JPH05258693A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JPH05258693A
JPH05258693A JP4054806A JP5480692A JPH05258693A JP H05258693 A JPH05258693 A JP H05258693A JP 4054806 A JP4054806 A JP 4054806A JP 5480692 A JP5480692 A JP 5480692A JP H05258693 A JPH05258693 A JP H05258693A
Authority
JP
Japan
Prior art keywords
unsensitive
electron microscope
scanning electron
dead time
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4054806A
Other languages
Japanese (ja)
Inventor
Riyuuichirou Tamochi
隆一郎 多持
Shunsuke Koshihara
俊介 腰原
Takeo Suzuki
猛夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP4054806A priority Critical patent/JPH05258693A/en
Publication of JPH05258693A publication Critical patent/JPH05258693A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically set the unsensitive time generated in an X-ray detector to a proper ratio (20%-30%), in a scanning electron microscope having an energy dispersing type X-ray analyzing device, and realize highly precise analyses extending from metals and ceramics to polymer materials. CONSTITUTION:The unsensitive time generated in an X-ray detector 8 is transferred from a pulse-height analyzer 14 to a CPU 16. In the CPU 16, the data for controlling a focusing lens power source 20 in conformation to the increase and decrease of the unsensitive time is transferred to a D/A converter 17, whereby the probe current is automatically set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー分散型X線
分析装置を備えた走査電子顕微鏡に係り、特に、X線検
出器で生じる不感時間を適切な割合(分析に要する時間
の20%〜30%)に自動的に設定可能とするもので、
金属,セラミックスから高分子材料に至るまで精度の高
い分析を実現するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope equipped with an energy dispersive X-ray analyzer, and more particularly, to an appropriate ratio of dead time generated by an X-ray detector (20% to 20% of the time required for analysis). 30%) can be automatically set,
It realizes highly accurate analysis from metals and ceramics to polymer materials.

【0002】[0002]

【従来の技術】従来は、エネルギー分散型X線分析装置
でX線分析を実施する場合、分析時間に対して不感時間
の占める割合が大きくなると、エネルギー分解能の劣化
や擬似ピークの発生などの問題を生じて分析精度が低下
する。このため、従来は、不感時間をメータ等により目
視で読み取りながら、手動で収束レンズ電流を調整して
プローブ電流を設定していた。
2. Description of the Related Art Conventionally, when X-ray analysis is performed by an energy dispersive X-ray analyzer, if the ratio of dead time to the analysis time becomes large, problems such as deterioration of energy resolution and generation of pseudo peaks occur. Occurs, and the analysis accuracy decreases. Therefore, conventionally, the probe current has been set by manually adjusting the convergent lens current while visually reading the dead time with a meter or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
技術においては、試料を変えたときや分析位置を変えた
ときに変化する不感時間を、分析を行う毎に手動で収束
レンズを設定しなおすという煩わしさがあった。本発明
の目的は、収束レンズ電流を制御して任意の不感時間に
対して、プローブ電流を自動的に設定可能とする手段を
提供することにある。
However, in the above-mentioned prior art, the dead time that changes when the sample is changed or the analysis position is changed is troublesome to manually set the convergent lens every time the analysis is performed. There was An object of the present invention is to provide means for controlling the convergent lens current to automatically set the probe current for an arbitrary dead time.

【0004】[0004]

【課題を解決するための手段】上記目的は、検出器の不
感時間を読み取ってデジタル化して、コンピュータで演
算処理を行い収束レンズ電流を制御する機構を備えるこ
とにより容易に達成できる。
The above object can be easily achieved by providing a mechanism for reading the dead time of the detector, digitizing it, and performing arithmetic processing by a computer to control the convergent lens current.

【0005】[0005]

【作用】本発明の作用は、不感時間をモニタしながら、
所定の分析時間に対する不感時間の割合になるよう、収
束レンズ電流を制御することによってプローブ電流を変
化させるものである。
The function of the present invention is to monitor the dead time,
The probe current is changed by controlling the converging lens current so that the dead time is in proportion to the predetermined analysis time.

【0006】[0006]

【実施例】本発明の実施例を図1に示す。X線7は、真
空中で電子ビーム3を試料6に照射すると励起される。
励起されたX線7は、X線検出器8に入射し、その内部
でX線7のエネルギに対応した電荷に変わり収集され
る。X線検出器8と前置増幅器9は、エネルギ分解能を
向上させるためにクライオスタット10の中に取り付け
られ真空に封じ切ってある。ここで、多量のX線7が入
射するとX線検出器8で発生する不感時間が長くなり、
分解能劣化や擬似ピークの原因となるため、X線7の発
生量を、プローブ電流を可変することで適性値(通常、
加速電圧や試料によって異なる。)に設定しなければな
らない。そこで、不感時間の長さで、任意にプローブ電
流を制御するため、不感時間を波高分析器15からCP
U16で読み取りデジタル化する。プローブ電流は、収
束レンズ電流の増減により可変されるので、読み取った
不感時間の長さが、設定した適性な割合(分析時間の2
0%〜30%)となるよう、CPU16で演算処理を行
い、そのデータをD/A変換器17に転送し収束レンズ
電源20の制御をおこなう。これにより、不感時間に対
応したプローブ電流を自動設定することが可能となる。
尚、従来は、不感時間をCRT15から目視で読み取
り、収束レンズ電流を可変抵抗19で手動で設定してい
る。
FIG. 1 shows an embodiment of the present invention. The X-ray 7 is excited when the sample 6 is irradiated with the electron beam 3 in a vacuum.
The excited X-rays 7 enter the X-ray detector 8 and are converted into electric charges corresponding to the energy of the X-rays 7 and are collected therein. The X-ray detector 8 and preamplifier 9 are mounted in a cryostat 10 and sealed in a vacuum to improve energy resolution. Here, when a large amount of X-rays 7 are incident, the dead time generated in the X-ray detector 8 becomes long,
Since this causes deterioration of resolution and a pseudo peak, the amount of X-rays 7 generated is changed to an appropriate value (usually
Depends on acceleration voltage and sample. ) Must be set. Therefore, in order to control the probe current arbitrarily with the length of the dead time, the dead time is measured from the wave height analyzer 15 to the CP.
U16 is read and digitized. Since the probe current is changed by increasing / decreasing the converging lens current, the length of the read dead time is set to an appropriate ratio (2 of the analysis time).
0% to 30%), the CPU 16 performs arithmetic processing, transfers the data to the D / A converter 17, and controls the converging lens power source 20. This makes it possible to automatically set the probe current corresponding to the dead time.
Conventionally, the dead time is visually read from the CRT 15 and the converging lens current is manually set by the variable resistor 19.

【0007】[0007]

【発明の効果】本発明によれば、X線検出器で生じる不
感時間を適切な割合(20%〜30%)に自動設定するこ
とが可能となるため、エネルギー分散型X線検出器によ
るX線分析が簡略化されるとともに、金属,セラミック
スから高分子材料に至るまで、高精度な分析を実施でき
る効果がある。
According to the present invention, the dead time generated in the X-ray detector can be automatically set to an appropriate ratio (20% to 30%). This has the effect of simplifying line analysis and enabling highly accurate analysis of metals, ceramics, and polymeric materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための図である。FIG. 1 is a diagram for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

1…走査電子顕微鏡、2…電子銃、3…電子ビーム、4
…収束レンズ、5…対物レンズ、6…試料、7…X線、
8…X線検出器、9…前置増幅器、10…クライオスタ
ット、11…デュワー、12…液体窒素、13…直線増
幅器、14…波高分析器、15…CRT、16…CP
U、17…D/A変換器、18…前置増幅器、19…可
変抵抗、20…コンデンサレンズ電源。
1 ... Scanning electron microscope, 2 ... Electron gun, 3 ... Electron beam, 4
... Converging lens, 5 ... Objective lens, 6 ... Sample, 7 ... X-ray,
8 ... X-ray detector, 9 ... Preamplifier, 10 ... Cryostat, 11 ... Dewar, 12 ... Liquid nitrogen, 13 ... Linear amplifier, 14 ... Wave height analyzer, 15 ... CRT, 16 ... CP
U, 17 ... D / A converter, 18 ... Preamplifier, 19 ... Variable resistance, 20 ... Condenser lens power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 猛夫 茨城県勝田市堀口字長久保832番地2 日 立計測エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takeo Suzuki 832 Nagakubo, Horiguchi, Katsuta City, Ibaraki Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エネルギー分散型X線分析装置を備えた走
査電子顕微鏡において、任意の不感時間に対応したプロ
ーブ電流の設定を自動的に行う手段を備えたことを特徴
とする走査電子顕微鏡。
1. A scanning electron microscope equipped with an energy dispersive X-ray analyzer, comprising means for automatically setting a probe current corresponding to an arbitrary dead time.
JP4054806A 1992-03-13 1992-03-13 Scanning electron microscope Pending JPH05258693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054806A JPH05258693A (en) 1992-03-13 1992-03-13 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054806A JPH05258693A (en) 1992-03-13 1992-03-13 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH05258693A true JPH05258693A (en) 1993-10-08

Family

ID=12980978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054806A Pending JPH05258693A (en) 1992-03-13 1992-03-13 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH05258693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086011A (en) * 2005-09-26 2007-04-05 Hitachi High-Technologies Corp Electron microscope controller, electron microscope system, and control method for electron microscope
US7529337B2 (en) 2006-06-22 2009-05-05 Sii Nano Technology Inc. Energy dispersion type radiation detecting system and method of measuring content of object element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086011A (en) * 2005-09-26 2007-04-05 Hitachi High-Technologies Corp Electron microscope controller, electron microscope system, and control method for electron microscope
JP4644084B2 (en) * 2005-09-26 2011-03-02 株式会社日立ハイテクノロジーズ Electron microscope control apparatus, electron microscope system, and control method of electron microscope
US7529337B2 (en) 2006-06-22 2009-05-05 Sii Nano Technology Inc. Energy dispersion type radiation detecting system and method of measuring content of object element

Similar Documents

Publication Publication Date Title
EP0377446A2 (en) Surface analysis method and apparatus
JPS5963648A (en) Analyzer
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
Egerton A simple electron spectrometer for energy analysis in the transmission microscope
Oatley Isolation of potential contrast in the scanning electron microscope
CN1040251C (en) Method and apparatus for background correction in analysis of specimen surface
JPH05258693A (en) Scanning electron microscope
Traxel et al. The new Heidelberg proton microprobe: The success of a minimal concept
Ding et al. X-ray spectrometry using polycapillary X-ray optics and position sensitive detector
Joy et al. A practical electron spectrometer for chemical analysis
Jaklevic et al. X-ray fluorescence analysis applied to small samples
JPH04334861A (en) Electron spectroscopic image measuring method
Müller et al. SPA‐RHEED—A novel method in reflection high‐energy electron diffraction with extremely high angular and energy resolution
Lindström et al. Microdensitometer system for microradiography
Joy et al. Inner-Shell Electron Spectroscopy for Microanalysis: Chemical, structural, and electronic data are obtained by analysis of electron energy losses.
Goldstein et al. X-ray microanalysis and electron energy loss spectrometry in the analytical electron microscope: review and future directions
Allison et al. Imaging and small spot analysis with ESCA
Baumbach et al. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging
Zaluzec et al. A modified specimen stage for X-ray analysis in a TEM
JPH0269692A (en) Spherical mirror analyzer of energy of charged particle beam
Furnas Jr et al. Use of toroidal monochromators in a hybrid XRF system to obtain increased effectiveness ratios
JPH0758297B2 (en) Non-contact potential measuring device
Bolz et al. Ultrasensitive logarithmic picoammeter for exposure and dose measurement in electron microscopy of polymer crystals
Campbell et al. A soft X-ray spectrometer with photon counting using a resistance strip magnetic electron multiplier
Zou et al. An integrated computer system for Fudan nuclear microprobe