the phase of the camshaft is changed by moving the piston by hydraulic pressure. It is. That is, the camshaft is switched between two phase positions by disconnection and connection of hydraulic pressure.

しかしながら実際のエンジンにおいては、アイドリン
グを安定化するのに必要とするバルブオーバーラップ
と、高速でトルク増加を図るのに必要とするバルブオー
バーラップとは常に同じとは限らないことが解った。
However, it has been found that in an actual engine, the valve overlap required for stabilizing the idling and the valve overlap required for increasing the torque at a high speed are not always the same.

(発明の目的) 本発明は以上のような事情に鑑みなされたものであ
り、運転状態に応じた最適なバルブタイミングとバルブ
オーバーラップを得ることを可能にするDOHCエンジンの
バルブタイミング制御装置を提供することを目的とす
る。
(Object of the Invention) The present invention has been made in view of the above circumstances, and provides a valve timing control device for a DOHC engine that can obtain an optimal valve timing and valve overlap according to an operating state. The purpose is to do.

(発明の構成) 本発明によればこの目的は、吸気弁と排気弁とを別々
に開閉する複数のカム軸を備えるDOHCエンジンにおい
て、このエンジンの高速回転時の進角位置を基準にし
て、排気側カム軸を高速運転時以外で進角させる一方、
吸気側カム軸を低速高負荷時に進角させることを特徴と
するDOHCエンジンのバルブタイミング制御装置により達
成される。
(Constitution of the Invention) According to the present invention, an object of the present invention is to provide a DOHC engine having a plurality of camshafts that open and close an intake valve and an exhaust valve separately, with reference to an advance position at the time of high-speed rotation of the engine. While the exhaust camshaft is advanced except during high-speed operation,
This is achieved by a valve timing control device for a DOHC engine characterized in that the intake camshaft is advanced at low speed and high load.

(実施例) 第1図は本発明の一実施例の平面図、第2図はそのタ
イミングベルト配置図、第3図はタイミング切換機構の
拡大断面図であって第3A図は非励磁時をまた第3B図は励
磁時を示す。第4A、4B図はこのタイミング切換機構のコ
ントロールバルブの動作を示す断面図、第5A〜5B図はそ
れぞれ異なる運転状態に対する各カム軸の進角特性を示
す図、また第6図は両カム軸の進角制御マップ図であ
る。
(Embodiment) FIG. 1 is a plan view of one embodiment of the present invention, FIG. 2 is a timing belt layout thereof, FIG. 3 is an enlarged sectional view of a timing switching mechanism, and FIG. FIG. 3B shows the state at the time of excitation. 4A and 4B are cross-sectional views showing the operation of the control valve of the timing switching mechanism, FIGS. 5A to 5B are diagrams showing the advance angle characteristics of each cam shaft for different operation states, and FIG. 6 is a diagram showing both cam shafts. FIG. 4 is an advanced angle control map diagram of FIG.

第2図において符号10はシリンダボデー、12はシリン
ダヘッド、14はヘッドカバーであり、シリンダヘッド12
とヘッドカバー14との合面間に吸気側カム軸16と排気側
カム軸18とが保持されている。吸気側カム軸16には1つ
の気筒に対して3つのカム16aが形成され、排気側カム
軸18には同じく2つのカム18aが形成されている。これ
らカム16a、18aはそれぞれ吸気弁と排気弁とをバルブリ
フタを介して開閉する。すなわち1つの気筒に対して3
つの吸気弁と2つの排気弁とを有する5弁式の直動式2
頭上カム軸式エンジンとなっている。第1図で20はシリ
ンダボアを、また22は点火栓位置を示している。
In FIG. 2, reference numeral 10 denotes a cylinder body, 12 denotes a cylinder head, and 14 denotes a head cover.
An intake-side camshaft 16 and an exhaust-side camshaft 18 are held between the mating surfaces of the camshaft 16 and the head cover 14. The intake-side camshaft 16 has three cams 16a for one cylinder, and the exhaust-side camshaft 18 has two cams 18a. The cams 16a and 18a open and close the intake valve and the exhaust valve via valve lifters, respectively. That is, 3 for one cylinder
Five-valve direct acting type 2 having two intake valves and two exhaust valves
It is an overhead camshaft engine. In FIG. 1, reference numeral 20 denotes a cylinder bore, and reference numeral 22 denotes a spark plug position.

カム軸16、18の左端にはそれぞれタイミング切換機構
24、26が装着されている。これらの機構24、26は全く同
じ構造なのでその一方のみを説明する。
Timing switching mechanism on the left end of each camshaft
24, 26 are installed. Since these mechanisms 24 and 26 have exactly the same structure, only one of them will be described.

第3A、B図において28はカム軸16の軸受であり、この
軸受28には図示しない潤滑油メインギャラリから所定圧
のエンジン潤滑油が導かれ、この潤滑油はさらにカム軸
16に形成した環状油路30および半径方向の油路32によっ
てカム軸16の中心線上のボルト孔34に導かれる。36は内
カム体、38は外カム体である。内カム体36はボルト40に
よってカム軸16の端に固定されている。すなわちこのボ
ルト40は内カム体36を貫通してボルト34に螺入されてい
る。42は内カム体36とカム軸16との位置づれを防ぐため
のノックピンである。外カム体38は円筒状に作られ、そ
の一端は内カム体36のフランジ部分に僅かに回動可能に
保持され、その他端と内カム体36の外周縁との間にはリ
ング状のシールブロック44が油密に装着されている。こ
のシールブロック44にはカバー46が固定されて、このカ
バー46と内カム体36との間に油室48が形成される。なお
前記ボルト40には油孔40aが形成され、前記油路30、32
から所定圧の潤滑油が導かれている。
In FIGS. 3A and 3B, reference numeral 28 denotes a bearing for the camshaft 16. Engine bearing oil of a predetermined pressure is guided from a lubricant main gallery (not shown) to the bearing 28.
The annular oil passage 30 and the radial oil passage 32 formed in the shaft 16 guide the bolt 16 to a bolt hole 34 on the center line of the cam shaft 16. 36 is an inner cam body and 38 is an outer cam body. The inner cam body 36 is fixed to the end of the cam shaft 16 by bolts 40. That is, the bolt 40 penetrates the inner cam body 36 and is screwed into the bolt 34. Reference numeral 42 denotes a knock pin for preventing the displacement between the inner cam body 36 and the cam shaft 16. The outer cam body 38 is formed in a cylindrical shape, one end of which is slightly rotatably held by a flange portion of the inner cam body 36, and a ring-shaped seal is provided between the other end and the outer peripheral edge of the inner cam body 36. Block 44 is oil-tightly mounted. A cover 46 is fixed to the seal block 44, and an oil chamber 48 is formed between the cover 46 and the inner cam body 36. The bolt 40 has an oil hole 40a formed therein.
, A lubricating oil of a predetermined pressure is led.

内・外カム体36、38の間には円筒状のピストン50が装
填され、このピストン50と両カム体36、38とはスパイラ
ルスプラインによって互いに噛み合っている。またこの
ピストン50はリターンばね52によってシールブローク44
側への復帰習性が付与される一方、このピストン50とシ
ールブロック44との間には小孔54を介して油室48内の油
圧が導かれている。
A cylindrical piston 50 is mounted between the inner and outer cam bodies 36 and 38, and the piston 50 and the cam bodies 36 and 38 are meshed with each other by a spiral spline. This piston 50 is also returned to the seal
While returning to the side is provided, the oil pressure in the oil chamber 48 is guided between the piston 50 and the seal block 44 via the small hole 54.

この油室48内の油圧は、カバー46に設けたコントロー
ルバルブ56および電磁ソレノイド58により制御される。
このバルブ56は第4A、4B図に示すように、ケース60とス
ライダ62と、復帰ばね64とを備える。ケース60とスライ
ダ62にはそれぞれ油孔60a、62aが設けられ、これらの油
孔60a、62aはスライダ62の復帰位置では連通して第4A図
に矢印で示すように油室48内の油を切換機構24の外へ導
く。このため油室48内の油圧が下がる。電磁ソレノイド
58のプランジャ58aはスライダ62に対向し、このソレノ
イド58の励磁によりプランジャ58aは突出してスライダ6
2を押圧する。この状態では第4B図に示すようにスライ
ダ62がケース60の油孔60aを閉じる。このため油室48内
の油圧は上昇し、この上昇した油圧は小孔54を介してピ
ストン50を第3図で右方向へ押す。ピストン50はスパイ
ラルスプラインによって内・外カム体36、38に噛み合っ
ているから、このピストン50の移動によって内・外カム
体36、38は相対的に回転する。
The oil pressure in the oil chamber 48 is controlled by a control valve 56 and an electromagnetic solenoid 58 provided on the cover 46.
The valve 56 includes a case 60, a slider 62, and a return spring 64, as shown in FIGS. 4A and 4B. The case 60 and the slider 62 are provided with oil holes 60a and 62a, respectively.These oil holes 60a and 62a communicate with each other at the return position of the slider 62, and allow oil in the oil chamber 48 to flow as shown by an arrow in FIG. 4A. Guide out of the switching mechanism 24. For this reason, the oil pressure in the oil chamber 48 decreases. Electromagnetic solenoid
The plunger 58a of 58 faces the slider 62, and the excitation of the solenoid 58 causes the plunger 58a to protrude and
Press 2. In this state, the slider 62 closes the oil hole 60a of the case 60 as shown in FIG. 4B. As a result, the oil pressure in the oil chamber 48 increases, and the increased oil pressure pushes the piston 50 to the right in FIG. Since the piston 50 is engaged with the inner and outer cam bodies 36 and 38 by the spiral spline, the inner and outer cam bodies 36 and 38 are relatively rotated by the movement of the piston 50.

以上のように構成されたタイミング切換機構24、26、
の外カム体38、38Aにはプーリ歯66、66Aが形成され(第
2図)、両プーリ歯66、66Aにはタイミングベルト68が
巻掛けられている。すなわちクランク軸70の回転は、ベ
ルト72、第1中間軸74、ベルト76、第2中間軸78、ベル
ト68を介して各プーリ歯66、66Aに伝えられる。このよ
うに外カム体38、38Aはタイミングベルト68が巻掛けら
れるタイミングプーリとなっている。
The timing switching mechanisms 24, 26, configured as described above,
Pulley teeth 66, 66A are formed on the outer cam bodies 38, 38A (FIG. 2), and a timing belt 68 is wound around both pulley teeth 66, 66A. That is, the rotation of the crankshaft 70 is transmitted to the pulley teeth 66 and 66A via the belt 72, the first intermediate shaft 74, the belt 76, the second intermediate shaft 78, and the belt 68. Thus, the outer cam bodies 38 and 38A are timing pulleys around which the timing belt 68 is wound.

第1、2図において80は回転角センサであり、一方の
切換機構26の外カム体38Aに設けた突起82の通過を電気
的あるいは磁気的に検出し、点火栓の着火タイミングを
検出するものである。
1 and 2, reference numeral 80 denotes a rotation angle sensor, which electrically or magnetically detects the passage of a projection 82 provided on the outer cam body 38A of one of the switching mechanisms 26, and detects the ignition timing of the ignition plug. It is.

タイミング切換機構24、26の電磁ソレノイド58、58A
は、両カム軸16、18の位相が第5、6図に示す特性にな
るように、マイクロコンピュータ等の制御回路82により
オン・オフ制御される。すなわち吸気側の切換機構24
は、ソレノイド58の非励磁時にはTDC(上死点)から角
度(ハ)遅れた位相で吸気弁リフトが最大となり(第5
A、C、D図参照)、また励磁時にはTDCから角度(ニ)
遅れた位相(ただし(ハ)>(ニ))で吸気弁リフトが
最大となるように設定されている(第5B図)。また排気
側の切換機構26は、ソレノイド58Aの非励磁時に上死点
から角度(イ)進んだ位相で排気弁リフトが最大となり
(第5A、B、C図参照)、励磁時に上死点から角度
(ロ)進んだ位相でリフトが最大になる(第5D図)。こ
こに角度イ、ロ、ハ、ニは次の関係を持って設定され
る。
Electromagnetic solenoids 58, 58A for timing switching mechanisms 24, 26
Is controlled by a control circuit 82 such as a microcomputer so that the phases of the camshafts 16 and 18 have the characteristics shown in FIGS. That is, the switching mechanism 24 on the intake side
Indicates that when the solenoid 58 is not energized, the intake valve lift becomes maximum at a phase delayed by an angle (c) from TDC (top dead center) (5th
(See A, C, and D diagrams.) Also, at the time of excitation, the angle from TDC (d)
The intake valve lift is set to be maximum in the delayed phase ((c)> (d)) (FIG. 5B). In addition, the exhaust-side switching mechanism 26 maximizes the exhaust valve lift in a phase advanced by an angle (a) from the top dead center when the solenoid 58A is not excited (see FIGS. 5A, 5B, and 5C). The lift becomes maximum at the phase advanced by angle (b) (Fig. 5D). Here, the angles a, b, c, and d are set with the following relationship.

(イ−ロ)>(ニ−ハ) ……(1) 制御回路82はメモリ84に記憶された動作プログラムに
従って動作を行う。このメモリ84には第6図に示す制御
特性をメモリされている。すなわち制御回路82にはエン
ジン回転速度Nや、スロットル弁開度などから検出した
負荷L、さらには回転角センサ80等の信号が入力され、
高速時においては排気側の切換機構のソレノイド58Aの
みを励磁してカム軸18をTDCを基準にして角度(イ)か
ら(ロ)に遅角させる。この時のバルブオーバーラップ
は、吸・排気側を共に非励磁とするアイドリング時(第
5A図)や中速時(5C図)におけるバルブオーバーラップ
Aに対して、Cに増大する。また低速高負荷時において
は吸気側のソレノイド58のみを励磁して、カム軸16を角
度(ハ)から(ニ)に進角させる(第5B図)。この時の
バルブオーバーラップBは前記(1)の関係により、 A<B<C となる。
(Ero)> (Ni-ha) (1) The control circuit 82 operates according to the operation program stored in the memory 84. The memory 84 stores the control characteristics shown in FIG. That is, the control circuit 82 receives the engine rotation speed N, the load L detected from the throttle valve opening, and the like, and further receives signals from the rotation angle sensor 80 and the like.
At high speed, only the solenoid 58A of the exhaust side switching mechanism is excited to retard the camshaft 18 from the angle (a) to (b) with respect to TDC. At this time, the valve overlap occurs when the intake and exhaust sides are both de-energized (idle
It increases to C with respect to the valve overlap A at the time of middle speed (Fig. 5C) and at the middle speed (Fig. 5C). At low speed and high load, only the solenoid 58 on the intake side is excited to advance the camshaft 16 from the angle (C) to (D) (FIG. 5B). At this time, the valve overlap B satisfies A <B <C due to the relationship (1).

以上のように両カム軸16、18を進角あるいは遅角させ
るので、吸・排気弁のカム作動角を大きく設定したカム
軸を用いて高速時の出力増大を図る一方(第5D図)、ア
イドリングや中速時(第5A、C図)におけるバルブオー
バーラップをCからAに減らして運転を安定化させるこ
とができる。また低速高負荷時においては(第5B図)吸
気側カム軸を進角させることにより吸気の吹き返しを防
ぎ、充填効率トルク増大と燃費の向上とが図れる。な
お、この時には排気側カム軸は進角しているのでバルブ
オーバーラップも減少し吸気の吹き抜けが減少して燃費
の向上が可能である。
Since the camshafts 16 and 18 are advanced or retarded as described above, the output at high speed is increased by using a camshaft with a large cam operating angle of the intake and exhaust valves (FIG. 5D). The operation can be stabilized by reducing the valve overlap from C to A at the time of idling or medium speed (FIGS. 5A, C). Further, at low speed and high load (FIG. 5B), the intake cam shaft is advanced to prevent the intake air from returning, thereby increasing the charging efficiency torque and improving fuel efficiency. At this time, since the exhaust camshaft is advanced, valve overlap is reduced, and blow-by of intake air is reduced, so that fuel efficiency can be improved.

(発明の効果) 本発明は以上のように、高速時の進角位置を基準にす
れば、高速時以外では排気側カム軸を進角させ、吸気側
カム軸を低速高負荷時には進角させるものであるから、
高速時の出力増大を図りつつアイドリング運転の安定化
と低速高負荷時のトルク増大が図れ、それぞれの運転状
態に応じた最適なバルブタイミングとオーバーラップと
を得ることが可能になる。
(Effect of the Invention) As described above, according to the present invention, based on the advance position at high speed, the exhaust camshaft is advanced except at high speed, and the intake camshaft is advanced at low speed and high load. Because
It is possible to stabilize idling operation and increase torque at low speed and high load while increasing output at high speed, and to obtain optimal valve timing and overlap according to each operation state.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の平面図、第2図はそのタイ
ミングベルト配置図、第3A、B図はタイミング切換機構
の異なる動作状態を示す拡大断面図、第4A、B図はコン
トロールバルブの動作説明図、第5A〜D図は各カム軸の
進角特性図、第6図は両カム軸の進角制御マップ図であ
る。 16……排気側カム軸、 18……吸気側カム軸、 24、26……タイミング切換機構、 82……制御回路、
FIG. 1 is a plan view of one embodiment of the present invention, FIG. 2 is a timing belt layout thereof, FIGS. 3A and 3B are enlarged sectional views showing different operation states of a timing switching mechanism, and FIGS. FIGS. 5A to 5D are diagrams showing the advancement characteristics of each camshaft, and FIG. 6 is an advancement control map of both camshafts. 16… Exhaust side camshaft, 18… Intake side camshaft, 24, 26 …… Timing switching mechanism, 82 …… Control circuit,

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気弁と排気弁とを別々に開閉する複数の
カム軸を備えるDOHCエンジンにおいて、 このエンジンの高速回転時の進角位置を基準にして、排
気側カム軸を高速運転時以外で進角させる一方、吸気側
カム軸を低速高負荷時に進角させることを特徴とするDO
HCエンジンのバルブタイミング制御装置。
In a DOHC engine having a plurality of camshafts for opening and closing an intake valve and an exhaust valve separately, the exhaust-side camshaft is operated at a time other than a high-speed operation with reference to an advance position at a high-speed rotation of the engine. DO, while the intake camshaft is advanced at low speed and high load.
Valve timing control device for HC engine.
JP18887989A 1989-07-24 1989-07-24 Valve timing control device for DOHC engine Expired - Fee Related JP2751072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18887989A JP2751072B2 (en) 1989-07-24 1989-07-24 Valve timing control device for DOHC engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18887989A JP2751072B2 (en) 1989-07-24 1989-07-24 Valve timing control device for DOHC engine

Publications (2)

Publication Number Publication Date
JPH0354307A JPH0354307A (en) 1991-03-08
JP2751072B2 true JP2751072B2 (en) 1998-05-18

Family

ID=16231482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18887989A Expired - Fee Related JP2751072B2 (en) 1989-07-24 1989-07-24 Valve timing control device for DOHC engine

Country Status (1)

Country Link
JP (1) JP2751072B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799207B2 (en) * 1989-12-28 1998-09-17 マツダ株式会社 Engine valve timing control device
JPH04246249A (en) * 1991-01-31 1992-09-02 Nissan Motor Co Ltd Actual compression ratio controller for internal combustion engine
US5870983A (en) * 1996-06-21 1999-02-16 Denso Corporation Valve timing regulation apparatus for engine
US6311654B1 (en) 1998-07-29 2001-11-06 Denso Corporation Valve timing adjusting device
JP4771853B2 (en) * 2006-04-13 2011-09-14 中国電力株式会社 Transformer hanging device and transformer hanging installation method

Also Published As

Publication number Publication date
JPH0354307A (en) 1991-03-08

Similar Documents

Publication Publication Date Title
US4552112A (en) Valve timing control for internal combustion engines
US6955144B2 (en) Valve control apparatus for internal combustion engine
US6425357B2 (en) Variable valve drive mechanism and intake air amount control apparatus of internal combustion engine
US5133310A (en) Intake and exhaust control apparatus for internal combustion engines
US5960755A (en) Internal combustion engine with variable camshaft timing and variable duration exhaust event
US6810866B2 (en) Engine with modified cam profiles for internal EGR control
US6216655B1 (en) Valve operating control system for internal combustion engine
JPH086568B2 (en) Engine valve operation control device
JPH07301106A (en) Variable valve system for internal combustion engine
JP2008303773A (en) Variable valve system of internal combustion engine
US6550436B2 (en) Intake valve control device of internal combustion engine
US4020806A (en) Hydraulic valve lifter for internal combustion engine
JP2751072B2 (en) Valve timing control device for DOHC engine
US5195471A (en) Valve timing control system of internal combustion engine
US7685993B2 (en) Low cost variable swirl
JP2809437B2 (en) Multi-valve 4-cycle engine
JP2809434B2 (en) DOHC engine
JP4311813B2 (en) Intake system controller for spark ignition internal combustion engine
US9194305B2 (en) Engine having continuous variable timing device
EP0343627B1 (en) Valve drive train for a v-type internal combustion engine
JPH06235307A (en) Variable valve timing device for engine
JP3395350B2 (en) Valve timing control device for DOHC engine
JPH059610B2 (en)
KR20010002311U (en) Continuously variable valve lift device in the engine
JPH042780B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees