JPH05259462A - Insulated gate type bipolar transistor - Google Patents

Insulated gate type bipolar transistor

Info

Publication number
JPH05259462A
JPH05259462A JP5297992A JP5297992A JPH05259462A JP H05259462 A JPH05259462 A JP H05259462A JP 5297992 A JP5297992 A JP 5297992A JP 5297992 A JP5297992 A JP 5297992A JP H05259462 A JPH05259462 A JP H05259462A
Authority
JP
Japan
Prior art keywords
region
gate
layer
gate electrode
inductive load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5297992A
Other languages
Japanese (ja)
Inventor
Noriyuki Iwamuro
憲幸 岩室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5297992A priority Critical patent/JPH05259462A/en
Publication of JPH05259462A publication Critical patent/JPH05259462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To enlarge a turn off SOA (safe operation area) without lowering on voltage.switching time property by inserting a resistor and a inductive load connected in series, between a gate electrode and a gate electrode. CONSTITUTION:An n<+>-layer 2 (second region) and an n<-> layer 3 (third region) are stacked on a p<+>-substrate 1 (first region), and a gate oxide film 6 is made, and then a gate electrode 7 is made. Using the same mask as the gate electrode pattern, a p<+>-channel formation layer 4 (fourth region) is made, and then with the gate electrode 7 as a mask, an n<+>-layer 5 (fifth region) is made, and an insulating film 8 is made, and a source electrode 9 is made on the surface, and a drain electrode 10 is made on the rear side. Furthermore, with the view of raising recoupling, a life time killer is made on a silicon substrate, and inductive load 11 and a gate resistor 12 for discharge are inserted in series between one place of the gate electrode 7n and a gate terminal G. Hereby, return off is prevented, and SOA becomes large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力用スイッチング素
子として用いられる絶縁ゲート型バイポーラトランジス
タ (以下IGBTと記す) に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate bipolar transistor (hereinafter referred to as IGBT) used as a power switching element.

【0002】[0002]

【従来の技術】近年、電力用スイッチング素子としてI
GBTが一般に使われ始めているが、これは縦型MOS
FETのドレイン領域のドレイン電極側に逆導電型の層
を付け加えた構成を有している。すなわち、図2に一つ
の単位セルについて示すように、p+ 基板1の上に低抵
抗のn+ 層2を介して高抵抗のn- 層3が形成され、そ
のn- 層3の表面層にp+ 層4、さらにそのp+ 層4の
表面層にn+ 層5がそれぞれ選択的に形成されている。
そして、p+ 層4のうちのn- 層3とn+ 層5にはさま
れた表面部をチャネル領域としてその上にゲート絶縁膜
6を介してゲート端子Gに接続されたゲート電極7が設
けられている。また、p+ 層4とn+ 層5の表面にはゲ
ート電極7と絶縁膜8によって絶縁されソース端子Sに
接続されたソース電極9が、p+ 基板1の表面にはドレ
イン端子Dに接続されたドレイン電極10がそれぞれ接触
している。
2. Description of the Related Art Recently, I has been used as a power switching element.
The GBT is generally used, but this is a vertical MOS
It has a structure in which a layer of opposite conductivity type is added to the drain electrode side of the drain region of the FET. That is, as shown for one unit cell in FIG. 2, p + on the substrate 1 through the low-resistance n + layer 2 of the high-resistance n - layer 3 is formed, the n - surface layer of the layer 3 The p + layer 4 and the n + layer 5 are selectively formed on the surface layer of the p + layer 4.
The gate electrode 7 connected to the gate terminal G via the gate insulating film 6 is formed on the surface portion of the p + layer 4 sandwiched between the n layer 3 and the n + layer 5 as a channel region. It is provided. A source electrode 9 insulated from the gate electrode 7 and the insulating film 8 and connected to the source terminal S is provided on the surfaces of the p + layer 4 and the n + layer 5, and a drain terminal D is provided on the surface of the p + substrate 1. The drain electrodes 10 are in contact with each other.

【0003】このIGBTは、ソース端子Sを接地し、
ゲート端子Gとドレイン端子Dに正の電圧を与えると、
+ 層2およびn- 層3、p+ 層4、n+ 層5ならびに
ゲート電極7およびソース電極9から構成される内蔵M
OSFETがオンし、前記チャネル領域を介してn-
3に電子が流れ込む。p+ 基板1からn- 層3には、n
+ 層2を介してその電子流入に対応した正孔の注入がお
こり、n- 層3では伝導度変調が生ずることにより、こ
の領域の抵抗が低くなり、低いオン抵抗が導通する。
In this IGBT, the source terminal S is grounded,
When a positive voltage is applied to the gate terminal G and the drain terminal D,
Built-in M composed of n + layer 2 and n layer 3, p + layer 4, n + layer 5, gate electrode 7 and source electrode 9
The OSFET is turned on, and electrons flow into the n layer 3 via the channel region. p + substrate 1 to n layer 3 has n
Holes corresponding to the inflow of electrons are injected through the + layer 2, and conductivity modulation occurs in the n layer 3, so that the resistance in this region becomes low and a low on-resistance is conducted.

【0004】[0004]

【発明が解決しようとする課題】上記の従来のIGBT
は、オン電圧は小さくなるが、n- 層3における電子と
正孔の再結合率が低いため、スイッチング時間が長いと
いう問題がある。この問題を解決するために、電子と正
孔の再結合率を高める目的で、シリコン素体に電子線を
照射したり、金の拡散を行ってライフタイムキラーを導
入し、ライフタイムを短くする方法がある。しかし、こ
れらの方法を実行すると、逆にオン電圧が大きくなって
しまう。オン電圧を低くおさえたままスイッチング時間
を短くするには、n- 層3の不純物濃度を低くして空乏
層を早く拡げる方法がある。しかしながらこのことによ
り、ターンオフ動作のある時、ドレイン電圧の単位時間
当たりの増加率dVD /dtが急激に上昇し、n- 層3
−ゲート絶縁膜6−ゲート電極7で形成されるコンデン
サに変位電流が流れてしまう。これによって一度オフし
たMOSFETが再びオンしてしまい、高ドレイン電圧
印加時に内蔵MOSFETがオンした状態になる。この
現象によって、IGBTのターンオフSOA (安全動作
領域) が減少してしまうという問題が生ずる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Has a low on-voltage, but has a problem that the switching time is long because the recombination rate of electrons and holes in the n layer 3 is low. In order to solve this problem, in order to increase the recombination rate of electrons and holes, a silicon body is irradiated with an electron beam or gold is diffused to introduce a lifetime killer to shorten the lifetime. There is a way. However, when these methods are executed, the on-voltage is increased. To shorten the switching time while keeping the on-voltage low, there is a method of lowering the impurity concentration of the n layer 3 to quickly expand the depletion layer. However, due to this, when there is a turn-off operation, the rate of increase in drain voltage per unit time dV D / dt rises sharply, and the n layer 3
-Displacement current flows through the capacitor formed of the gate insulating film 6 and the gate electrode 7. As a result, the MOSFET that was once turned off is turned on again, and the built-in MOSFET is turned on when the high drain voltage is applied. This phenomenon causes a problem that the turn-off SOA (safe operating area) of the IGBT is reduced.

【0005】本発明の目的は、上記の問題点に鑑み、オ
ン電圧・スイッチング時間特性を低下させることなく、
ターンオフSOAが拡大したIGBTを提供することに
ある。
In view of the above problems, it is an object of the present invention to reduce the on-voltage / switching time characteristics,
The turn-off SOA is to provide an expanded IGBT.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電型を有する第一領域と、その
第一領域上の第二導電型を有する第二領域と、その第二
領域上の第二導電型を有する低不純物濃度の第三領域
と、その第三領域表面層に選択的に形成された第一導電
型を有する第四領域と、その第四領域表面層に選択的に
形成された第二導電型を有する高不純物濃度の第五領域
と、前記第四領域表面部の第三領域および第五領域によ
ってはさまれた部分をチャネル領域としてその上にゲー
ト絶縁膜を介して設けられたゲート電極と、前記第四領
域表面および第五領域表面に共通に接触するソース電極
と、前記第一領域に接触するドレイン電極とから構成さ
れたIGBTにおいて、ゲート電極とゲート電源の間に
抵抗と誘導性負荷とが直列接続して挿入されたものとす
る。そして、同一構造を有する複数の単位セルからな
り、各セルのゲート電極は連結して一体に形成され、そ
のゲート電極の1個所が抵抗および誘導性負荷を介して
ゲート電極に接続されたことが有効である。第一ないし
第五領域を有する半導体素体にライフタイムキラーが導
入されたこと、また、誘導性負荷のインダクタンスが0.
8μH以上であることが有効である。
In order to achieve the above object, the present invention provides a first region having a first conductivity type and a second region having a second conductivity type on the first region. A low impurity concentration third region having a second conductivity type on the second region, a fourth region having a first conductivity type selectively formed on the third region surface layer, and a surface of the fourth region. A high impurity concentration fifth region having a second conductivity type selectively formed in the layer, and a portion sandwiched by the third region and the fifth region of the surface of the fourth region as a channel region thereon. An IGBT comprising a gate electrode provided through a gate insulating film, a source electrode commonly contacting the surfaces of the fourth region and the fifth region, and a drain electrode contacting the first region Between the electrode and the gate power supply And those inserted in series connection. It is composed of a plurality of unit cells having the same structure, the gate electrodes of the respective cells are connected and integrally formed, and one of the gate electrodes is connected to the gate electrode via a resistance and an inductive load. It is valid. Introducing a lifetime killer into the semiconductor body having the first to fifth regions, and reducing the inductance of the inductive load to 0.
It is effective that it is 8 μH or more.

【0007】[0007]

【作用】IGBTターンオフ時に発生する高いdVD
dtによってゲート電極とゲート電源を結ぶ回路に流れ
る変位電流が、その回路に挿入された誘導性負荷によっ
て抑制されるので、内蔵MOSFETが再オンすること
が防止できる。従ってSOAが大きくなる。
[Operation] High dV D / which occurs when the IGBT is turned off
The displacement current flowing in the circuit connecting the gate electrode and the gate power supply by dt is suppressed by the inductive load inserted in the circuit, so that the built-in MOSFET can be prevented from turning on again. Therefore, the SOA becomes large.

【0008】[0008]

【実施例】図1は本発明の一実施例のIGBTの単一セ
ルを示し、図2と共通の部分には同一の符号が付されて
いる。このような単一セルを複数個有するIGBTは、
従来と同様次の方法で製造された。まず、p+ 基板1
(第一領域) の表面にエピタキシャル成長法でn+ 層2
(第二領域) 、n- 層3 (第三領域) を積層した。次に
ゲート酸化膜6を形成した後にゲート電極7を形成し、
そのゲート電極パターニングと同一マスクを用いてp+
チャネル形成層4 (第四領域) のためイオン注入を行っ
た。そして熱拡散によりp+ 層4を形成した後、ゲート
電極7をマスクとしてn+ 層5 (第五領域) をイオン注
入法と熱拡散法により形成した。つづいて、絶縁膜8を
形成し、その後絶縁膜8の表面にソース電極9を形成し
た。最後に裏面側にドレイン電極10を形成した。さら
に、再結合率を高める目的でシリコン基体に電子線照射
を行ってライフタイムキラーとなる格子欠陥を形成し、
そのあと330 ℃、2時間の熱処理を施した。シリコン基
体の表面上の各セルのゲート電極7は連結された多結晶
シリコン層で形成されており、その1個所とゲート端子
Gとの間に誘導性負荷 (LG )11 および放電用ゲート抵
抗 (RG )12 を直列に挿入した。LG は1μH、RG
25Ωである。このIGBTのn+ 層2は抵抗率0.05Ωc
m、厚さ10μm、n- 層3は抵抗率120 Ωcm、厚さ65μ
mで、素子定格は耐圧600 V、電流容量100 Aである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an IGBT single cell according to an embodiment of the present invention, and the same parts as those in FIG. 2 are designated by the same reference numerals. An IGBT having a plurality of such single cells is
It was manufactured by the following method as in the past. First, p + substrate 1
The n + layer 2 is formed on the surface of the (first region) by an epitaxial growth method.
(Second region) and n layer 3 (third region) were laminated. Next, after forming the gate oxide film 6, the gate electrode 7 is formed,
P + using the same mask as the gate electrode patterning
Ion implantation was performed for the channel forming layer 4 (fourth region). After the p + layer 4 was formed by thermal diffusion, the n + layer 5 (fifth region) was formed by the ion implantation method and the thermal diffusion method using the gate electrode 7 as a mask. Subsequently, the insulating film 8 was formed, and then the source electrode 9 was formed on the surface of the insulating film 8. Finally, the drain electrode 10 was formed on the back surface side. Further, the silicon substrate is irradiated with an electron beam for the purpose of increasing the recombination rate to form a lattice defect that becomes a lifetime killer,
After that, heat treatment was performed at 330 ° C. for 2 hours. The gate electrode 7 of each cell on the surface of the silicon substrate is formed of a connected polycrystalline silicon layer, and an inductive load (L G ) 11 and a discharge gate resistance are provided between one portion thereof and the gate terminal G. ( RG ) 12 was inserted in series. L G is 1 μH and R G is
It is 25Ω. The n + layer 2 of this IGBT has a resistivity of 0.05 Ωc
m, thickness 10 μm, n layer 3 has a resistivity of 120 Ωcm, thickness 65 μ
The device rating is 600 V and the current capacity is 100 A.

【0009】図3にこのIGBTと、同様にして製造さ
れ、LG が接続されないIGBTとの室温でのそれぞれ
のターンオフSOAを線31および32に示す。図4はその
SOA測定に用いた測定回路で供試IGBT41には300
μHの誘導負荷42と逆流阻止ダイオード43を介して600
Vの電源44が接続されている。ゲート電源はパルス電源
45である。図3から明らかなように、ゲート回路に誘導
性負荷を接続したIGBTの方がターンオフSOAが大
きく、定格の6倍である600 Aまで破壊せずオフしてい
る。
FIG. 3 shows the respective turn-off SOAs at room temperature for this IGBT and an IGBT made in the same way, but with no L G connected, on lines 31 and 32. Figure 4 shows the measurement circuit used for the SOA measurement.
600 via μH inductive load 42 and reverse current blocking diode 43
A V power source 44 is connected. Gate power supply is pulse power supply
45. As is apparent from FIG. 3, the IGBT having an inductive load connected to the gate circuit has a larger turn-off SOA, and is turned off without breaking up to 600 A, which is 6 times the rated value.

【0010】図5は同様なSOAの比較を125 ℃におい
て行ったもので、上記の実施例のIGBTの場合を線5
1、LG が接続されない場合を線52で示す。図4から明
らかなように、ゲート回路に誘導性負荷を接続したIG
BTの方がSOAが大きく、定格の5倍である500 Aま
で破壊せずオフしている。
FIG. 5 shows a similar SOA comparison at 125.degree. C., with line 5 for the IGBT of the above embodiment.
Line 52 shows the case where 1, L G are not connected. As is clear from Fig. 4, the IG with an inductive load connected to the gate circuit
The BT has a larger SOA, and is off without breaking up to 500 A, which is five times the rating.

【0011】[0011]

【発明の効果】本発明によれば、ゲート回路に誘導性負
荷を挿入することにより、ターンオフ時のdVD /dt
によりMOS構造部に形成されるコンデンサに流れる変
位電流を抑制することができ、再ターンオンが防止され
るのでSOAが大きくなる。
According to the present invention, by inserting an inductive load in the gate circuit, dV D / dt at turn-off can be achieved.
As a result, the displacement current flowing in the capacitor formed in the MOS structure can be suppressed, and re-turn-on is prevented, so that the SOA becomes large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のIGBTの断面図FIG. 1 is a sectional view of an IGBT according to an embodiment of the present invention.

【図2】従来のIGBTの単一セルの断面図FIG. 2 is a cross-sectional view of a conventional IGBT single cell.

【図3】本発明の一実施例のIGBTと従来のIGBT
の室温でのSOA比較図
FIG. 3 is an IGBT according to an embodiment of the present invention and a conventional IGBT.
SOA comparison diagram at room temperature

【図4】図3のSOAの測定回路図4 is a measurement circuit diagram of the SOA of FIG.

【図5】本発明の一実施例のIGBTと従来のIGBT
の125 ℃でのSOA比較図
FIG. 5 is an IGBT according to an embodiment of the present invention and a conventional IGBT.
SOA comparison diagram at 125 ℃

【符号の説明】[Explanation of symbols]

1 p+ 第一領域 2 n+ 第二領域 3 n- 第三領域 4 p+ 第四領域 5 n+ 第五領域 6 ゲート絶縁膜 7 ゲート電極 9 ソース電極 10 ドレイン電極 11 誘導性負荷 12 放電用ゲート抵抗1 p + first region 2 n + second region 3 n - third region 4 p + fourth region 5 n + fifth region 6 the gate insulating film 7 gate electrode 9 a source electrode 10 drain electrode 11 inductive load 12 for discharge Gate resistance

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電型を有する第一領域と、その第一
領域上の第二導電型を有する第二領域と、その第二領域
上の第二導電型を有する低不純物濃度の第三領域と、そ
の第三領域表面層に選択的に形成された第一導電型を有
する第四領域と、その第四領域表面層に選択的に形成さ
れた第二導電型を有する高不純物濃度の第五領域と、前
記第四領域表面部の第三領域および第五領域によっては
さまれた部分をチャネル領域としてその上にゲート絶縁
膜を介して設けられたゲート電極と、前記第四領域表面
および第五領域表面に共通に接触するソース電極と、前
記第一領域に接触するドレイン電極とから構成されたも
のにおいて、ゲート電極とゲート電源の間に抵抗と誘導
性負荷とが直列接続して挿入されたことを特徴とする絶
縁ゲート型バイポーラトランジスタ。
1. A first region having a first conductivity type, a second region having a second conductivity type on the first region, and a second impurity type second region having a second conductivity type on the second region. High impurity concentration having three regions, a fourth region having a first conductivity type selectively formed in the surface layer of the third region, and a second region having a second conductivity type selectively formed in the surface layer of the fourth region A fifth region, a gate electrode provided on the fourth region surface portion with a portion sandwiched by the third region and the fifth region as a channel region through a gate insulating film, and the fourth region. A source electrode commonly contacting the surface and the surface of the fifth region, and a drain electrode contacting the first region, wherein a resistance and an inductive load are connected in series between the gate electrode and the gate power supply. Insulated gate type bipolar La transistor.
【請求項2】同一構造を有する複数の単位セルからな
り、各セルのゲート電極は連結して一体に形成され、そ
のゲート電極の1個所が抵抗および誘導性負荷を介して
ゲート電極に接続された請求項1記載の絶縁ゲート型バ
イポーラトランジスタ。
2. A plurality of unit cells having the same structure, wherein the gate electrodes of each cell are connected and integrally formed, and one of the gate electrodes is connected to the gate electrode via a resistance and an inductive load. The insulated gate bipolar transistor according to claim 1.
【請求項3】第一ないし第五領域を有する半導体素体に
ライフタイムキラーが導入された請求項1あるいは2記
載の絶縁ゲート型バイポーラトランジスタ。
3. The insulated gate bipolar transistor according to claim 1, wherein the lifetime killer is introduced into the semiconductor element body having the first to fifth regions.
【請求項4】誘導性負荷のインダクタンスが0.8μH以
上である請求項1、2あるいは3記載の絶縁ゲート型バ
イポーラトランジスタ。
4. The insulated gate bipolar transistor according to claim 1, 2 or 3, wherein the inductance of the inductive load is 0.8 μH or more.
JP5297992A 1992-03-12 1992-03-12 Insulated gate type bipolar transistor Pending JPH05259462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5297992A JPH05259462A (en) 1992-03-12 1992-03-12 Insulated gate type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5297992A JPH05259462A (en) 1992-03-12 1992-03-12 Insulated gate type bipolar transistor

Publications (1)

Publication Number Publication Date
JPH05259462A true JPH05259462A (en) 1993-10-08

Family

ID=12930026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5297992A Pending JPH05259462A (en) 1992-03-12 1992-03-12 Insulated gate type bipolar transistor

Country Status (1)

Country Link
JP (1) JPH05259462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040598A (en) * 1997-03-18 2000-03-21 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040598A (en) * 1997-03-18 2000-03-21 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor apparatus
USRE40705E1 (en) * 1997-03-18 2009-05-05 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor apparatus
USRE40712E1 (en) 1997-03-18 2009-05-19 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor apparatus

Similar Documents

Publication Publication Date Title
US6051850A (en) Insulated gate bipolar junction transistors having built-in freewheeling diodes therein
US5391898A (en) Insulated gate bipolar transistor having high short-circuit and latch-up withstandability
US6246092B1 (en) High breakdown voltage MOS semiconductor apparatus
JP3911566B2 (en) MOS type semiconductor device
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
EP0159663A2 (en) High-density V-groove MOS-controlled thyristors, insulated-gate transistors, and MOSFETs, and methods for fabrication
JPH0465878A (en) Semiconductor device
JP3338185B2 (en) Semiconductor device
JPH043981A (en) Conductivity-modulation mosfet
US5861638A (en) Insulated gate bipolar transistor
CA1225164A (en) Integrated field controlled thyristor structure with grounded cathode
US5936267A (en) Insulated gate thyristor
JP4431761B2 (en) MOS type semiconductor device
CA1279409C (en) Composite semiconductor device
KR0114765Y1 (en) Mos gate control thyristor
JPS62150769A (en) Semiconductor device
EP0624906B1 (en) Integrated structure circuit for the protection of power devices against overvoltages
KR100316723B1 (en) Power MOSFET having low on-resistance and high ruggedness
JPH06112494A (en) Insulated gate bipolar transistor
JP2513640B2 (en) Conduction modulation type MOSFET
JPH05259462A (en) Insulated gate type bipolar transistor
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JPS62283669A (en) Conductivity modulation type mosfet
KR940008259B1 (en) Semiconductor device and manufacturing method thereof
JPH042169A (en) Horizontal type conductivity modulation semiconductor device