JPH05259096A - Method of forming amorphous semiconductor - Google Patents

Method of forming amorphous semiconductor

Info

Publication number
JPH05259096A
JPH05259096A JP4087722A JP8772292A JPH05259096A JP H05259096 A JPH05259096 A JP H05259096A JP 4087722 A JP4087722 A JP 4087722A JP 8772292 A JP8772292 A JP 8772292A JP H05259096 A JPH05259096 A JP H05259096A
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
substrate
hydrogen
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4087722A
Other languages
Japanese (ja)
Other versions
JP3059297B2 (en
Inventor
Katsunobu Sayama
勝信 佐山
Hisao Haku
久雄 白玖
Yukio Nakajima
行雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4087722A priority Critical patent/JP3059297B2/en
Publication of JPH05259096A publication Critical patent/JPH05259096A/en
Application granted granted Critical
Publication of JP3059297B2 publication Critical patent/JP3059297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form an amorphous semiconductor high in photoconductivity and low in deterioration by light. CONSTITUTION:An amorphous semiconductor hydride thin film 8 is formed on a prescribed substrate 3 through a vapor reaction method where discharge decomposition is carried out under a reduced pressure in an amorphous semiconductor forming method, where a first deposition process where an amorphous semiconductor hydride thin film 8 is deposited on the substrate 3 at a deposition rate of over 3Angstrom /second keeping the substrate 3 at a temperature of 400-550 deg.C and a dehydrogenation process where hydrogen is partially dissociated from the amorphous semiconductor hydride thin film 8 making the substrate stand at the same temperature after discharge decomposition is stopped are alternately repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相反応を用いた非晶質
半導体薄膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an amorphous semiconductor thin film using a gas phase reaction.

【0002】[0002]

【従来の技術】近年、例えば光起電力素子(太陽電池)
等に使用される水素化非晶質シリコン(a−Si:H)
等の非晶質半導体を形成する方法として、プラズマCV
D法(PCVD法)が多用されている。PCVD法にお
いては、原料の低圧気体ガスを導入し、電気的エネルギ
ーを加えてプラズマ状態を作り出し、反応を行わせて基
板上に半導体薄膜を形成する。電気的エネルギーを加え
る方法としては、電極間に直流電圧を印加してグロー放
電を行う直流グロー放電法、高周波電力を印加する高周
波グロー放電法等のグロー放電法が一般的である。
2. Description of the Related Art In recent years, for example, photovoltaic elements (solar cells)
Hydrogenated amorphous silicon (a-Si: H) used for
As a method for forming an amorphous semiconductor such as plasma CV
The D method (PCVD method) is often used. In the PCVD method, a low-pressure gas gas as a raw material is introduced, electric energy is applied to create a plasma state, and a reaction is performed to form a semiconductor thin film on a substrate. As a method for applying electrical energy, a glow discharge method such as a direct current glow discharge method in which a direct current voltage is applied between electrodes to perform glow discharge and a high frequency glow discharge method in which high frequency power is applied are generally used.

【0003】グロー放電法で作製される水素化非晶質シ
リコンはGDa−Siと呼ばれ、このGDa−Siの作
製に最も多用されているガスはモノシラン(SiH4
であり、このSiH4 をアルゴン(Ar)、ヘリウム
(He)等の不活性ガスや水素(H2 )で希釈したガス
が多く用いられる。
Hydrogenated amorphous silicon produced by the glow discharge method is called GDa-Si, and the most frequently used gas for producing this GDa-Si is monosilane (SiH 4 ).
Therefore, a gas obtained by diluting this SiH 4 with an inert gas such as argon (Ar) or helium (He) or hydrogen (H 2 ) is often used.

【0004】SiH4 を用いたGDa−Siには多量の
水素が含まれるが、この水素の中には、焼鈍(アニー
ル)を行うことにより、例えば図1に示すように、40
0℃〜500℃程度で容易に分離される遊離型水素と、
550℃〜800℃程度で分離される分散型水素とがあ
ることが知られている。
GDa-Si using SiH 4 contains a large amount of hydrogen, and this hydrogen contains 40% as shown in FIG. 1 by annealing (annealing).
Free hydrogen, which is easily separated at about 0 ° C to 500 ° C,
It is known that there is dispersed hydrogen that is separated at about 550 ° C to 800 ° C.

【0005】遊離型水素としては、ポリシラン(SiH
2 )nまたはクラスター化水素等が含まれ、強い光を当
て続けるとこれら遊離型水素が膜中を移動して欠陥が増
加して光導電率等が低下する、いわゆる、光劣化と呼ば
れる現象が生じることが知られている。
As free hydrogen, polysilane (SiH
2 ) n or clustered hydrogen is included, and if strong light is continuously applied, these free hydrogen move in the film, defects increase and photoconductivity etc. decrease, so-called phenomenon called photodegradation It is known to occur.

【0006】分散型水素としては、 孤立SiH、孤立
SiH2 (シリレン)、孤立SiH3(シリル)が代表
的であり、結合の切れの欠陥を終端する役割を果たして
いる。
Typical examples of dispersed hydrogen are isolated SiH, isolated SiH 2 (silylene), and isolated SiH 3 (silyl), which play a role of terminating bond breaking defects.

【0007】光劣化を防止する方法としては、従来、基
板温度を高く設定して、膜中の水素量全体を減少させる
という方法が採られている。この従来方法によれば、ネ
ットワークの緻密化を図り、光劣化を現象できる。
As a method for preventing photodegradation, conventionally, a method has been adopted in which the substrate temperature is set high to reduce the total amount of hydrogen in the film. According to this conventional method, the network can be made dense and the phenomenon of optical deterioration can be achieved.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この従
来方法によれば、膜中水素としての分散型水素も少なく
なり、光学的バンドギャップが低下し、この光学的バン
ドギャップの低下に伴う光起電力素子としての開放電圧
の低下や、水素量全体の減少に伴う非晶質半導体中の欠
陥準位密度の増加を引き起こすという問題がある。
However, according to this conventional method, the amount of dispersed hydrogen as hydrogen in the film is reduced, the optical bandgap is lowered, and the photoelectromotive force accompanying the lowering of the optical bandgap is reduced. There are problems that the open circuit voltage of the device is lowered and that the defect level density in the amorphous semiconductor is increased with the decrease of the total hydrogen amount.

【0009】本発明が目的ととするところは、開放電圧
の低下や欠陥準位密度の増加を伴わずに光劣化を防止で
きるようにした非晶質半導体薄膜の形成方法を提供する
ことを目的とする。
An object of the present invention is to provide a method for forming an amorphous semiconductor thin film capable of preventing photodegradation without lowering the open circuit voltage and increasing the defect level density. And

【0010】[0010]

【課題を解決するための手段】本発明は、減圧下におけ
る放電分解による気相反応を用いて、所定の基板上に水
素化非晶質半導体薄膜を形成する非晶質半導体の形成方
法であって、前記基板の温度を400℃以上550℃以
下とし、毎秒3Å以上の堆積速度で水素化非晶質半導体
薄膜を基板上に堆積する堆積工程と、放電分解を停止し
た上で同じ基板温度に放置して一部の水素を脱離させる
脱水素工程とを交互に繰り返すことを特徴とする。
The present invention is a method for forming an amorphous semiconductor in which a hydrogenated amorphous semiconductor thin film is formed on a predetermined substrate by using a gas phase reaction by discharge decomposition under reduced pressure. Then, the temperature of the substrate is set to 400 ° C. or higher and 550 ° C. or lower, and the hydrogenation amorphous semiconductor thin film is deposited on the substrate at a deposition rate of 3Å or more per second; It is characterized by alternately repeating a dehydrogenation step of leaving a part of hydrogen to be desorbed.

【0011】[0011]

【作用】本発明においては、基板温度を高くするととも
に、膜堆積速度を毎秒3Å以上に高めることにより、非
晶質半導体が高速で形成され、これに伴い非晶質半導体
に多量の水素、特に、分散型水素が取り込まれ、緻密な
膜構造が形成される。また、堆積工程に引き続いて脱水
素工程を行うことにより、クラスター化水素等の遊離型
水素を離脱させることができる。
In the present invention, by increasing the substrate temperature and increasing the film deposition rate to 3Å / sec or more, an amorphous semiconductor is formed at high speed, and accordingly, a large amount of hydrogen, particularly The dispersed hydrogen is taken in and a dense film structure is formed. In addition, free hydrogen such as clustered hydrogen can be released by performing a dehydrogenation process subsequent to the deposition process.

【0012】更に、これらの工程を交互に繰り返すこと
により、1回の堆積膜厚を一定以下にして、短時間で効
率良く脱水素を行えるようになるとともに、各回の堆積
工程で形成された非晶質半導体薄膜を均等に脱水素し
て、全膜厚にわたって均質に脱水素された非晶質半導体
薄膜を得ることができる。
Further, by repeating these steps alternately, it becomes possible to perform dehydrogenation efficiently in a short time by keeping the deposited film thickness of one time less than a certain value, and to perform the non-deposition process performed in each deposition step. The crystalline semiconductor thin film can be dehydrogenated uniformly to obtain an amorphous semiconductor thin film that has been uniformly dehydrogenated over the entire film thickness.

【0013】[0013]

【実施例】以下、本発明の一実施例に係る非晶質半導体
の形成方法を図面に基づき具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for forming an amorphous semiconductor according to an embodiment of the present invention will be specifically described below with reference to the drawings.

【0014】この方法は、例えば図2の模式図に示す公
知の高周波グロー放電法に用いられる高周波プラズマC
VD装置(RFプラズマCVD)を用いて実施される。
This method is, for example, a high-frequency plasma C used in a known high-frequency glow discharge method shown in the schematic view of FIG.
It is performed using a VD device (RF plasma CVD).

【0015】すなわち、チャンバー1内に互いに対向す
る1対の電極2を配置し、基板3を載せた一方の電極2
の周囲に配設したガス入口リング4より原料ガスを放出
しながら、該電極2の中央部から排気を排気系5に排出
させる一方、両電極2間に高周波電源6から高周波電流
を供給する。上記一方の電極2の下方には基板3を加熱
するヒータ7が設けられる。
That is, a pair of electrodes 2 facing each other is arranged in a chamber 1, and one electrode 2 on which a substrate 3 is mounted is placed.
While discharging the raw material gas from the gas inlet ring 4 arranged around, the exhaust gas is discharged from the central portion of the electrode 2 to the exhaust system 5, while a high frequency current is supplied from a high frequency power source 6 between the electrodes 2. A heater 7 for heating the substrate 3 is provided below the one electrode 2.

【0016】原料ガスとしてはSiH4 を用い、図3の
フロー図および表1に示すように、基板温度450℃、
作製圧力(ガス圧)13Pa、SiH4 流量50SCC
M、RFパワー50W、成膜速度5Å/秒で、1回当た
り所定の膜厚の成膜をする堆積工程と、放電分解を停止
した後、所定時間にわたって同じ基板温度(450℃)
に放置して一部の水素を離脱させる脱水素工程とを交互
に繰り返し、約4時間かかって1μmの非晶質シリコン
膜8を形成した。
SiH 4 was used as a source gas, and the substrate temperature was 450 ° C. as shown in the flow chart of FIG. 3 and Table 1.
Manufacturing pressure (gas pressure) 13 Pa, SiH 4 flow rate 50 SCC
M, RF power of 50 W, deposition rate of 5 Å / sec, deposition process of forming a predetermined film thickness once, and the same substrate temperature (450 ° C.) for a predetermined time after stopping discharge decomposition
The dehydrogenation step of leaving a part of hydrogen to be left for 2 hours is alternately repeated, and it took about 4 hours to form the amorphous silicon film 8 having a thickness of 1 μm.

【0017】ここで、1回の堆積工程において形成され
る非晶質シリコンの膜厚は、一定以上の光導電率を得る
ため、10Å以上300Å以下とすることが好ましい。
図4に示すように、1回の堆積工程において形成される
非晶質シリコンの膜厚が10Åを下回る場合には、放電
初期のプラズマダメージの影響が大きくなって特性(光
導電率)が低下するので好ましくない。また、1回の堆
積工程において形成される非晶質シリコンの膜厚が30
0Åを上回る場合には、短時間で十分な水素の離脱を行
えなくなって特性(光導電率)が低下するので好ましく
ない。
Here, the film thickness of the amorphous silicon formed in one deposition step is preferably 10 Å or more and 300 Å or less in order to obtain a certain or higher photoconductivity.
As shown in FIG. 4, when the film thickness of the amorphous silicon formed in one deposition step is less than 10Å, the effect of plasma damage at the initial stage of discharge becomes large and the characteristics (photoconductivity) deteriorate. Is not preferred. Further, the film thickness of amorphous silicon formed in one deposition step is 30
If it exceeds 0Å, hydrogen cannot be sufficiently desorbed in a short time and the characteristics (photoconductivity) are deteriorated, which is not preferable.

【0018】この実施例では、1回の堆積工程で形成す
る膜厚を最も良好な特性が得られた50Åとした。脱水
素工程の工程時間は、1回の堆積工程で形成する膜厚を
50Åとした場合には、図5に示すように、1分以上で
あれば500時間光照射後の光劣化が一定以下に抑えら
れることが確かめられたので、この実施例では1分間と
した。
In this example, the film thickness formed in one deposition step was set to 50Å where the best characteristics were obtained. When the film thickness formed in one deposition step is 50 Å, the dehydrogenation step has a photodeterioration of 500 hours or less after irradiation with light for a certain time as shown in FIG. It was confirmed that the value was suppressed to 1. Therefore, it was set to 1 minute in this example.

【0019】[0019]

【従来例1】原料ガスとしてはSiH4 を用い、基板温
度450℃、作製圧力(ガス圧)13Pa、SiH4
量50SCCM、RFパワー50W、成膜速度5Å/秒
で、脱水素工程を行わずに、膜厚1μmの非晶質シリコ
ン膜を形成した。
Conventional Example 1 SiH 4 was used as a source gas, the substrate temperature was 450 ° C., the fabrication pressure (gas pressure) was 13 Pa, the SiH 4 flow rate was 50 SCCM, the RF power was 50 W, and the film formation rate was 5 Å / sec. Then, an amorphous silicon film having a film thickness of 1 μm was formed.

【0020】[0020]

【従来例2】原料ガスとしてはSiH4 を用い、基板温
度200℃、作製圧力(ガス圧)13Pa、SiH4
量50SCCM、RFパワー50W、成膜速度1Å/秒
で、脱水素工程を行わずに、膜厚1μmの非晶質シリコ
ン膜を形成した。
Conventional Example 2 SiH 4 was used as a source gas, the substrate temperature was 200 ° C., the fabrication pressure (gas pressure) was 13 Pa, the SiH 4 flow rate was 50 SCCM, the RF power was 50 W, and the film formation rate was 1 Å / sec. Then, an amorphous silicon film having a film thickness of 1 μm was formed.

【0021】[0021]

【従来例3】原料ガスとしてはSiH4 を用い、基板温
度450℃、作製圧力(ガス圧)13Pa、SiH4
量50SCCM、RFパワー50W、成膜速度1Å/秒
で、脱水素工程を行わずに、膜厚1μmの非晶質シリコ
ン膜を形成した。
Conventional Example 3 SiH 4 was used as a source gas, the substrate temperature was 450 ° C., the fabrication pressure (gas pressure) was 13 Pa, the SiH 4 flow rate was 50 SCCM, the RF power was 50 W, and the film formation rate was 1 Å / sec. Then, an amorphous silicon film having a film thickness of 1 μm was formed.

【0022】[0022]

【従来例4】原料ガスとしてはSiH4 を用い、基板温
度200℃、作製圧力(ガス圧)13Pa、SiH4
量50SCCM、RFパワー50W、成膜速度5Å/秒
で、脱水素工程を行わずに、膜厚1μmの非晶質シリコ
ン膜を形成した。
Conventional Example 4 SiH 4 was used as a source gas, the substrate temperature was 200 ° C., the fabrication pressure (gas pressure) was 13 Pa, the SiH 4 flow rate was 50 SCCM, the RF power was 50 W, and the film formation rate was 5 Å / sec. Then, an amorphous silicon film having a film thickness of 1 μm was formed.

【0023】[0023]

【従来例5】従来例1によって得た非晶質シリコン膜
を、基板温度450℃で5時間放置して熱離脱した。
Conventional Example 5 The amorphous silicon film obtained in Conventional Example 1 was left at a substrate temperature of 450 ° C. for 5 hours to be thermally released.

【0024】[0024]

【表1】 [Table 1]

【0025】これらの実施例1、従来例1〜5の各非晶
質シリコンにAM−1.5,100mW/cm2 の光を
500時間照射した後の光導電率を、照射前の光導電率
と併せて表2に示す。
The photoconductivity after irradiation of AM-1.5, 100 mW / cm 2 of light for 500 hours on each of the amorphous silicons of Example 1 and Conventional Examples 1 to 5 was determined as the photoconductivity before irradiation. It is shown in Table 2 together with the rate.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から、低温条件(基板温度200℃)
の従来例2、4は、明らかに光劣化が高温条件に比べて
大きいことがわかる。また、単に高温、高速成膜条件
(基板温度450℃、成膜速度5Å/秒)の従来例1に
おいては、膜の中にクラスタ化水素が取り込まれてしま
った結果、光劣化が見られており、照射後の光導電率で
比べた場合には、本実施例が一番高い値となっている。
From Table 2, low temperature conditions (substrate temperature 200 ° C.)
It can be seen that in Conventional Examples 2 and 4, the optical deterioration is obviously greater than that under the high temperature condition. Further, in the conventional example 1 simply under the conditions of high temperature and high speed film formation (substrate temperature 450 ° C., film formation rate 5 Å / sec), photodegradation was observed as a result of the inclusion of clustered hydrogen in the film. Therefore, when comparing the photoconductivity after irradiation, this example has the highest value.

【0028】また、従来例5では、水素離脱のためにこ
れだけの時間をかけても、まだ光劣化が見られており、
さらに長い時間が必要と思われる。しかしながら、これ
以上の熱脱離はプロセス上困難であるため、行わなかっ
た。
Further, in Conventional Example 5, photodegradation was still observed even though it took a long time for desorption of hydrogen.
It seems that more time is needed. However, since further thermal desorption is difficult in the process, it was not performed.

【0029】400℃以上になって初めて(Si−H
2 )n やクラスタ化水素などの遊離型水素の熱的脱離が
起こるが、550℃を越えるとSi−Hのような必要な
水素(分散型水素)まで脱離してしまう。また、従来例
3に示すように、400℃以上で作製する場合に、成膜
速度が毎秒3Åを下回った場合には、光導電率が光起電
力素子に応用できる1×10-5S/cmを得ることはで
きなかった。
Only when the temperature exceeds 400 ° C. (Si-H
2 ) Thermal desorption of free hydrogen such as n and clustered hydrogen occurs, but when it exceeds 550 ° C, necessary hydrogen (dispersed hydrogen) such as Si-H is desorbed. Further, as shown in Conventional Example 3, when the film formation rate is lower than 3 Å / s when the film is formed at 400 ° C. or higher, the photoconductivity is 1 × 10 −5 S / that can be applied to the photovoltaic device. I could not get cm.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
基板温度を400℃以上550℃以下とし、膜厚成長速
度を毎秒3Å以上とすることにより、非晶質半導体を高
速形成して非晶質半導体内に多量の水素を取り込み、分
散型水素の量を増やすことができるので光起電力素子と
しての非晶質半導体の開放電圧の低下や欠陥準位密度の
増加を小さく抑えることができる。
As described above, according to the present invention,
By setting the substrate temperature to 400 ° C. or more and 550 ° C. or less and the film thickness growth rate to 3 Å or more per second, the amorphous semiconductor is formed at a high speed, a large amount of hydrogen is taken into the amorphous semiconductor, and the amount of dispersed hydrogen is increased. Therefore, it is possible to suppress a decrease in open circuit voltage and an increase in defect level density of an amorphous semiconductor as a photovoltaic element.

【0031】また、堆積工程に引き続いて脱水素工程を
行うので、堆積工程で非晶質半導体に取り込まれた遊離
型水素を効率良く離脱させることができ、光劣化を軽減
させることができる。
Further, since the dehydrogenation step is carried out subsequent to the deposition step, free hydrogen taken into the amorphous semiconductor in the deposition step can be efficiently released, and photodegradation can be reduced.

【0032】しかも、堆積工程と脱水素工程とを交互に
行うことにより、最終膜厚が分厚い場合にも全膜厚にわ
たって均等に脱水素された均質な非晶質半導体を得るこ
とができる。
Moreover, by alternately performing the deposition process and the dehydrogenation process, it is possible to obtain a homogeneous amorphous semiconductor which is uniformly dehydrogenated over the entire film thickness even when the final film thickness is large.

【0033】特に、本発明において、非晶質半導体がシ
リコンを主材としており、膜堆積する工程において作製
される膜厚が、1堆積工程あたりに10Å以上300Å
以下であり、水素を脱離させる工程が1分以上である場
合には、光導電率が高く、しかも、光劣化が少ない光起
電力素子を得ることができる。
In particular, in the present invention, the amorphous semiconductor is mainly composed of silicon, and the film thickness produced in the film deposition step is 10 Å or more and 300 Å per deposition step.
When the step of desorbing hydrogen is 1 minute or more, a photovoltaic element having high photoconductivity and less photodegradation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱水素量と焼鈍(アニール)温度との関係を示
す脱水素特性図である。
FIG. 1 is a dehydrogenation characteristic diagram showing a relationship between a dehydrogenation amount and an annealing (annealing) temperature.

【図2】高周波プラズマCVD装置の構成を示す模式図
である。
FIG. 2 is a schematic diagram showing a configuration of a high frequency plasma CVD apparatus.

【図3】本発明のフロー図である。FIG. 3 is a flow chart of the present invention.

【図4】1回の堆積工程で堆積する膜厚と光照射後の光
導電率との関係を示す光導電特性図である。
FIG. 4 is a photoconductivity characteristic diagram showing a relationship between a film thickness deposited in one deposition process and photoconductivity after light irradiation.

【図5】脱水素工程の工程時間と光照射後の光導電率と
の関係を示す光導電特性図である。
FIG. 5 is a photoconductive characteristic diagram showing the relationship between the process time of the dehydrogenation process and the photoconductivity after light irradiation.

【符号の説明】[Explanation of symbols]

3 基板 8 非晶質シリコン膜 3 Substrate 8 Amorphous silicon film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 減圧下における放電分解による気相反応
を用いて、所定の基板上に水素化非晶質半導体薄膜を形
成する非晶質半導体の形成方法であって、前記基板の温
度を400℃以上550℃以下とし、毎秒3Å以上の堆
積速度で水素化非晶質半導体薄膜を基板上に堆積する堆
積工程と、放電分解を停止した上で同じ基板温度に放置
して一部の水素を脱離させる脱水素工程とを交互に繰り
返すことを特徴とする非晶質半導体形成方法。
1. A method for forming an amorphous semiconductor in which a hydrogenated amorphous semiconductor thin film is formed on a predetermined substrate by using a gas phase reaction by discharge decomposition under reduced pressure, wherein the temperature of the substrate is 400 ° C. The deposition step of depositing the hydrogenated amorphous semiconductor thin film on the substrate at a deposition rate of 3 Å or more and the temperature of 550 ° C. or higher and 550 ° C. or lower, and the discharge decomposition is stopped and the same substrate temperature is used to remove a part of hydrogen. A method for forming an amorphous semiconductor, characterized by alternately repeating a dehydrogenation step of desorbing.
【請求項2】 非晶質半導体がシリコンを主材としてお
り、膜堆積する工程において作製される膜厚が、1堆積
工程あたりに10Å以上300Å以下であり、水素を脱
離させる工程が1分以上であることを特徴とする請求項
1に記載の非晶質半導体形成方法。
2. The amorphous semiconductor is mainly composed of silicon, the film thickness produced in the film deposition step is 10 Å or more and 300 Å or less per deposition step, and the step of desorbing hydrogen is 1 minute. The method for forming an amorphous semiconductor according to claim 1, wherein the method is as described above.
JP4087722A 1992-03-10 1992-03-10 Method for forming amorphous silicon-based semiconductor thin film Expired - Fee Related JP3059297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087722A JP3059297B2 (en) 1992-03-10 1992-03-10 Method for forming amorphous silicon-based semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087722A JP3059297B2 (en) 1992-03-10 1992-03-10 Method for forming amorphous silicon-based semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH05259096A true JPH05259096A (en) 1993-10-08
JP3059297B2 JP3059297B2 (en) 2000-07-04

Family

ID=13922808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087722A Expired - Fee Related JP3059297B2 (en) 1992-03-10 1992-03-10 Method for forming amorphous silicon-based semiconductor thin film

Country Status (1)

Country Link
JP (1) JP3059297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045642A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Hydrogen desorption method and hydrogen desorption device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045642A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Hydrogen desorption method and hydrogen desorption device

Also Published As

Publication number Publication date
JP3059297B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP3926800B2 (en) Manufacturing method of tandem type thin film photoelectric conversion device
JPH0794431A (en) Substrate for amorphous semiconductor, amorphous semiconductor substrate having the same, and manufacture of amorphous semiconductor substrate
JP2001332749A (en) Method for forming semiconductor thin film and amorphous silicon solar cell element
JPH07230960A (en) Plasma cvd device
JP2000252218A (en) Plasma cvd system and fabrication of silicon thin film photoelectric converter
JP2008270578A (en) Manufacturing method of photovoltaic element
JP3059297B2 (en) Method for forming amorphous silicon-based semiconductor thin film
JP2008177419A (en) Method for forming silicon thin film
JP2000150500A (en) Method of forming silicon system thin film
JP2001155997A (en) Plasma cvd system and method for fabricating silicon based thin film photoelectric converter
JP2002237608A (en) Method of manufacturing tandem thin-film solar cell
JP2000252495A (en) Manufacture of silicon thin-film photoelectric conversion device
JPH10139413A (en) Microcrystalline film and its production
JPS6037118A (en) Plasma vapor phase reaction method
JPH04342121A (en) Manufacture of hydrogenated amorphous silicon thin film
JPH10214790A (en) Production of thin silicon based semiconductor
JP5199954B2 (en) Manufacturing method of semiconductor device
JP2004253417A (en) Method of manufacturing thin film solar cell
JPH08115882A (en) Method of forming amorphous semiconductor film
JPH05343713A (en) Manufacture of amorphous solar cell
JP2002246317A (en) Thin-film forming method by plasma cvd method
JP2728874B2 (en) Semiconductor device manufacturing method
JPS62144370A (en) Manufacture of photoelectric conversion element
JPH0982637A (en) Manufacture of amorphous semiconductor thin film
JP2000100806A (en) Manufacture of semiconductor element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees