JPH05258305A - Production of perpendicular magnetic recording medium - Google Patents

Production of perpendicular magnetic recording medium

Info

Publication number
JPH05258305A
JPH05258305A JP8777692A JP8777692A JPH05258305A JP H05258305 A JPH05258305 A JP H05258305A JP 8777692 A JP8777692 A JP 8777692A JP 8777692 A JP8777692 A JP 8777692A JP H05258305 A JPH05258305 A JP H05258305A
Authority
JP
Japan
Prior art keywords
substrate
magnetic layer
magnetic
soft magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8777692A
Other languages
Japanese (ja)
Inventor
Morikazu Sakawa
盛一 坂輪
Tomoyuki Shimizu
朝幸 清水
Tatsuya Iizuka
達也 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8777692A priority Critical patent/JPH05258305A/en
Publication of JPH05258305A publication Critical patent/JPH05258305A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To avoid the crushing of a magnetic head as well as to orient the axes of easy magnetization of the soft magnetic layer of a magnetic recording medium in the radial directions of the medium without grooving the substrate, to prevent reduction and change in permeability and to also prevent reduction and change in reproduction output. CONSTITUTION:A soft magnetic layer 22 is formed on a substrate 21 by plating in a plating bath with an anode magnetized beforehand by impressing a magnetic field from the center of the substrate 21 toward the radial direction. The axes 24 of easy magnetization of the soft magnetic layer 22 can be oriented in the radial directions of the resulting magnetic recording medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は円板状の基板の上に軟磁
性層、垂直磁化層及び保護層等を設けた垂直磁気記録媒
体及びその製造方法に関し、特に、外部磁界の影響を受
けにくくした垂直磁気記録媒体及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium in which a soft magnetic layer, a perpendicular magnetic layer, a protective layer and the like are provided on a disk-shaped substrate and a method for manufacturing the same, and more particularly to a perpendicular magnetic recording medium affected by an external magnetic field. The present invention relates to a hardened perpendicular magnetic recording medium and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、記録媒体に対する記録密度の向上
に対する要望は益々厳しくなっているが、垂直磁気記録
技術は、面内磁気記録に比して記録密度を高くすること
ができるため注目されている技術である。
2. Description of the Related Art In recent years, there has been an increasing demand for improvement in recording density for recording media, but the perpendicular magnetic recording technology has been attracting attention because it can increase the recording density as compared with in-plane magnetic recording. Technology.

【0003】図6はこの垂直磁気記録の記録方法を示す
模式図である。垂直磁気記録媒体2の上に磁気ヘッド1
が適長間隔をおいて浮上するように配置される。媒体2
は基板3の上に、軟磁性層4が形成されており、軟磁性
層4の上に垂直磁化層5が形成されている。なお、通
常、この垂直磁化層5の上に保護層(図示せず)が形成
されている。一方、磁気ヘッド1は主磁極6と補助磁極
7とを有する。そして、主磁極6から発生した磁束8は
媒体表面に垂直に入り、垂直磁化層5を垂直に通過し、
軟磁性層4に至る。そして、この磁束8は軟磁性層4を
媒体表面に沿って延び、磁気ヘッド1の補助磁極7の位
置で再度垂直磁化層5をとおり、補助磁極7に戻る。こ
れにより、主磁極6から、垂直磁化層5、軟磁性層4、
垂直磁化層5及び補助磁極7を通って主磁極6に戻る磁
気回路が形成される。そして、垂直磁化層5の主磁極6
に対向する部分が層の厚さ方向、即ち垂直方向に磁化さ
れ、垂直磁気記録が行われる。
FIG. 6 is a schematic view showing a recording method of this perpendicular magnetic recording. Magnetic head 1 on perpendicular magnetic recording medium 2
Are arranged so as to float at appropriate intervals. Medium 2
The soft magnetic layer 4 is formed on the substrate 3, and the perpendicular magnetization layer 5 is formed on the soft magnetic layer 4. A protective layer (not shown) is usually formed on the perpendicular magnetization layer 5. On the other hand, the magnetic head 1 has a main magnetic pole 6 and an auxiliary magnetic pole 7. Then, the magnetic flux 8 generated from the main magnetic pole 6 vertically enters the medium surface and vertically passes through the perpendicular magnetization layer 5,
The soft magnetic layer 4 is reached. Then, the magnetic flux 8 extends through the soft magnetic layer 4 along the medium surface, passes through the perpendicular magnetic layer 5 again at the position of the auxiliary magnetic pole 7 of the magnetic head 1, and returns to the auxiliary magnetic pole 7. Thereby, from the main magnetic pole 6, the perpendicular magnetization layer 5, the soft magnetic layer 4,
A magnetic circuit is formed that returns to the main magnetic pole 6 through the perpendicular magnetization layer 5 and the auxiliary magnetic pole 7. Then, the main pole 6 of the perpendicular magnetization layer 5
Is magnetized in the thickness direction of the layer, that is, in the perpendicular direction, and perpendicular magnetic recording is performed.

【0004】而して、従来この垂直磁気記録媒体は、基
板の表面にパーマロイ等をスパッタリングすることによ
り軟磁性層を形成し、その後同様にスパッタリングによ
り磁性層(垂直磁化層)を形成し、更に必要な工程を経
て製造されている。しかし、この従来の製造方法におい
ては、スパッタリング工程の都合上、図7に示すよう
に、軟磁性層4の磁化容易軸9が一方向に配向するか、
又は図8に示すように、磁化容易軸10が基板の円周方
向に磁化しやすい。このように、軟磁性層4の磁化容易
軸9が一方向に配向すると(図7)、軟磁性層4の透磁
率が媒体の周方向の位置により変動し、再生信号のレベ
ルが周期的に変動してしまう。一方、軟磁性層4の磁化
容易軸10が媒体円周方向に配向すると(図8)、軟磁
性層4の透磁率が媒体の全域で低くなってしまう。この
ため、再生レベルも周方向の位置に拘らず、常に低いも
のになってしまう。また、記録再生中に、垂直方向から
の僅かな外部磁化の影響で、再生出力が著しく低下して
しまう。
Thus, in the conventional perpendicular magnetic recording medium, a soft magnetic layer is formed by sputtering Permalloy or the like on the surface of a substrate, and then a magnetic layer (perpendicular magnetic layer) is similarly formed by sputtering. It is manufactured through the necessary steps. However, in this conventional manufacturing method, due to the convenience of the sputtering process, as shown in FIG. 7, the easy magnetization axis 9 of the soft magnetic layer 4 is oriented in one direction, or
Alternatively, as shown in FIG. 8, the easy axis 10 is easily magnetized in the circumferential direction of the substrate. As described above, when the easy axis 9 of the soft magnetic layer 4 is oriented in one direction (FIG. 7), the magnetic permeability of the soft magnetic layer 4 varies depending on the position in the circumferential direction of the medium, and the level of the reproduction signal periodically changes. It fluctuates. On the other hand, if the easy magnetization axis 10 of the soft magnetic layer 4 is oriented in the circumferential direction of the medium (FIG. 8), the magnetic permeability of the soft magnetic layer 4 becomes low throughout the medium. Therefore, the reproduction level is always low regardless of the position in the circumferential direction. Further, during recording / reproduction, the reproduction output is significantly reduced due to the influence of a slight external magnetization from the vertical direction.

【0005】そこで、従来、このような軟磁性層の磁化
容易軸の配向による不都合を解消するため、図9に示す
ように、基板3aの表面に、その半径方向に延びる多数
の溝を形成し、軟磁性層の半径方向に磁化容易軸を配向
させる技術が提案されている(特開平2-126421号)。
Therefore, in order to solve the problem caused by the orientation of the easy axis of magnetization of the soft magnetic layer, a large number of grooves extending in the radial direction are formed on the surface of the substrate 3a as shown in FIG. A technique for orienting the easy axis of magnetization in the radial direction of the soft magnetic layer has been proposed (Japanese Patent Laid-Open No. 2-126421).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この従
来技術においては、基板の半径方向に100乃至1000Åの
深さの溝を数十乃至数百本形成するという工程が必要で
あり、製造工程が複雑になる。また、磁気記録媒体と磁
気ヘッドとの相対的移動方向が前記溝と直交する方向に
なるため、溝の形成と共に生じた周方向の凹凸により、
磁気ヘッドがクラッシュを起こしたり、磁気ディスクの
摩擦係数が高くなったりして、磁気記録媒体の耐久性を
著しく低下させてしまうという問題点がある。
However, this conventional technique requires a step of forming tens to hundreds of grooves having a depth of 100 to 1000Å in the radial direction of the substrate, which complicates the manufacturing process. become. Further, since the relative movement direction of the magnetic recording medium and the magnetic head is a direction orthogonal to the groove, due to the unevenness in the circumferential direction generated along with the formation of the groove,
There is a problem that the magnetic head crashes or the friction coefficient of the magnetic disk becomes high, so that the durability of the magnetic recording medium is significantly lowered.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、再生出力のレベル変動を有効に防止でき、
再生出力に与える外部磁場の影響を十分に小さく抑制す
ることができると共に、耐久性が優れた垂直磁気記録媒
体及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and it is possible to effectively prevent the level fluctuation of the reproduction output,
An object of the present invention is to provide a perpendicular magnetic recording medium that can suppress the influence of an external magnetic field on the reproduction output to a sufficiently small level and that has excellent durability, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明に係る垂直磁気記
録媒体製造方法は、円板状をなす基板を、あらかじめ前
記基板の半径方向に相当する磁界を印加して磁化させた
アノードを使用したメッキ浴中に浸漬し、前記基板の表
面に磁化容易軸が基板の半径方向に配向した軟磁性層を
メッキする工程と、この軟磁性層の上に垂直磁化層を形
成する工程とを有することを特徴とするものである。
A method of manufacturing a perpendicular magnetic recording medium according to the present invention uses an anode obtained by previously magnetizing a disk-shaped substrate by applying a magnetic field corresponding to the radial direction of the substrate. A step of immersing in a plating bath, plating a surface of the substrate with a soft magnetic layer having an easy axis of magnetization oriented in the radial direction of the substrate, and forming a perpendicular magnetic layer on the soft magnetic layer. It is characterized by.

【0009】[0009]

【作用】本発明においては、円板状をなす基板を、あら
かじめ基板の半径方向に相当する磁界を印可して磁化さ
せたアノードを使用したメッキ浴中に浸漬して軟磁性層
を形成する。あらかじめ基板に半径方向に延びる磁界を
印加したアノードを使用するのでメッキによって形成さ
れた軟磁性層は、その磁化容易軸が基板の半径方向に配
向する。このため、軟磁性層の磁化容易軸は磁気ヘッド
と媒体との相対的な移動方向に垂直であるので、透磁率
に変動がなく、高レベルの再生信号が一定して得られ
る。また、垂直方向の外部磁場が媒体に加えられても再
生信号の低下を防止することができる。
In the present invention, a disk-shaped substrate is immersed in a plating bath using an anode magnetized by applying a magnetic field corresponding to the radial direction of the substrate in advance to form a soft magnetic layer. Since the anode to which a magnetic field extending in the radial direction is previously applied to the substrate is used, the easy axis of magnetization of the soft magnetic layer formed by plating is oriented in the radial direction of the substrate. Therefore, since the easy axis of magnetization of the soft magnetic layer is perpendicular to the relative moving direction of the magnetic head and the medium, the magnetic permeability does not fluctuate and a high-level reproduction signal can be obtained constantly. Further, even if a vertical external magnetic field is applied to the medium, it is possible to prevent the reproduction signal from decreasing.

【0010】本発明の基板には、半径方向の溝が形成さ
れていないので、磁気ヘッドのクラッシュなどは起き
ず、媒体の耐久性が向上する。なお、本発明において
も、所謂テクスチャリング処理のために、基板の表面に
円周方向に延びる溝等を設けることは排除するものでは
ない。また、メッキ浴中にマグネットを放射状に設置し
たアノードをいれる必要がないため、メッキ槽あたりの
処理枚数を増すことができるので量産化することが可能
である。
Since no radial groove is formed on the substrate of the present invention, the magnetic head does not crash and the durability of the medium is improved. In the present invention, it is not excluded that a groove extending in the circumferential direction is provided on the surface of the substrate for so-called texturing processing. Further, since it is not necessary to put an anode having magnets radially installed in the plating bath, it is possible to increase the number of sheets to be processed per plating tank, and thus mass production is possible.

【0011】[0011]

【実施例】以下、添付の図面を参照して本発明の実施例
について具体的に説明する。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

【0012】図1は本発明の実施例に係る垂直磁気記録
媒体20を示す断面図であり、図2はその軟磁性層の磁
気容易軸の配向を示す模式図である。基板21は例えば
厚さが1.2mmのアルミニウム基板であり、この基板21
の上に軟磁性層22が形成されている。軟磁性層22は
例えば厚さが7μmのパーマロイ層であり、この軟磁性
層2の上に垂直磁化膜としての磁性層23が形成されて
いる。磁性層23は厚さが例えば1000ÅのCoCrTa
合金層である。通常、この磁性層の上に、保護層(図示
せず)を設ける。基板21はその表面に円周方向に延び
る溝からなるテクスチャリング処理を施してある。基板
材料としては、アルミニウム、アルミニウム合金及びガ
ラス等を使用することができる。軟磁性層22は上述の
パーマロイの外に、非晶質合金などを使用することがで
きるが、パーマロイとしては、70乃至90重量%のN
iを含有するFe−Ni合金を使用することが好まし
い。この組成範囲にあるものが磁気特性上好ましい。
FIG. 1 is a sectional view showing a perpendicular magnetic recording medium 20 according to an embodiment of the present invention, and FIG. 2 is a schematic view showing the orientation of the easy magnetic axis of the soft magnetic layer. The substrate 21 is, for example, an aluminum substrate having a thickness of 1.2 mm.
A soft magnetic layer 22 is formed on the top surface. The soft magnetic layer 22 is, for example, a permalloy layer having a thickness of 7 μm, and the magnetic layer 23 as a perpendicular magnetization film is formed on the soft magnetic layer 2. The magnetic layer 23 has a thickness of, for example, 1000 Å and is made of CoCrTa.
It is an alloy layer. Usually, a protective layer (not shown) is provided on this magnetic layer. The surface of the substrate 21 is subjected to a texturing treatment including grooves extending in the circumferential direction. As the substrate material, aluminum, aluminum alloy, glass or the like can be used. In addition to the above-mentioned permalloy, an amorphous alloy can be used for the soft magnetic layer 22, and the permalloy contains 70 to 90% by weight of N.
It is preferable to use an Fe-Ni alloy containing i. Those in this composition range are preferable in terms of magnetic properties.

【0013】而して、軟磁性層22には、その磁化容易
軸24が媒体の中心から半径方向に延びるように配向さ
れている。
Thus, in the soft magnetic layer 22, the easy axis 24 of magnetization is oriented so as to extend in the radial direction from the center of the medium.

【0014】次に、上述の如く構成された垂直磁気記録
媒体の製造方法について説明する。図3は軟磁性層のパ
ーマロイ層をメッキにより形成する際に使用されるメッ
キ槽31を示す斜視図である。メッキ槽31は塩化ビニ
ルで形成されており、その中に1対のあらかじめ基板の
半径方向に相当する磁界を印可して磁化させたアノード
32がその面を垂直にして設置されている。カソード3
4からは基板支持棒35が延出しており、この基板支持
棒35に被メッキ材の基板21がその面を垂直にして取
り付けられている。メッキ時は基板21とNiアノード
32が対向するように設置される。基板21は支持棒3
5を介して回転駆動されるようになっている。
Next, a method of manufacturing the perpendicular magnetic recording medium having the above structure will be described. FIG. 3 is a perspective view showing a plating bath 31 used when the permalloy layer of the soft magnetic layer is formed by plating. The plating tank 31 is made of vinyl chloride, and a pair of anodes 32, which are magnetized by applying a magnetic field corresponding to the radial direction of the substrate, are installed therein with the surface thereof being vertical. Cathode 3
A substrate support rod 35 extends from the substrate 4, and the substrate 21 of the material to be plated is attached to the substrate support rod 35 with its surface vertical. At the time of plating, the substrate 21 and the Ni anode 32 are installed so as to face each other. Substrate 21 is support rod 3
It is adapted to be rotationally driven via 5.

【0015】Niアノード32、カソード34を図4に
示すようにメッキ浴槽に設置する前に、Niアノード3
2を固定治具42に放射状に固定された棒状のマグネッ
ト41の上に所定の時間放置し磁化を施す。磁化に要す
る時間はマグネットの磁場の強さに依存するが、40ガ
ウス程度の磁場の強さで1時間磁化を施せば十分であ
る。棒状のマグネット41は固定治具42の中心側にS
極が、周辺側にN極がくるように配置されている。この
磁石の数は例えば15本が好適である。また、他の金属
メッキを行う場合、アノードが強磁性体であれば同様な
方法で磁化を施すことができる。Ni 以外に、例えばF
e やCo のような鉄族Gd,Tb,Dy,Ho,Er,Tm のよう
な希土類金属でもよい。
Before installing the Ni anode 32 and the cathode 34 in the plating bath as shown in FIG. 4, the Ni anode 3
2 is left for a predetermined time on a rod-shaped magnet 41 radially fixed to a fixing jig 42 to magnetize it. The time required for the magnetization depends on the strength of the magnetic field of the magnet, but it is sufficient to perform the magnetization for 1 hour with the strength of the magnetic field of about 40 Gauss. The rod-shaped magnet 41 has an S
The poles are arranged so that the N pole is on the peripheral side. The number of the magnets is preferably 15, for example. Further, when other metal plating is performed, if the anode is a ferromagnetic material, it can be magnetized by the same method. In addition to Ni, for example, F
Rare earth metals such as iron group Gd, Tb, Dy, Ho, Er and Tm such as e and Co may be used.

【0016】このように構成されたメッキ装置により、
基板表面にパーマロイ等の軟磁性層22をメッキ形成す
ると、この軟磁性層22には、磁化容易軸24が図2に
示すように半径方向に放射状に延びて配向する。
With the plating apparatus configured in this way,
When the soft magnetic layer 22 such as permalloy is formed on the surface of the substrate by plating, the easy magnetization axis 24 is radially extended and oriented in the soft magnetic layer 22, as shown in FIG.

【0017】なお、このメッキ工程は通常の電気メッキ
工程と同様に行えば良い。即ち、先ず、基板21をアル
カリにより脱脂し、酸で活性化した後、酸で洗浄し、そ
の後、ジンケート処理する。次いで、基板21を前述の
如くメッキ槽31内に設置し、基板21を回転させつ
つ、その表面にパーマロイをメッキにより被着する。そ
の後、軟磁性層22が形成された基板21を水洗する。
The plating process may be performed in the same manner as a normal electroplating process. That is, first, the substrate 21 is degreased with an alkali, activated with an acid, washed with an acid, and then treated with a zincate. Next, the substrate 21 is placed in the plating bath 31 as described above, and while the substrate 21 is rotated, permalloy is deposited on the surface by plating. Then, the substrate 21 on which the soft magnetic layer 22 is formed is washed with water.

【0018】その後、通常のスパッタリング等の方法に
より、垂直磁化膜としての磁性層23を形成し、更に保
護膜を形成する。これにより、垂直磁気記録媒体20が
製造される。
After that, a magnetic layer 23 as a perpendicular magnetization film is formed by a method such as ordinary sputtering, and a protective film is further formed. Thereby, the perpendicular magnetic recording medium 20 is manufactured.

【0019】このようにして製造された垂直磁気記録媒
体20は、その軟磁性層22の磁化容易軸24が媒体の
半径方向に配向しているので、媒体の周方向に相対的に
移動する磁気ヘッドにより記録再生する場合に、磁界の
透磁率に変動がなく、高レベルの再生信号が一定して得
られる。また垂直方向の外部磁場が媒体に加えられても
再生信号の低下を防止することができる。基板21には
半径方向の溝を設けないので、磁気ヘッドのクラッシュ
等の不都合も回避される。
In the perpendicular magnetic recording medium 20 manufactured as described above, since the easy magnetization axis 24 of the soft magnetic layer 22 is oriented in the radial direction of the medium, the magnetic field moving relatively in the circumferential direction of the medium. When recording / reproducing with the head, the magnetic permeability of the magnetic field does not fluctuate, and a high-level reproducing signal can be obtained constantly. Further, even if an external magnetic field in the vertical direction is applied to the medium, it is possible to prevent the reproduction signal from decreasing. Since no radial groove is provided on the substrate 21, inconveniences such as a magnetic head crash can be avoided.

【0020】次に、本実施例方法により実際に垂直磁気
記録媒体を製造し、その特性を試験した結果について説
明する。先ず、被メッキ基板として、直径が 3.5イン
チ、厚さが 1.2mmのアルミニウム基板を用意し、これに
上述の一連のメッキ処理を施し、下記表1に示すメッキ
浴中で、下記表2に示す条件でメッキ処理した。
Next, the results of actually manufacturing a perpendicular magnetic recording medium by the method of this embodiment and testing its characteristics will be described. First, as a substrate to be plated, an aluminum substrate having a diameter of 3.5 inches and a thickness of 1.2 mm was prepared, and the above-described series of plating treatments were performed on the aluminum substrate. Plated under the conditions.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】実施例1としてメッキ前にあらかじめ磁場
で着磁したアノードを用いて、着磁した後、1時間後に
前記メッキ浴槽中でメッキ処理を施したもの、実施例2
としてメッキ前にあらかじめ磁場で着磁したアノードを
用いて、着磁した後7日後に前記メッキ浴槽中でメッキ
処理を施したもの、比較例として、メッキ前にあらかじ
め着磁しないアノードを用いて前記メッキ浴槽中でメッ
キ処理を施したものを作製した。各々のパーマロイ層の
厚さは10μmである。なお、アノードの着磁は、棒磁石
15本を放射状に設置しアノードへの印可磁場が30ガ
ウスになるようにして1時間放置した。
As Example 1, an anode magnetized in advance with a magnetic field before plating was used, and after one hour, a plating treatment was performed in the plating bath 1 hour later, Example 2
As the anode, which was previously magnetized with a magnetic field before plating, was subjected to a plating treatment in the plating bath 7 days after being magnetized. The thing which gave the plating process in the plating bath was produced. The thickness of each permalloy layer is 10 μm. The magnetizing of the anode was carried out by arranging 15 bar magnets radially so that the applied magnetic field to the anode was 30 gauss and left for 1 hour.

【0024】次いで、パーマロイ層の表面を表面粗さ10
0 Å以下のメカノケミカルポリシング処理を施し、その
表面粗さRmax を 200Å以下とした。その結果、パーマ
ロイ層の厚さが7μmになった。その保磁力は0.8OOe
であり、飽和磁化Bs は10000 ガウスであった。
Then, the surface of the permalloy layer is subjected to surface roughness 10
A mechanochemical polishing treatment of 0 Å or less was performed, and the surface roughness Rmax was 200 Å or less. As a result, the thickness of the permalloy layer became 7 μm. Its coercive force is 0.8OOe
And the saturation magnetization Bs was 10,000 Gauss.

【0025】その後、このパーマロイ軟磁性層の上に、
磁性層のCoCrTa層を1000Åの厚さで設け、更にカ
ーボン保護膜を300Åの厚さで設けた。磁性層及び保護
膜はスパッタリングで形成した。これらの実施例及び比
較例の媒体に対し、円周方向と半径方向のパーミアンス
及び垂直方向から外部磁界をかけたときの1MHzの再生
出力をサーティファイヤ(評価装置)を使用して測定し
た。なお、使用した磁気ヘッドの仕様は下記表3に示す
通りである。その結果、円周方向と半径方向のパーミア
ンスの比は下記表4に示す通りである。
Then, on the permalloy soft magnetic layer,
A CoCrTa layer as a magnetic layer was provided with a thickness of 1000Å, and a carbon protective film was provided with a thickness of 300Å. The magnetic layer and the protective film were formed by sputtering. Permeance in the circumferential direction and radial direction and reproduction output of 1 MHz when an external magnetic field was applied from the vertical direction were measured for the media of these Examples and Comparative Examples using a certifier (evaluation device). The specifications of the magnetic head used are as shown in Table 3 below. As a result, the permeance ratios in the circumferential direction and the radial direction are as shown in Table 4 below.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】また、1MHzの再生出力の測定結果から、外
部磁界をかけないときの再生出力に対する出力比Rを図
5に示す。この結果、実施例1および実施例2のパーミ
アンス比は1.86乃至4.63であり、磁化容易軸が
半径方向に配向していることがわかる。そして、図5か
ら磁化容易軸が半径方向に配向していない比較例の場合
が外部磁界の影響を受けて出力比Rが低下しているのに
対して、本実施例の場合には外部磁界の影響を受けにく
いことがわかる。
FIG. 5 shows the output ratio R to the reproduction output when the external magnetic field is not applied from the measurement result of the reproduction output of 1 MHz. As a result, the permeance ratios of Example 1 and Example 2 were 1.86 to 4.63, and it was found that the easy axis of magnetization was oriented in the radial direction. From FIG. 5, the output ratio R is lowered due to the influence of the external magnetic field in the case of the comparative example in which the easy axis of magnetization is not oriented in the radial direction, whereas in the case of the present embodiment, the external magnetic field is reduced. It can be seen that it is hard to be affected by.

【0029】[0029]

【発明の効果】本発明の製造方法によって得られる垂直
磁気記録媒体は、軟磁性層の磁化容易軸を、基板に溝を
形成することなく、媒体の半径方向に配向させたから、
磁気ヘッドにより記録再生するときの軟磁性層の透磁率
を高く保持し、しかもその変動を回避することができ
る。このため、再生信号の出力の低下及び変動を防止で
き、しかも外部磁界の影響を抑制することができる。ま
た、基板には半径方向の溝がないので、磁気ヘッドのク
ラッシュ等の不都合も防止できる。また、本方法によれ
ばメッキ浴槽中に直接、棒磁石などを入れて磁場をかけ
る必要がないので、浴槽あたりの処理枚数を増やすこと
ができ、量産効果が大きく工業生産に適している。
In the perpendicular magnetic recording medium obtained by the manufacturing method of the present invention, the easy axis of magnetization of the soft magnetic layer is oriented in the radial direction of the medium without forming a groove in the substrate.
It is possible to keep the magnetic permeability of the soft magnetic layer high at the time of recording / reproducing with the magnetic head and to avoid the fluctuation thereof. Therefore, it is possible to prevent the output of the reproduction signal from decreasing and fluctuating, and it is possible to suppress the influence of the external magnetic field. In addition, since there is no radial groove on the substrate, it is possible to prevent inconvenience such as crash of the magnetic head. Further, according to this method, since it is not necessary to directly insert a bar magnet or the like into the plating bath to apply a magnetic field, it is possible to increase the number of sheets to be processed per bath, and thus the mass production effect is large and it is suitable for industrial production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る垂直磁気記録媒体を示す
断面図である。
FIG. 1 is a sectional view showing a perpendicular magnetic recording medium according to an example of the present invention.

【図2】同じくその磁化容易軸を示す模式図である。FIG. 2 is a schematic diagram showing the easy axis of magnetization.

【図3】本実施例方法にて使用するメッキ装置を示す斜
視図である。
FIG. 3 is a perspective view showing a plating apparatus used in the method of the present embodiment.

【図4】同じくメッキ前にアノード着磁を施す方法を示
す平面図である。
FIG. 4 is a plan view showing a method of similarly applying anode magnetization before plating.

【図5】本発明の効果を示し、外部磁界の影響を示すグ
ラフ図である。
FIG. 5 is a graph showing an effect of the present invention and an effect of an external magnetic field.

【図6】垂直磁気記録技術の原理を示す模式図である。FIG. 6 is a schematic view showing the principle of the perpendicular magnetic recording technology.

【図7】従来の媒体の磁化容易軸を示す模式図である。FIG. 7 is a schematic view showing an easy axis of magnetization of a conventional medium.

【図8】同じく従来の媒体の磁化容易軸を示す模式図で
ある。
FIG. 8 is a schematic diagram showing an easy magnetization axis of a conventional medium.

【図9】従来の媒体の基板表面を示す平面図である。FIG. 9 is a plan view showing a substrate surface of a conventional medium.

【符号の説明】[Explanation of symbols]

20;垂直磁気記録媒体 21;基板 22;軟磁性層 23;磁性層 24;磁化容易軸 31;メッキ槽 32;アノード 34;カソード 35;永久磁石 41;マグネット 42;固定治具 20; Perpendicular magnetic recording medium 21; Substrate 22; Soft magnetic layer 23; Magnetic layer 24; Easy axis of magnetization 31; Plating bath 32; Anode 34; Cathode 35; Permanent magnet 41; Magnet 42; Fixing jig

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円板状をなす基板を、あらかじめ前記基
板の半径方向に相当する磁界を印加して磁化させたアノ
ードを使用したメッキ浴中に浸漬し、前記基板の表面に
軟磁性層をメッキし、磁化容易軸が基板の半径方向に配
向した軟磁性層を形成する工程と、該軟磁性層の上に垂
直磁化層を形成する工程とを有することを特徴とする垂
直磁気記録媒体の製造方法。
1. A disk-shaped substrate is immersed in a plating bath using an anode magnetized by applying a magnetic field corresponding to the radial direction of the substrate in advance, and a soft magnetic layer is formed on the surface of the substrate. A perpendicular magnetic recording medium comprising: a step of plating to form a soft magnetic layer whose easy axis of magnetization is oriented in a radial direction of a substrate; and a step of forming a perpendicular magnetic layer on the soft magnetic layer. Production method.
JP8777692A 1992-03-11 1992-03-11 Production of perpendicular magnetic recording medium Withdrawn JPH05258305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8777692A JPH05258305A (en) 1992-03-11 1992-03-11 Production of perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8777692A JPH05258305A (en) 1992-03-11 1992-03-11 Production of perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05258305A true JPH05258305A (en) 1993-10-08

Family

ID=13924387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8777692A Withdrawn JPH05258305A (en) 1992-03-11 1992-03-11 Production of perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05258305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709773B1 (en) * 2000-09-05 2004-03-23 Seagate Technology, Inc. Magnetic anisotrophy of soft-underlayer induced by seedlayer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709773B1 (en) * 2000-09-05 2004-03-23 Seagate Technology, Inc. Magnetic anisotrophy of soft-underlayer induced by seedlayer

Similar Documents

Publication Publication Date Title
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
EP0426326B1 (en) Magnetic read/write head and method of making such a head
JP2002175621A (en) Magnetic recording medium and manufacturing method therefor
Andricacos et al. Magnetically soft materials in data storage: Their properties and electrochemistry
KR940022387A (en) Manufacturing Method of Thin Magnetic Head and Its Magnetic Head
CA1227452A (en) Perpendicular magnetic recording medium and fabrication
JPH07129946A (en) Perpendicular magnetic recording medium
EP0105705B1 (en) Perpendicular magnetic recording medium
JPH05258305A (en) Production of perpendicular magnetic recording medium
JP2004146033A (en) Base plate of induction anisotropic perpendicular magnetic recording hard disk and its manufacturing method
JP2004152454A (en) Magnetic head and its manufacturing method
JP3211815B2 (en) Soft magnetic thin film and method for manufacturing the same
JPH0567323A (en) Vertical magnetic recording medium and manufacture thereof
EP1577883A1 (en) Perpendicular magnetic recording medium
JP2005293778A (en) SINGLE CRYSTAL Si SUBSTRATE WITH METAL PLATING LAYER AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2004335068A (en) Perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording/reproducing device
JPH0323972B2 (en)
JP2007220777A (en) Soft magnetic thin film, its manufacturing method, and magnetic head
JPH0772929B2 (en) Method for forming a magnetic pole of a magnetic device
JP2901549B2 (en) Ni-Fe alloy electroplating method and Ni-Fe alloy electroplated film
US20070111036A1 (en) Substrate for magnetic recording medium and fabrication method thereof
JPS5933613A (en) Magnetic pole of thin film magnetic head and its production
US5830587A (en) Magnetic devices with enhanced poles
JPS59139138A (en) Magnetic recording medium and its production
EP0076142B1 (en) Post treatment of perpendicular magnetic recording media

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518