JPH05259020A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH05259020A
JPH05259020A JP4051354A JP5135492A JPH05259020A JP H05259020 A JPH05259020 A JP H05259020A JP 4051354 A JP4051354 A JP 4051354A JP 5135492 A JP5135492 A JP 5135492A JP H05259020 A JPH05259020 A JP H05259020A
Authority
JP
Japan
Prior art keywords
light
illumination
optical system
mask
illumination optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4051354A
Other languages
Japanese (ja)
Inventor
Naomasa Shiraishi
直正 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4051354A priority Critical patent/JPH05259020A/en
Publication of JPH05259020A publication Critical patent/JPH05259020A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Abstract

PURPOSE:To make an illumination optical system small in size by a method wherein, when various types of measurements are conducted using the reference members on a substrate stage, the light generated by a reference pattern is guided to a detection means by deflecting the light outside the optical path of an illumination optical system by a deflection member in a plane perpendicular to the optical axis of the illumination optical system. CONSTITUTION:A deflection member 11 is constituted in such a manner that it can be retreated from the light path of an illumination optical system by a motor 12, and the deflection member 11 is retreated to outside the illumination light path so that the illumination light, which will be projected on a reticle, is not obstructed when a pattern exposing operation is conducted on a wafer 21. The deflection member is arranged in the illumination light path only when various types of measurements are conducted using a reference member 20. At this time, the taking in and out of the deflection member 11 to the illumination light path is conducted almost along the direction perpendicular to the optical axis of the illumination optical system. A photoelectric detector 15 outputs a photoelectric signal which is corresponding to the quantity of light of the transmitted light SL which is deflected by the deflection member 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路や液晶
デバイス等のパターン形成に使用される投影露光装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used for patterning semiconductor integrated circuits, liquid crystal devices and the like.

【0002】[0002]

【従来の技術】半導体素子製造のフォトリソグラフィ工
程で使用される投影露光装置(例えばステッパー)で
は、レチクル(マスク)上に描画された転写すべき回路
パターンの像が、投影光学系を介して基板(ウエハ)上
に結像投影される。ウエハは2次元移動可能なウエハス
テージ上に載置されており、このウエハステージ上には
基準マーク(フィデュシャルマーク)を備えた基準部材
(ガラス基板)が、ウエハ表面とほぼ一致するように設
けられている。このフィデュシャルマークは、例えば特
開昭59−94032号公報、特開平1−262624
号公報等に開示されているように、レチクルアライメン
ト、投影光学系の結像特性、あるいは露光動作に先立っ
て行われるレチクル上のアライメントマーク、またはレ
チクルの上方に配置されたレチクルアライメントマーク
検出用のセンサーのマーク検出位置と、TTL方式、ま
たはオフアクシス方式のウエハアライメントマーク検出
用のセンサーのマーク検出位置との相対距離(ベースラ
イン)の計測等に用いられる。
2. Description of the Related Art In a projection exposure apparatus (eg, stepper) used in a photolithography process for manufacturing a semiconductor device, an image of a circuit pattern to be transferred drawn on a reticle (mask) is transferred to a substrate via a projection optical system. An image is projected on the (wafer). The wafer is placed on a wafer stage that is two-dimensionally movable, and a reference member (glass substrate) having a reference mark (fiducial mark) is arranged on the wafer stage so that the reference member (glass substrate) substantially matches the wafer surface. It is provided. This fiducial mark is disclosed, for example, in JP-A-59-94032 and JP-A-1-262624.
As disclosed in Japanese Patent Laid-Open Publication No. 1989-331, for reticle alignment, imaging characteristics of a projection optical system, alignment marks on a reticle performed before an exposure operation, or reticle alignment mark detection marks arranged above the reticle. It is used for measuring the relative distance (baseline) between the mark detection position of the sensor and the mark detection position of the sensor for wafer alignment mark detection of the TTL method or the off-axis method.

【0003】フィデュシャルマークとしては、例えば石
英ガラス上にクロムをパターニングして形成した反射型
のマークが用いられ、アライメントセンサーで当該マー
クを検出することによりそのマーク検出位置が求められ
る。あるいは、フィデュシャルマークを光透過型のスリ
ットマークとし、その下(ウエハステージ側)に光量セ
ンサーを設ける方式、もしくはフィデュシャルマーク自
体を受光面とした光量センサーを用いる方式もある。こ
れらの方式では、光量センサーによって受光される光量
(レチクルマークの像、アライメントセンサーの照明光
束の光量)から、レチクルマークやアライメントセンサ
ーのマーク検出位置が求められる。
As the fiducial mark, for example, a reflection type mark formed by patterning chrome on quartz glass is used, and the mark detection position is obtained by detecting the mark with an alignment sensor. Alternatively, there is a method in which the fiducial mark is a light transmission type slit mark and a light amount sensor is provided below it (on the wafer stage side), or a light amount sensor having the fiducial mark itself as a light receiving surface is used. In these methods, the reticle mark and the mark detection position of the alignment sensor are obtained from the amount of light received by the light amount sensor (the image of the reticle mark, the amount of illumination light flux of the alignment sensor).

【0004】しかしながら、光量センサーにてレチクル
マークの像を検出する場合、レチクルマークを照明する
照明光学系(露光用照明光学系)はマーク部のみなら
ず、広いエリアを照明するので、フィデュシャルマーク
(例えばスリットパターン)上にはレチクル上のマーク
部以外からの光もフレアーとして到達し、これにより計
測精度が低下し得る。そこで、例えば特開昭64−10
105号公報に開示されているように発光型のフィデュ
シャルマークを用いる、すなわち光ファイバー、ミラー
等により基準部材の下まで伝送した露光用照明光によっ
てフィデュシャルマークを照射し、レチクルの下面(パ
ターン面)に結像される投影像とレチクルマークとを相
対移動させることによって、レチクルマークを通過した
照明光の透過光量を照明光学系中で検出する方法が提案
されている。
However, when the image of the reticle mark is detected by the light amount sensor, the illumination optical system (exposure illumination optical system) that illuminates the reticle mark illuminates not only the mark portion but also a wide area. Light from other than the mark portion on the reticle reaches the mark (for example, a slit pattern) as flare, which may reduce the measurement accuracy. Therefore, for example, JP-A-64-10
As disclosed in Japanese Patent Laid-Open No. 105-105, a light emitting type fiducial mark is used, that is, the fiducial mark is irradiated by the exposure illumination light transmitted to the bottom of the reference member by an optical fiber, a mirror or the like, and the lower surface of the reticle ( A method has been proposed in which the transmitted light amount of illumination light that has passed through the reticle mark is detected in the illumination optical system by moving the projection image formed on the pattern surface) and the reticle mark relatively.

【0005】ところで、上記透過光を検出するための光
量センサーは、レチクルに照射される露光用照明光を遮
ってはならないので、従来では照明光学系中にビームス
プリッタ(ハーフミラー)を設け、レチクルマークを透
過した照明光を、照明光路外に配置された光量センサー
に導くように構成していた。従って、従来装置の照明光
学系中には、このハーフミラーを設けるための数10cm
ものレンズ間隔(スペース)が必要であった。特にレチ
クルマークの配置される場所(形成位置)に依存せず、
常に同一配置(構成)でレチクルマークの透過光を検出
するためには、照明光学系中のレチクルパターン面に対
するフーリエ変換面近傍にハーフミラーを配置すること
が必要であった。
By the way, the light quantity sensor for detecting the transmitted light must not block the exposure illumination light with which the reticle is irradiated. Therefore, conventionally, a beam splitter (half mirror) is provided in the illumination optical system and the reticle is provided. The illumination light transmitted through the mark is configured to be guided to the light amount sensor arranged outside the illumination optical path. Therefore, in the illumination optical system of the conventional device, several tens of centimeters are required to install this half mirror.
The lens space (space) was necessary. In particular, regardless of where the reticle mark is placed (formation position),
In order to always detect the transmitted light of the reticle mark with the same arrangement (configuration), it was necessary to arrange a half mirror near the Fourier transform surface with respect to the reticle pattern surface in the illumination optical system.

【0006】[0006]

【発明が解決しようとする課題】最近になって、投影光
学系の解像度及び焦点深度を改善する方法として、輪帯
照明や変形光源が注目されている。これはレチクルパタ
ーンへ入射する照明光を特定の角度だけ傾けるものであ
る。従って、従来装置に比べて照明光学系の開口数(レ
チクルへの照明光束の入射角度の正弦)がより一層大き
な照明光学系が要求されることになる。このような大開
口数の照明光学系は設計、製造が困難である上、装置全
体の大型化、高コスト化が避けられない。特に前述の如
きハーフミラー用のスペース(レンズ間隔)は、さらな
る照明光学系の大型化の要因となる。
Recently, as a method of improving the resolution and the depth of focus of a projection optical system, attention has been paid to an annular illumination and a modified light source. This is to tilt the illumination light incident on the reticle pattern by a specific angle. Therefore, an illumination optical system in which the numerical aperture of the illumination optical system (sine of the angle of incidence of the illumination light beam on the reticle) is much larger than that of the conventional device is required. Such an illumination optical system having a large numerical aperture is difficult to design and manufacture, and it is inevitable to increase the size and cost of the entire apparatus. In particular, the space (lens interval) for the half mirror as described above becomes a factor in further increasing the size of the illumination optical system.

【0007】本発明は上記問題点に鑑みてなされたもの
であり、輪帯照明法や変形光源法等の新露光技術に対応
し、かつ従来の基準マークをそのまま使用した各種計測
にも対応可能な小型、低コストの照明光学系を備えた投
影露光装置を提供することを目的としている。
The present invention has been made in view of the above problems, and can be applied to new exposure techniques such as an annular illumination method and a modified light source method, and can also be applied to various measurements using conventional reference marks as they are. It is an object of the present invention to provide a projection exposure apparatus equipped with a compact, low-cost illumination optical system.

【0008】[0008]

【課題を解決する為の手段】かかる問題点を解決するた
め本発明においては、照明光学系中のその光軸とほぼ垂
直な面内に配置され、基準パターンから発生する光を照
明光学系の光路外へ偏向させる光束偏向部材を設け、こ
こで偏向された基準パターンからの光を検出することと
した。また、照明光学系中のその光軸とほぼ垂直な面内
に配置され、照明光に対してほぼ透明な基板と、この基
板に関してマスク側に配置され、基準パターンから発生
する光を透明基板に対して傾けて入射させる光束偏向部
材とを設け、基板内部を伝搬して照明光学系の光路外へ
導かれる基準パターンからの光を検出することとした。
In order to solve such a problem, in the present invention, the light generated from the reference pattern is arranged in a plane substantially perpendicular to the optical axis of the illumination optical system, and the light generated by the reference pattern is emitted from the illumination optical system. A light beam deflecting member for deflecting the light beam out of the optical path is provided, and the light from the reference pattern deflected here is detected. In addition, a substrate which is arranged in a plane substantially perpendicular to the optical axis in the illumination optical system and is substantially transparent to the illumination light, and a mask side with respect to this substrate are arranged so that the light generated from the reference pattern is transmitted to the transparent substrate. A light beam deflecting member for inclining the light to enter is provided, and the light from the reference pattern propagating inside the substrate and guided to the outside of the optical path of the illumination optical system is detected.

【0009】[0009]

【作用】本発明では、基板ステージ上の基準部材を用い
て各種計測(マスクのアライメントマークの位置計測
等)を行う際には、照明光学系の光軸と垂直な面内に配
置した光束偏向部材によって、基準パターンから発生す
る光を照明光学系の光路外へ偏向させて検出手段に導く
ようにした。従って、照明光学系が小さくて済み、しか
も従来通り基準部材を用いた各種計測を行うことが可能
となる。一方、露光時には光束偏向部材を照明光学系の
光路中から取り除くため、マスクに照射すべき露光用照
明光に対しては何ら悪影響を与えない。特に光束偏向部
材は、例えば厚さ数mm程度の平板で良く、照明光学系を
構成する光学素子の間に大きな間隔を設ける必要がな
い。
In the present invention, when performing various measurements (position measurement of the alignment mark of the mask, etc.) using the reference member on the substrate stage, the light beam deflection arranged in the plane perpendicular to the optical axis of the illumination optical system. The member deflects the light generated from the reference pattern out of the optical path of the illumination optical system and guides it to the detection means. Therefore, the illumination optical system may be small, and various measurements using the reference member can be performed as in the conventional case. On the other hand, at the time of exposure, since the light beam deflecting member is removed from the optical path of the illumination optical system, it does not have any adverse effect on the exposure illumination light that should be applied to the mask. In particular, the light beam deflecting member may be a flat plate having a thickness of, for example, about several mm, and it is not necessary to provide a large gap between the optical elements forming the illumination optical system.

【0010】[0010]

【実施例】図1は本発明の実施例による投影露光装置の
概略的な構成を示す図である。図1において、水銀ラン
プ等の光源1より放射される照明光は楕円鏡2で反射さ
れた後、折り曲げミラー3、リレーレンズ4、シャッタ
ー5、リレーレンズ7、及び折り曲げミラー8を介して
リレーレンズ(インプットレンズ)9によりほぼ平行光
束となってオプチカルインテグレータ(フライアイレン
ズ)10に入射する。フライアイレンズ10は、レチク
ル17のパターン面での照明光束の照度(強度分布)を
均一化するためのものであり、そのレチクル側(射出面
側)焦点面がレチクル17のパターン面に対する光学的
なフーリエ変換面(以下、照明光学系の瞳面と称す)、
もしくはその近傍面内に配置されている。
1 is a diagram showing a schematic construction of a projection exposure apparatus according to an embodiment of the present invention. In FIG. 1, illumination light emitted from a light source 1 such as a mercury lamp is reflected by an elliptical mirror 2, and then a relay lens via a folding mirror 3, a relay lens 4, a shutter 5, a relay lens 7, and a folding mirror 8. The (input lens) 9 collimates the light beam and makes it enter the optical integrator (fly-eye lens) 10. The fly-eye lens 10 is for uniformizing the illuminance (intensity distribution) of the illumination light flux on the pattern surface of the reticle 17, and the reticle side (emission surface side) focal plane of the fly eye lens 10 is the optical surface with respect to the pattern surface of the reticle 17. A Fourier transform plane (hereinafter referred to as the pupil plane of the illumination optical system),
Alternatively, it is arranged in the plane in the vicinity thereof.

【0011】フライアイレンズ10を射出した照明光
は、コンデンサーレンズ群16によってレチクル17の
下面側に形成された回路パターンを照明する。ここでは
コンデンサーレンズ群16として、照明光束の強度分布
均一化のために高度に収差補正された光学系が用いられ
ている。レチクル17には回路パターンとともに、その
パターンに付随してレチクルマーク18が描画されてい
る。レチクル17を透過、回折した光は投影光学系19
により集光結像され、ウエハ21上に回路パターンの像
を形成する。図1中では、レチクルマーク18の投影位
置に基準部材20が配置されている。
The illumination light emitted from the fly-eye lens 10 illuminates the circuit pattern formed on the lower surface side of the reticle 17 by the condenser lens group 16. Here, as the condenser lens group 16, an optical system that is highly aberration-corrected in order to make the intensity distribution of the illumination light flux uniform is used. On the reticle 17, a reticle mark 18 is drawn along with the circuit pattern along with the circuit pattern. The light transmitted through the reticle 17 and diffracted is projected by the projection optical system 19.
The light is focused and imaged on the wafer 21 to form a circuit pattern image. In FIG. 1, the reference member 20 is arranged at the projection position of the reticle mark 18.

【0012】ウエハ21は、架台23上を2次元移動可
能なウエハステージ22上に、その表面が投影光学系1
9の結像面とほぼ一致するように保持されており、ウエ
ハステージ22の位置はレーザ干渉計28によって計測
される。ウエハステージ22の端部には、レーザ干渉計
28からのレーザビームを反射する反射鏡(移動鏡)2
4が固定されている。
The wafer 21 is placed on a wafer stage 22 which can move two-dimensionally on a pedestal 23, and the surface of the wafer 21 is projected by the projection optical system 1.
The position of the wafer stage 22 is measured by a laser interferometer 28. At the end of the wafer stage 22, a reflecting mirror (moving mirror) 2 that reflects the laser beam from the laser interferometer 28.
4 is fixed.

【0013】さらにウエハステージ22上には、例えば
特開平1−262624号公報に開示されているよう
に、基準マーク(フィデュシャルマーク)FMを有する
基準部材(石英等のガラス基板)20が、ウエハ表面と
ほぼ一致するように設けられている。光ファイバー26
は光源1から放射される露光用照明光(または一部)を
基準部材20の下まで導き、この照明光はレンズ系25
を介して下方(ウエハステージ22の内部)より基準マ
ークFMに照射される。基準マークFMは光透過性のス
リットマークであって、基準マークFMを透過した光は
投影光学系19を介してレチクル17のパターン面に基
準マークFMの投影像を結像する。さらに、レチクル1
7を透過した光SLはコンデンサーレンズ群16を通っ
た後、照明光学系の光軸とほぼ垂直な面内に配置された
偏向部材11によって偏向され、照明光学系の光路外に
配置された光電検出器15に入射する。
Further, a reference member (a glass substrate such as quartz) 20 having a reference mark (fiducial mark) FM is provided on the wafer stage 22, as disclosed in, for example, Japanese Patent Laid-Open No. 1-262624. It is provided so as to substantially coincide with the surface of the wafer. Optical fiber 26
Guides the exposure illumination light (or a part) emitted from the light source 1 to below the reference member 20, and the illumination light is transmitted through the lens system 25.
The reference mark FM is irradiated from below (inside the wafer stage 22) via. The reference mark FM is a light transmissive slit mark, and the light transmitted through the reference mark FM forms a projected image of the reference mark FM on the pattern surface of the reticle 17 via the projection optical system 19. In addition, reticle 1
After passing through the condenser lens group 16, the light SL that has passed through 7 is deflected by the deflecting member 11 arranged in a plane substantially perpendicular to the optical axis of the illumination optical system, and is photoelectrically arranged outside the optical path of the illumination optical system. It is incident on the detector 15.

【0014】偏向部材11は、モータ12によって照明
光学系の光路中から退避可能に構成されており、ウエハ
21に対するパターン露光が行われているときには、レ
チクル17に照射される照明光を遮らないように、偏向
部材11を照明光路外へ退避させる。または、基準部材
20を用いた各種計測を行うときのみ、偏向部材11を
照明光路中に配置する。このとき、偏向部材11は照明
光学系の光軸と垂直な方向にほぼ沿って照明光路への出
し入れが行われる。この動作は、主制御系29からの指
令に基づいて行われる。偏向部材11の具体的な構成に
ついては、後で詳しく述べる。
The deflecting member 11 is constructed so that it can be retracted from the optical path of the illumination optical system by the motor 12 so as not to block the illumination light emitted to the reticle 17 when the pattern exposure is performed on the wafer 21. Then, the deflecting member 11 is retracted out of the illumination optical path. Alternatively, the deflecting member 11 is arranged in the illumination optical path only when performing various measurements using the reference member 20. At this time, the deflecting member 11 is moved in and out of the illumination optical path substantially along the direction perpendicular to the optical axis of the illumination optical system. This operation is performed based on a command from the main control system 29. The specific configuration of the deflecting member 11 will be described in detail later.

【0015】ところで、光電検出器15は偏向部材11
で偏向された透過光SLの光量(強度)に応じた光電信
号を主制御系29に出力する。この光電信号はウエハス
テージ22の位置、すなわちレチクル17の下面に結像
される基準マークFMの投影像とレチクルマーク18と
の相対的な位置関係に応じて変化する。例えば、レチク
ルマーク18が遮光部中に透過部が形成されたスリット
マークであれば、両者が正確に一致したときに光電信号
のレベルが最大となる。従って、光電検出器15からの
光電信号のレベル変化に基づいて、レチクルマーク18
と基準マークFMとの相対的な位置関係、すなわちレチ
クルマーク18の位置(干渉計28にて規定される座標
系内での座標値)が求められることになる。主制御系2
9は、光電検出器15からの光電信号とともにレーザ干
渉計28からの位置信号も入力し、この2つの信号を用
いてレチクルマーク18の位置(座標値)を算出する。
By the way, the photoelectric detector 15 includes the deflecting member 11
A photoelectric signal corresponding to the light amount (intensity) of the transmitted light SL deflected by is output to the main control system 29. This photoelectric signal changes according to the position of the wafer stage 22, that is, the relative positional relationship between the reticle mark 18 and the projected image of the reference mark FM formed on the lower surface of the reticle 17. For example, if the reticle mark 18 is a slit mark having a light-transmitting portion formed in the light-shielding portion, the level of the photoelectric signal becomes maximum when the two accurately match. Therefore, based on the level change of the photoelectric signal from the photoelectric detector 15, the reticle mark 18
The relative positional relationship between the reference mark FM and the reference mark FM, that is, the position of the reticle mark 18 (coordinate value in the coordinate system defined by the interferometer 28) is obtained. Main control system 2
9 inputs the position signal from the laser interferometer 28 together with the photoelectric signal from the photoelectric detector 15, and calculates the position (coordinate value) of the reticle mark 18 using these two signals.

【0016】また、図1中にはオフアクシス方式のアラ
イメントセンサー30が設けられている。アライメント
センサー30は画像処理方式を採用しており、撮像素子
(CCDカメラ等)によってウエハ21上のアライメン
トマーク、または基準マークFMと、ウエハ表面と共役
な面内に固定された指標マークとを同時に観察し、指標
マークに対するアライメントマーク等の位置ずれを検出
するものである。主制御系29は、アライメントセンサ
ー30からの位置ずれ情報と干渉計28からの位置情報
とに基づいて、アライメントマークや基準マークの位置
(座標値)を算出する。尚、アライメントセンサー30
で基準マークFMを検出したときの位置がセンサー30
のマーク検出位置である。このとき、基準マークFMは
反射型のマークとして作用すれば良く、マークFM自体
を発光させる必要はない。以上のように基準マークFM
を用いて計測されるレチクルマークの位置とアライメン
トセンサー30のマーク検出位置との間隔(距離)がベ
ースライン量である。
Further, in FIG. 1, an off-axis type alignment sensor 30 is provided. The alignment sensor 30 employs an image processing method, and an alignment mark or reference mark FM on the wafer 21 and an index mark fixed in a plane conjugate with the wafer surface are simultaneously obtained by an image pickup device (CCD camera or the like). By observing, the displacement of the alignment mark or the like with respect to the index mark is detected. The main control system 29 calculates the positions (coordinate values) of the alignment mark and the reference mark based on the positional deviation information from the alignment sensor 30 and the positional information from the interferometer 28. The alignment sensor 30
The position when the fiducial mark FM is detected by the sensor 30
Mark detection position. At this time, the reference mark FM has only to act as a reflection type mark, and it is not necessary for the mark FM itself to emit light. As described above, the reference mark FM
The distance (distance) between the position of the reticle mark measured by using and the mark detection position of the alignment sensor 30 is the baseline amount.

【0017】次に、図2を参照して本実施例に適用され
る偏向部材について説明する。図2(a)は、露光用照
明光に対してほぼ透明な平行平板(石英等のガラス基
板)11Aの下面(照明光学系の光路中に配置された状
態ではレチクル17側の面)に、マイクロプリズム11
Bを形成したものである。レチクルマーク18に遮られ
ることなくレチクル17を透過した基準マークFMから
発生する照明光SLは、マイクロプリズム11Bによっ
て屈折し、平行平板11Aに対して傾いて入射する。さ
らに平行平板11A内において内面反射を繰り返してそ
の内部を伝搬することで、照明光学系の光路外へ導か
れ、平行平板11Aの端面から射出した後、光電検出器
15にて受光されることになる。
Next, the deflecting member applied to this embodiment will be described with reference to FIG. FIG. 2A shows the lower surface of the parallel plate (glass substrate such as quartz) 11A which is almost transparent to the exposure illumination light (the surface on the side of the reticle 17 when placed in the optical path of the illumination optical system). Micro prism 11
B is formed. The illumination light SL generated from the reference mark FM that has passed through the reticle 17 without being blocked by the reticle mark 18 is refracted by the microprism 11B and is incident on the parallel plate 11A at an angle. Further, by repeating internal reflection inside the parallel plate 11A and propagating inside the parallel plate 11A, the light is guided to the outside of the optical path of the illumination optical system, emitted from the end face of the parallel plate 11A, and then received by the photoelectric detector 15. Become.

【0018】図2(a)に示した偏向部材はそれ自体が
薄く、かつ照明光学系の光軸に対してほぼ垂直に配置さ
れるとともに、さらに平行平板11Aの内部伝搬を利用
して、照明光SLを照明光学系の光軸とほぼ垂直な方向
(基板面に沿った方向)に導くことが可能である。この
ため、偏向部材11を配置すべき空間、すなわちフライ
アイレンズ11とコンデンサーレンズ群16との間隔が
狭くて済み、照明光学系を小型化することが可能とな
る。
The deflecting member shown in FIG. 2 (a) is thin in itself, and is arranged substantially perpendicular to the optical axis of the illumination optical system. Further, by utilizing the internal propagation of the parallel plate 11A, the illumination is performed. It is possible to guide the light SL in a direction substantially perpendicular to the optical axis of the illumination optical system (direction along the substrate surface). Therefore, the space in which the deflecting member 11 is to be arranged, that is, the distance between the fly-eye lens 11 and the condenser lens group 16 can be narrowed, and the illumination optical system can be downsized.

【0019】図2(b)は、平行平板11Aの下面に回
折格子11Cを形成したものである。回折格子11Cで
回折された照明光SLは、図2(a)と全く同様に平行
平板11Aの内部を伝搬して照明光路外へ導かれ、その
端面から射出して光電検出器15に入射することにな
る。回折格子11Cのピッチは任意で良い。また、回折
格子11Cは位相型でも振幅型でも良く、さらにフレネ
ルゾーンプレート等を始めとして照明光SLを回折(散
乱)するものであれば何でも良い。図2(b)では透過
型の回折格子11Cを用いたが、反射型の回折格子を用
いるようにしても良い。この場合、平行平板11Aの上
面(レチクル17の反対側の面)に反射型回折格子を形
成する必要がある。
In FIG. 2B, the diffraction grating 11C is formed on the lower surface of the parallel plate 11A. The illumination light SL diffracted by the diffraction grating 11C propagates inside the parallel plate 11A, is guided to the outside of the illumination light path, is emitted from the end face thereof, and is incident on the photoelectric detector 15 just as in FIG. It will be. The pitch of the diffraction grating 11C may be arbitrary. Further, the diffraction grating 11C may be a phase type or an amplitude type, and may be anything as long as it diffracts (scatters) the illumination light SL including a Fresnel zone plate and the like. Although the transmission type diffraction grating 11C is used in FIG. 2B, a reflection type diffraction grating may be used. In this case, it is necessary to form a reflection type diffraction grating on the upper surface of the parallel plate 11A (the surface opposite to the reticle 17).

【0020】図2(c)は、平行平板11Dの下面をサ
ンドブラストして照明光SLを散乱させるようにしたも
のである。図2(c)でも、図2(a)、(b)と同様
に下面で散乱された照明光SLは、平行平板11Dの内
部を伝搬して照明光路外へ導かれることになる。尚、平
行平板11Dの上面をサンドブラストしておき、ここで
散乱されてレチクル17側に戻る光を平行平板11D内
で内面反射させるようにしても良い。また、図2
(b)、(c)に示した偏向部材では、その下面(また
は上面)で回折、または散乱された光が平行平板の左右
の端面の各々から射出されるため、2組の光電検出器を
各端面に対応して配置しておき、例えば各出力を加算し
たものを用いるようにしても良い。
In FIG. 2C, the lower surface of the parallel plate 11D is sandblasted to scatter the illumination light SL. In FIG. 2C as well, as in FIGS. 2A and 2B, the illumination light SL scattered on the lower surface propagates inside the parallel plate 11D and is guided to the outside of the illumination optical path. The upper surface of the parallel plate 11D may be sandblasted, and the light scattered here and returning to the reticle 17 side may be internally reflected inside the parallel plate 11D. Also, FIG.
In the deflecting members shown in (b) and (c), light diffracted or scattered on the lower surface (or upper surface) is emitted from each of the left and right end surfaces of the parallel plate, so that two sets of photoelectric detectors are used. It may be arranged corresponding to each end face and, for example, one obtained by adding the respective outputs may be used.

【0021】図2では、平行平板の下面(レチクル側の
面)に形成した偏向部材により照明光SLを偏向(回
折、散乱)させ、平行平板に傾けて入射させることで内
面反射を利用することとしたが、照明光を偏向させる部
材はいかなるものであっても良い。また、偏向部材11
による照明光SLの偏向角度(平行平板に入射する照明
光の傾斜角)や平行平板の厚さは任意で良く、要は平行
平板内を照明光が内面反射するように定めれば良い。さ
らに、平行平板の上面(レチクルと反対側の面)にその
全面にわたって遮光層を形成し、光電検出器15へ入射
する光量の損失を低減するようにしても良い。また、偏
向部材11は照明光学系の光軸に対して多少傾いても良
く、偏向部材11を配置すべきスペース(図1ではフラ
イアイレンズ10とコンデンサーレンズ群16との間
隔)にも依るが、上記光量損失を少しでも低減するた
め、積極的に偏向部材11を光軸に対して傾けても良
い。さらに、平行平板の下面に設けた蛍光物質に照明光
SLを照射させ、ここで発生する蛍光(または燐光)を
光電検出器15にて検出するようにしても、上記と全く
同様の効果を得ることができる。
In FIG. 2, the illumination light SL is deflected (diffracted, scattered) by a deflecting member formed on the lower surface (the surface on the reticle side) of the parallel plate, and the internal reflection is utilized by inclining the incident light SL to enter the parallel plate. However, any member that deflects the illumination light may be used. In addition, the deflecting member 11
The angle of deflection of the illumination light SL (the inclination angle of the illumination light incident on the parallel plate) and the thickness of the parallel plate may be arbitrary, and the point is that the illumination light may be internally reflected in the parallel plate. Further, a light-shielding layer may be formed on the entire upper surface (the surface opposite to the reticle) of the parallel plate to reduce the loss of the amount of light incident on the photoelectric detector 15. Further, the deflecting member 11 may be slightly tilted with respect to the optical axis of the illumination optical system, and depends on the space in which the deflecting member 11 is to be arranged (the distance between the fly-eye lens 10 and the condenser lens group 16 in FIG. 1). In order to reduce the light amount loss as much as possible, the deflecting member 11 may be positively tilted with respect to the optical axis. Further, even if the fluorescent substance provided on the lower surface of the parallel plate is irradiated with the illumination light SL and the fluorescence (or phosphorescence) generated here is detected by the photoelectric detector 15, the same effect as above can be obtained. be able to.

【0022】以上の通り本実施例における偏向部材は、
いずれも平行平板の厚さが数mm程度で良く、従って従来
に比べて照明光学系に対する制約が大幅に緩和される。
ところで、偏向部材11を配置すべき位置は照明光学系
中のどこであっても構わないが、照明光学系中のレチク
ルパターン面に対する光学的なフーリエ変換面、もしく
はその近傍面内であることが望ましい。これは、偏向部
材11をフーリエ変換面近傍に配置すると、レチクル上
でのアライメントマークの形成位置に関係なく、レチク
ルマーク18(基準マークFM)からの照明光束は常に
偏向部材11上の同じ位置に到達するためである。従っ
て、偏向部材11が小さくて済み、しかも常に偏向部材
11上の同一位置を使用することとなり、偏向部材(1
1B、11C等)の場所による形状等の不均一性がレチ
クルマークの計測に誤差を与えることがないといった利
点がある。図1中では、上記条件を満たすフライアイレ
ンズ10の射出面(フーリエ変換面)近傍に偏向部材1
1を配置した。尚、平行平板11Aの下面においてその
全面に渡って回折格子11C等を形成しておく必要はな
く、例えばレチクルマーク18からの光のうち0次光が
照射される領域に相当する部分だけに回折格子11C等
を形成するようにしても良い。
As described above, the deflecting member in this embodiment is
In both cases, the thickness of the parallel plate may be about several millimeters, so that the restrictions on the illumination optical system are greatly relaxed compared with the conventional one.
By the way, the position where the deflecting member 11 is to be arranged may be anywhere in the illumination optical system, but it is desirable to be within the optical Fourier transform plane for the reticle pattern plane in the illumination optical system or in the plane in the vicinity thereof. .. This is because when the deflecting member 11 is arranged near the Fourier transform surface, the illumination light flux from the reticle mark 18 (reference mark FM) is always at the same position on the deflecting member 11 regardless of the position where the alignment mark is formed on the reticle. It is to reach. Therefore, the deflection member 11 can be small, and the same position on the deflection member 11 is always used.
1B, 11C, etc.) has the advantage that non-uniformity of the shape or the like depending on the location does not give an error to the measurement of the reticle mark. In FIG. 1, the deflecting member 1 is provided near the exit surface (Fourier transform surface) of the fly-eye lens 10 that satisfies the above conditions.
1 was placed. It is not necessary to form the diffraction grating 11C or the like on the entire lower surface of the parallel plate 11A, and for example, only the portion of the light from the reticle mark 18 that corresponds to the region irradiated with the 0th-order light is diffracted. The grid 11C or the like may be formed.

【0023】また、フライアイレンズ10の射出面と偏
向部材11との間にリレーレンズ系を設け、両者を結像
関係で結んでも良い。このとき、フライアイレンズ10
の射出面と偏向部材11とは、いずれもレチクルパター
ンのフーリエ変換面近傍に配置されることになる。ま
た、このようなリレーレンズ系を使用する場合、リレー
レンズ系内にレチクルパターン面との共役面が生じるた
め、ここに視野絞り等を設けることもできる。
Further, a relay lens system may be provided between the exit surface of the fly-eye lens 10 and the deflecting member 11 so that they are connected in an image forming relationship. At this time, the fly-eye lens 10
Both the exit surface and the deflection member 11 are arranged near the Fourier transform surface of the reticle pattern. When such a relay lens system is used, a conjugate plane with the reticle pattern surface is formed in the relay lens system, so that a field stop or the like can be provided here.

【0024】さて、図2に示した偏向部材は平行平板1
1Aの下面にマイクロプリズム11Bや回折格子11C
等を形成していたが、図3に示すように平行平板11A
と、例えば回折格子11E、11Hとを所定間隔だけ光
軸方向に離して配置しても良い。図3(a)は透過型回
折格子11Eを用いた例であり、ここで回折された光は
平行平板11Aに対して傾いて入射し、その内部を伝搬
して照明光路外へ導かれることになる。図3(b)は反
射型回折格子11Hを用いた例であり、平行平板11A
を透過した照明光SLは回折格子11Hで回折された
後、平行平板11Aに対して傾いて再度入射し、その内
部を伝搬して照明光路外へ導かれることになる。図3
(a)、(b)でも、光電検出器15は平行平板11A
の端面に近接して配置される。
The deflecting member shown in FIG. 2 is a parallel plate 1
Micro prism 11B and diffraction grating 11C on the lower surface of 1A
Etc. were formed, but as shown in FIG.
For example, the diffraction gratings 11E and 11H may be arranged at a predetermined distance in the optical axis direction. FIG. 3A shows an example using a transmission type diffraction grating 11E. The light diffracted here is incident on the parallel plate 11A with an inclination, propagates inside the same, and is guided to the outside of the illumination optical path. Become. FIG. 3B shows an example using a reflection type diffraction grating 11H, which is a parallel plate 11A.
The illumination light SL that has passed through is diffracted by the diffraction grating 11H, is then incident again while being inclined with respect to the parallel plate 11A, propagates through the inside thereof, and is guided to the outside of the illumination optical path. Figure 3
Also in (a) and (b), the photoelectric detector 15 is a parallel plate 11A.
Is arranged close to the end face of the.

【0025】また、例えば特開平1−262624号公
報、特開平1−273318号公報には、照明光学系の
瞳面(フーリエ変換面)で基準マークFMから発生する
光を2分割し、この分割された光を個別に検出すること
で投影光学系の焦点位置を検出する技術が開示されてい
る。このように照明光学系の瞳面で光束を2分割する装
置に対しても、本発明をそのまま適用して同様の効果を
得ることができる。すなわち上記公報に開示された装置
では、図4(a)に示すような偏向部材を照明光学系の
瞳面近傍に配置すれば良い。図4(a)は、平行平板1
1Aの下面に2組のマイクロプリズム11F1 、11F
2 を形成したものである。図4(b)は、図4(a)を
レチクル側から見た様子を示しており、照明光SLはマ
イクロプリズム11F1 と11F2 の各々で屈折し、プ
リズム11F1 と11F2 との境界部を分割線として2
分割され、それぞれ紙面内左右方向に向かって内面反射
を繰り返していくことになる。従って、平行平板11A
の左右の端面の各々に対応して2組の光電検出器を配置
しておけば、上記公報と全く同様に投影光学系の焦点位
置を求めることができる。
Further, for example, in JP-A-1-262624 and JP-A-1-273318, the light generated from the reference mark FM is divided into two in the pupil plane (Fourier transform plane) of the illumination optical system, and this division is performed. A technique for detecting the focal position of the projection optical system by individually detecting the emitted light is disclosed. The same effect can be obtained by directly applying the present invention to a device that splits a light beam into two in the pupil plane of the illumination optical system as described above. That is, in the device disclosed in the above publication, a deflecting member as shown in FIG. 4A may be arranged near the pupil plane of the illumination optical system. FIG. 4A shows a parallel plate 1.
Two sets of micro prisms 11F 1 and 11F on the lower surface of 1A
Formed 2 . FIG. 4B shows a state in which FIG. 4A is viewed from the reticle side, and the illumination light SL is refracted by each of the micro prisms 11F 1 and 11F 2 , and the boundary between the prisms 11F 1 and 11F 2 is shown. 2 as division line
It is divided, and the internal reflection is repeated in the left-right direction on the paper surface. Therefore, the parallel plate 11A
If two sets of photoelectric detectors are arranged so as to correspond to the left and right end faces of, the focal position of the projection optical system can be obtained in exactly the same manner as in the above publication.

【0026】図5は、光電検出器へ入射する光束の光量
損失を低減する上で有効な偏向部材の一例を示し、平行
平板11Aの上面(レチクルと反対側の面)はその全面
に遮光層(クロム等)LSBが形成されている。一方、
平行平板11Aの下面には、レチクル17を透過した照
明光SLのうち、特に0次光が照射される領域を除いて
遮光層LSBが形成されるとともに、上記照射領域内に
は透過型回折格子11Gが形成されている。このため、
平行平板11A内で内面反射を繰り返している間に外部
へ射出する光がなくなり、回折格子11Gで回折されて
平行平板11Aに入射した光は全て2組の光電検出器1
5a、15bで受光されることになる。従って、2組の
光電検出器15a、15bの各出力を加算して用いるこ
とによりシャープな信号波形が得られ、計測精度を向上
させることが可能となる。尚、光電検出器は1組でも良
く、このときは光電検出器が配置されない平行平板11
Aの一方の端面にも遮光層を形成しておくと良い。
FIG. 5 shows an example of a deflecting member which is effective in reducing the light quantity loss of the light beam incident on the photoelectric detector. The parallel plate 11A has an upper surface (a surface opposite to the reticle) a light shielding layer over the entire surface. An LSB (chromium or the like) is formed. on the other hand,
A light-shielding layer LSB is formed on the lower surface of the parallel plate 11A except for an area of the illumination light SL transmitted through the reticle 17, which is particularly irradiated with 0th-order light, and the transmission type diffraction grating is provided in the irradiation area. 11G is formed. For this reason,
While the internal reflection is repeated in the parallel plate 11A, there is no light to be emitted to the outside, and all the light diffracted by the diffraction grating 11G and incident on the parallel plate 11A has two sets of photoelectric detectors 1.
The light is received by 5a and 15b. Therefore, a sharp signal waveform can be obtained by adding and using the outputs of the two sets of photoelectric detectors 15a and 15b, and the measurement accuracy can be improved. It should be noted that the photoelectric detector may be one set, and in this case, the parallel plate 11 in which the photoelectric detector is not arranged is arranged.
It is preferable to form a light-shielding layer also on one end surface of A.

【0027】図6は、偏向部材として、照明光学系の光
軸に対して所定角度だけ傾けた平行平板11Aのみを用
いる例を示しており、平行平板11Aの上面、及び下面
の半分には遮光層LSBが形成されている。平行平板1
1Aの傾斜角は、照明光学系のスペース(図1ではフラ
イアイレンズ10とコンデンサーレンズ群16との間
隔)に応じて定めれば良い。
FIG. 6 shows an example in which only a parallel plate 11A tilted by a predetermined angle with respect to the optical axis of the illumination optical system is used as the deflecting member. The upper and lower surfaces of the parallel plate 11A are shielded from light. The layer LSB is formed. Parallel plate 1
The tilt angle of 1A may be determined according to the space of the illumination optical system (the distance between the fly-eye lens 10 and the condenser lens group 16 in FIG. 1).

【0028】以上の実施例では、平行平板内での内面反
射を利用して偏向部材を挟む2組の光学素子の間隔(光
軸方向の距離)を短くする、逆に言えば2組の光学素子
の間隔が小さくても偏向部材を配置可能とした。しかし
ながら、偏向部材を挟む2組の光学素子の間隔によって
は平行平板を用いずに、例えば透過型、または反射型の
回折格子(デューティ比1:1)のみを照明光学系の光
路中に配置するだけでも構わない。このとき、回折格子
で回折された光(1次回折光)が隣接した光学素子(図
1ではフライアイレンズ10等)でケラレないように格
子ピッチを定め、光電検出器では1次回折光を受光すれ
ば良い。また、回折格子のデューティ比を変える、例え
ば1:3に設定することによって、2次回折光を光電検
出器で受光するようにしても構わない。さらに、液晶表
示素子やエレクトロクロミック素子等で回折格子(図2
(b)の11C等)を構成し、基準マークを用いた計測
を行うときのみ回折格子を形成すれば、照明光路への回
折格子板(偏向部材)の出し入れを行う必要がなくな
る。
In the above embodiment, the distance (in the direction of the optical axis) between the two sets of optical elements sandwiching the deflecting member is shortened by utilizing the internal reflection inside the parallel plate. In other words, the two sets of optics are arranged. The deflecting member can be arranged even if the distance between the elements is small. However, depending on the distance between the two sets of optical elements sandwiching the deflecting member, for example, only a transmission type or reflection type diffraction grating (duty ratio 1: 1) is arranged in the optical path of the illumination optical system without using a parallel plate. I don't care. At this time, the grating pitch is set so that the light diffracted by the diffraction grating (first-order diffracted light) is not eclipsed by the adjacent optical element (the fly-eye lens 10 in FIG. 1), and the photoelectric detector receives the first-order diffracted light. Good. Further, the second-order diffracted light may be received by the photoelectric detector by changing the duty ratio of the diffraction grating, for example, by setting it to 1: 3. Furthermore, a diffraction grating (see FIG. 2) is used for liquid crystal display elements and electrochromic elements.
(11C in (b)) and if the diffraction grating is formed only when measurement is performed using the reference mark, it is not necessary to move the diffraction grating plate (deflecting member) in and out of the illumination optical path.

【0029】また、基準マークを反射型とし、レチクル
側から露光用照明光を基準マークに照射し、ここで反射
した光をレチクルを介して光電検出するような系に対し
ても同様に本発明を適用できる。このとき、基準マーク
の代わりにウエハ上のアライメントマークに照明光を照
射することで、レチクルマークとウエハマークとの相対
位置関係も求めることができる。
The present invention is also applicable to a system in which the reference mark is a reflection type, the exposure illumination light is applied to the reference mark from the reticle side, and the light reflected here is photoelectrically detected through the reticle. Can be applied. At this time, the relative positional relationship between the reticle mark and the wafer mark can also be obtained by irradiating the alignment mark on the wafer with illumination light instead of the reference mark.

【0030】さらに輪帯照明法や変形光源法を採用する
にあたっては、光源1(フライアイレンズ10の2次光
源)からの照明光を、所定の角度範囲を有し、かつ光軸
AXに対して傾いてレチクルパターンに入射する少なく
とも1つの光束に変換する光束変換部材を設ける必要が
ある。光束変換部材は、照明光学系の瞳面内での照明光
の強度分布を、光軸AXを含まない少なくとも1ヶ所の
領域(但し、輪帯照明法では光軸AXを中心とする輪帯
状の領域)に制限するものであり、例えば照明光学系の
瞳面(フライアイレンズ10の射出面)近傍に配置した
絞り(空間フィルター)が用いられる。光束変換部材と
しては絞り以外にも、光ファイバー、多面体プリズム
(またはコーンプリズム)、ミラー等を用いて良く、特
に絞りを用いる場合には、その中央部(光軸近傍の領
域)に反射型の回折格子等を設け、ここで反射した光を
平行平板に傾けて入射させるように構成しても良い。
Further, when adopting the annular illumination method or the modified light source method, the illumination light from the light source 1 (the secondary light source of the fly-eye lens 10) has a predetermined angle range and is with respect to the optical axis AX. It is necessary to provide a light beam conversion member that converts the light beam into at least one light beam that is inclined and incident on the reticle pattern. The luminous flux conversion member distributes the intensity distribution of the illumination light in the pupil plane of the illumination optical system in at least one region not including the optical axis AX (however, in the annular illumination method, an annular shape centered on the optical axis AX is used. The area is limited to, for example, a diaphragm (spatial filter) arranged near the pupil plane (emission surface of the fly-eye lens 10) of the illumination optical system is used. As the light flux conversion member, an optical fiber, a polyhedral prism (or a cone prism), a mirror, etc. may be used in addition to the diaphragm. Especially, when a diaphragm is used, reflection type diffraction is performed in the central portion (area near the optical axis). A grating or the like may be provided and the light reflected here may be inclined and incident on the parallel plate.

【0031】尚、図1に示した装置においてフライアイ
レンズ10からレチクル17までの間に折り曲げミラー
を配置しても良い。この場合でも、折り曲げミラーはレ
チクル近傍であって良いため、従来のフーリエ変換面近
傍にハーフミラーを配置する場合に比べ、照明光学系の
設計が容易で、小型化が可能となる。
A folding mirror may be arranged between the fly-eye lens 10 and the reticle 17 in the apparatus shown in FIG. Even in this case, since the folding mirror may be near the reticle, the design of the illumination optical system is easier and the size can be reduced as compared with the conventional case where the half mirror is arranged near the Fourier transform surface.

【0032】[0032]

【発明の効果】以上のように本発明によれば、マスクを
通過した基準マークからの照明光を照明光学系の一部を
介して検出する投影露光装置であっても、照明光学系に
対する制約を大幅に低減でき、小型で低コストの照明光
学系を実現できる。また、最近注目されている輪帯照明
や変形光源用の開口数の大きな照明光学系に対しても、
高精度の各種計測を実現することができる。
As described above, according to the present invention, even in the projection exposure apparatus that detects the illumination light from the reference mark that has passed through the mask through a part of the illumination optical system, there are restrictions on the illumination optical system. Can be significantly reduced, and a compact and low-cost illumination optical system can be realized. In addition, even for the illumination optical system with a large numerical aperture for the annular illumination and the modified light source, which have recently received attention,
Various highly accurate measurements can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による投影露光装置の構成を示
す図。
FIG. 1 is a diagram showing a configuration of a projection exposure apparatus according to an embodiment of the present invention.

【図2】図1中の偏向部材の具体的な構成の一例を示す
図。
FIG. 2 is a diagram showing an example of a specific configuration of a deflecting member in FIG.

【図3】図1に示した投影露光装置に好適な偏向部材の
他の例を示す図。
FIG. 3 is a diagram showing another example of a deflecting member suitable for the projection exposure apparatus shown in FIG.

【図4】図1に示した投影露光装置に好適な偏向部材の
他の例を示す図。
FIG. 4 is a view showing another example of a deflecting member suitable for the projection exposure apparatus shown in FIG.

【図5】図1に示した投影露光装置に好適な偏向部材の
他の例を示す図。
5 is a view showing another example of a deflecting member suitable for the projection exposure apparatus shown in FIG.

【図6】図1に示した投影露光装置に好適な偏向部材の
他の例を示す図。
6 is a view showing another example of a deflecting member suitable for the projection exposure apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1 光源 10 フライアイレンズ 11 偏向部材 11A 平行平板 15 光電検出器 16 コンデンサーレンズ群 17 レチクル 18 レチクルマーク 19 投影光学系 20 基準部材 21 ウエハ 22 ウエハステージ 26 光ファイバー 29 主制御系 30 アライメントセンサー FM 基準マーク 1 Light Source 10 Fly's Eye Lens 11 Deflection Member 11A Parallel Plate 15 Photoelectric Detector 16 Condenser Lens Group 17 Reticle 18 Reticle Mark 19 Projection Optical System 20 Reference Member 21 Wafer 22 Wafer Stage 26 Optical Fiber 29 Main Control System 30 Alignment Sensor FM Reference Mark

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7352−4M H01L 21/30 311 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7352-4M H01L 21/30 311 S

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源からの照明光をほぼ均一な強度分布
に成形してマスクに照射する照明光学系と、前記マスク
に形成されたパターンの像が転写される感光基板を保持
して移動可能な基板ステージと、該基板ステージ上に設
けられ、所定形状の基準パターンを有する基準部材と、
該基準部材に前記照明光を照射する照射手段と、前記マ
スクを通過する前記基準パターンから発生した光を検出
する検出手段とを備えた投影露光装置において、 前記照明光学系中のその光軸とほぼ垂直な面内に配置さ
れ、前記基準パターンから発生する光を前記照明光学系
の光路外へ偏向させる光束偏向部材を備え、 該光束偏向部材は、前記マスクのパターンを前記感光基
板に転写するときには前記照明光学系の光路中から取り
除かれることを特徴とする投影露光装置。
1. An illumination optical system for shaping illumination light from a light source into a substantially uniform intensity distribution and irradiating it on a mask, and a photosensitive substrate on which an image of a pattern formed on the mask is transferred can be held and moved. A substrate stage, and a reference member provided on the substrate stage and having a reference pattern of a predetermined shape,
A projection exposure apparatus comprising: an irradiation unit that irradiates the reference member with the illumination light; and a detection unit that detects light generated from the reference pattern that passes through the mask, the optical axis of the illumination optical system being A light flux deflecting member disposed in a substantially vertical plane for deflecting light generated from the reference pattern to the outside of the optical path of the illumination optical system, the light flux deflecting member transferring the mask pattern to the photosensitive substrate. A projection exposure apparatus, which is sometimes removed from the optical path of the illumination optical system.
【請求項2】 光源からの照明光をほぼ均一な強度分布
に成形してマスクに照射する照明光学系と、前記マスク
に形成されたパターンの像が転写される感光基板を保持
して移動可能な基板ステージと、該基板ステージ上に設
けられ、所定形状の基準パターンを有する基準部材と、
該基準部材に前記照明光を照射する照射手段と、前記マ
スクを通過する前記基準パターンから発生した光を検出
する検出手段とを備えた投影露光装置において、 前記照明光学系中のその光軸とほぼ垂直な面内に配置さ
れ、前記照明光に対してほぼ透明な基板と;該透明基板
の近傍に配置され、前記基準パターンから発生する光を
前記透明基板に対して傾けて入射させる光束偏向部材と
を備え、 該光束偏向部材は、前記マスクのパターンを前記感光基
板に転写するときには前記照明光学系の光路中から取り
除かれるとともに、前記検出手段は、前記基板の内部を
伝搬して前記照明光学系の光路外へ導かれる前記基準パ
ターンからの光を検出することを特徴とする投影露光装
置。
2. An illuminating optical system that illuminates an illumination light from a light source into a substantially uniform intensity distribution and irradiates the mask, and a photosensitive substrate to which an image of a pattern formed on the mask is transferred can be held and moved. A substrate stage, and a reference member provided on the substrate stage and having a reference pattern of a predetermined shape,
A projection exposure apparatus comprising: an irradiation unit that irradiates the reference member with the illumination light; and a detection unit that detects light generated from the reference pattern that passes through the mask, the optical axis of the illumination optical system being A substrate which is arranged in a substantially vertical plane and which is substantially transparent to the illumination light; a light beam deflection which is arranged in the vicinity of the transparent substrate and makes the light generated from the reference pattern incident on the transparent substrate at an angle. The light flux deflecting member is removed from the optical path of the illumination optical system when the mask pattern is transferred to the photosensitive substrate, and the detecting means propagates through the inside of the substrate to provide the illumination. A projection exposure apparatus, which detects light from the reference pattern guided to the outside of the optical path of an optical system.
【請求項3】 前記光束偏向部材は、前記透明基板の前
記マスク側の面に一体に設けられていることを特徴とす
る請求項2に記載の投影露光装置。
3. The projection exposure apparatus according to claim 2, wherein the light beam deflecting member is integrally provided on a surface of the transparent substrate on the mask side.
【請求項4】 前記光束偏向部材は、前記照明光学系中
の前記マスクのパターンに対する光学的なフーリエ変換
面、もしくはその近傍面内に配置されることを特徴とす
る請求項2、又は3に記載の投影露光装置。
4. The light flux deflecting member is arranged on an optical Fourier transform plane for the pattern of the mask in the illumination optical system, or on a plane in the vicinity thereof, according to claim 2 or 3. The projection exposure apparatus described.
JP4051354A 1992-03-10 1992-03-10 Projection aligner Pending JPH05259020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051354A JPH05259020A (en) 1992-03-10 1992-03-10 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051354A JPH05259020A (en) 1992-03-10 1992-03-10 Projection aligner

Publications (1)

Publication Number Publication Date
JPH05259020A true JPH05259020A (en) 1993-10-08

Family

ID=12884597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051354A Pending JPH05259020A (en) 1992-03-10 1992-03-10 Projection aligner

Country Status (1)

Country Link
JP (1) JPH05259020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221644A1 (en) * 2017-06-02 2018-12-06 株式会社ニコン Reticle, reticle unit, rifle scope, and optical apparatus
JP2018204863A (en) * 2017-06-02 2018-12-27 株式会社ニコン Reticle, reticle unit, optical instrument and rifle scope
JP2019207372A (en) * 2018-05-30 2019-12-05 株式会社ニコン Reticle, reticle unit, rifle scope, and optical equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221644A1 (en) * 2017-06-02 2018-12-06 株式会社ニコン Reticle, reticle unit, rifle scope, and optical apparatus
JP2018204863A (en) * 2017-06-02 2018-12-27 株式会社ニコン Reticle, reticle unit, optical instrument and rifle scope
US11119330B2 (en) 2017-06-02 2021-09-14 Nikon Corporation Reticle, reticle unit, rifle scope, and optical apparatus
JP2019207372A (en) * 2018-05-30 2019-12-05 株式会社ニコン Reticle, reticle unit, rifle scope, and optical equipment

Similar Documents

Publication Publication Date Title
US9594316B2 (en) Surface positioning detecting apparatus, exposure apparatus and device manufacturing method
TWI432910B (en) Surface position detecting device, exposure device and component manufacturing method
US4870452A (en) Projection exposure apparatus
US8416423B2 (en) Interferometric apparatus for detecting 3D position of a diffracting object
JPH0810124B2 (en) Exposure equipment
US4614432A (en) Pattern detector
JPH07270119A (en) Method and apparatus for reticle to wafer direct alignment through use of fluorescence for integrated circuit lithography
KR101251167B1 (en) Optical system, illumination optical system, and projection optical system
JPH10223517A (en) Focusing unit, viewer equipped with focusing unit, and aligner equipped with viewer
JPH05259020A (en) Projection aligner
JPH09189520A (en) Position detection device
JPH05160001A (en) Alignment device
JPH06120116A (en) Best focus measuring method
JP2808595B2 (en) Position detecting apparatus and projection exposure apparatus using the same
JPH05118957A (en) Method for inspecting projecting optical system
JP3336622B2 (en) Imaging characteristic measuring method and apparatus, and exposure apparatus
JP2555051B2 (en) Pattern detection method and device
JP2003035511A (en) Position detector and aligner equipped with it
JP3211246B2 (en) Projection exposure apparatus and element manufacturing method
JP2007299891A (en) Light source unit, illuminating optical system, aligner, and manufacturing method of device
JPH0722100B2 (en) Projection optics
JPH07321030A (en) Aligner
JP2002141261A (en) Surface position detector and manufacturing method, aligner and manufacturing method and manufacturing method of microdevice
KR100246590B1 (en) Photolithography
JPH06324472A (en) Original plate for exposure and projection exposing device using it