JPH05258244A - Magnetoresistance effect head - Google Patents

Magnetoresistance effect head

Info

Publication number
JPH05258244A
JPH05258244A JP5138592A JP5138592A JPH05258244A JP H05258244 A JPH05258244 A JP H05258244A JP 5138592 A JP5138592 A JP 5138592A JP 5138592 A JP5138592 A JP 5138592A JP H05258244 A JPH05258244 A JP H05258244A
Authority
JP
Japan
Prior art keywords
layer
magnetic
soft magnetic
magnetoresistive effect
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5138592A
Other languages
Japanese (ja)
Inventor
Yuji Uehara
裕二 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5138592A priority Critical patent/JPH05258244A/en
Publication of JPH05258244A publication Critical patent/JPH05258244A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/399Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To enhance utilization efficiency of a sense current concerned in a bias of a magnetoresistance effect element and to permit power consumption saving, in a magnetoresistance effect head used in a magnetic disk device, etc. CONSTITUTION:The film quality of a soft magnetic body layer for the bias of the magnetoresistance element 10 is changed gradually or continuously in the thickness direction such that a saturation magnetic flux density at the far side from the magnetoresistance effect element 10 is smaller than it at the near side. For example, the soft magnetic body layer 31 is constituted of having a multiple structure consisting of layers 31A, 31B being mutually different from the saturation magnetic flux density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置など
に用いられる磁気抵抗効果ヘッドに関し、特にバイアス
のための軟質磁性体層の構造に特徴を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect head used in a magnetic disk device or the like, and is characterized by the structure of a soft magnetic layer for biasing.

【0002】磁気ディスク装置では、記録媒体である磁
気ディスクの小径化が進められている。これにともなっ
て、磁気ディスクとの相対移動速度が小さい場合にも大
きな再生出力の得られる磁気抵抗効果ヘッドが注目され
ている。
In a magnetic disk device, the diameter of a magnetic disk, which is a recording medium, is being reduced. Along with this, attention has been paid to a magnetoresistive head capable of obtaining a large reproduction output even when the relative moving speed with respect to the magnetic disk is small.

【0003】[0003]

【従来の技術】図4は基本的な磁気抵抗効果ヘッド10
0の概略の構成を示す斜視図である。磁気抵抗効果ヘッ
ド100は、MR素子(磁気抵抗効果素子)10の抵抗
値が、記録媒体60による磁界に応じて変化する磁化の
向きMmと、MR素子10を流れるセンス電流Isの向
きMiとの相対角度θに依存することを利用した磁気ヘ
ッドであり、薄膜技術を用いて製造される。
2. Description of the Related Art FIG. 4 shows a basic magnetoresistive head 10.
It is a perspective view which shows the schematic structure of 0. The magnetoresistive effect head 100 has a magnetization direction Mm in which the resistance value of the MR element (magnetoresistive effect element) 10 changes according to the magnetic field of the recording medium 60 and a direction Mi of the sense current Is flowing in the MR element 10. It is a magnetic head that utilizes the dependence on the relative angle θ, and is manufactured using thin film technology.

【0004】MR素子10は数百Å程度の厚さの強磁性
体層からなり、センス電流Isの通電のためのリード導
体50は例えば金(Au)などの薄膜からなる。MR素
子10の大きさは記録密度に応じて適宜選定されるが、
例えば記録トラック幅w方向の長さはリード導体50の
接続部も含めて100μm程度であり、媒体面と直交す
る方向の長さ(高さ)は2〜5μm程度である。つまり
MR素子10の実際の形状は極めて薄い帯状である。
The MR element 10 is composed of a ferromagnetic layer having a thickness of about several hundred liters, and the lead conductor 50 for passing the sense current Is is composed of a thin film of gold (Au) or the like. The size of the MR element 10 is appropriately selected according to the recording density.
For example, the length in the recording track width w direction is about 100 μm including the connecting portion of the lead conductor 50, and the length (height) in the direction orthogonal to the medium surface is about 2 to 5 μm. That is, the actual shape of the MR element 10 is an extremely thin strip shape.

【0005】このようなMR素子10の厚さ方向の両側
には、所定のギャップを設けて磁気シールド層40が配
置され、これにより再生信号のS/N比が高まり、高密
度記録が可能となる。
Magnetic shield layers 40 are arranged on both sides of the MR element 10 in the thickness direction with a predetermined gap, whereby the S / N ratio of the reproduced signal is increased and high density recording is possible. Become.

【0006】さて、MR素子10においては、入出力特
性(磁界方向とその検出信号との関係)が2乗特性とな
ることから、これを使用する際には、線型応答範囲で動
作するように予め上述の相対角度θを所定値とするいわ
ゆるバイアスが施される。
In the MR element 10, since the input / output characteristic (relationship between the magnetic field direction and its detection signal) is a square characteristic, when it is used, it should be operated in the linear response range. A so-called bias having the above-mentioned relative angle θ as a predetermined value is applied in advance.

【0007】バイアスには種々の方法が知られている
が、ここで例示した磁気抵抗効果ヘッド100では、バ
イアス手段として、MR素子10に非磁性体層20を介
して重ねるように軟質磁性体層30が設けられている。
Although various methods are known for biasing, in the magnetoresistive head 100 illustrated here, as a bias means, a soft magnetic material layer is formed so as to overlap with the MR element 10 via a nonmagnetic material layer 20. 30 are provided.

【0008】すなわち、磁気抵抗効果ヘッド100で
は、MR素子10を流れるセンス電流Isによる磁界に
よって軟質磁性体層30内の磁化の向きが一定方向にそ
ろい、これにより生じた磁界(バイアス磁界)によって
MR素子10がバイアス状態となる。
That is, in the magnetoresistive head 100, the magnetic field generated by the sense current Is flowing through the MR element 10 causes the directions of magnetization in the soft magnetic layer 30 to be aligned in a fixed direction, and the magnetic field (bias magnetic field) generated thereby causes MR. The element 10 is biased.

【0009】従来においては、バイアスのための軟質磁
性体層(以下「バイアス用磁性層」という)30とし
て、単一の軟質磁性材料(高透磁率材料)からなる均質
の磁性層が設けられ、その材質及び立体形状は、例えば
10〜20mA程度のセンス電流Isによって、適当な
バイアス磁界が生じて最適のバイアス状態が得られるよ
うに選定されていた。
Conventionally, as the soft magnetic material layer 30 for bias (hereinafter referred to as "bias magnetic layer") 30, a uniform magnetic layer made of a single soft magnetic material (high magnetic permeability material) is provided. The material and the three-dimensional shape are selected so that an appropriate bias magnetic field is generated by a sense current Is of about 10 to 20 mA and an optimum bias state is obtained.

【0010】なお、MR素子10を挟む2つの磁気シー
ルド層40の一方を、他方に比べてMR素子10に近づ
けて配置し、これをバイアス用磁性層として利用する場
合もある。
In some cases, one of the two magnetic shield layers 40 sandwiching the MR element 10 may be arranged closer to the MR element 10 than the other, and this may be used as a bias magnetic layer.

【0011】[0011]

【発明が解決しようとする課題】バイアス磁界の発生に
際して、微視的には、センス電流Isによる磁界(すな
わちバイアス用磁性層30に加わる磁化力)が距離の2
乗に比例して弱まることから、バイアス用磁性層30の
厚さ方向(すなわち積層方向)において、MR素子10
に対して遠くなるほど磁化力が弱くなる。つまり、MR
素子10に対して近い側は磁化の回転が比較的に生じや
すい状態になり、これに対して遠い側は磁化の回転が比
較的に生じにくい状態になる。
Microscopically, when the bias magnetic field is generated, the magnetic field (that is, the magnetizing force applied to the bias magnetic layer 30) due to the sense current Is has a distance of two.
Since it weakens in proportion to the power of the MR element 10, it is weakened in the thickness direction (that is, the stacking direction) of the bias magnetic layer 30.
The farther away the magnetic force becomes weaker. That is, MR
The side closer to the element 10 is in a state where the magnetization rotation is relatively likely to occur, while the far side is in a state where the magnetization rotation is relatively less likely to occur.

【0012】ここで、磁化の回転とは、磁性体の磁化過
程において、向きが不規則である各磁区の磁化(磁気モ
ーメント)が、磁化力の方向に向きを変える物理現象で
ある。磁化力が強いほど回転の程度(回転角度)が大と
なり、これにともなってバイアス磁界が強くなる。ま
た、磁化力の強さが所定以上であれば、ほぼ全ての磁化
の向きが磁化力の方向にそろって磁性体は全体的に磁性
上の飽和状態となる。
Here, the rotation of the magnetization is a physical phenomenon in which the magnetization (magnetic moment) of each magnetic domain whose direction is irregular in the magnetization process of the magnetic body changes its direction to the direction of the magnetizing force. The stronger the magnetizing force, the greater the degree of rotation (rotation angle), and the bias magnetic field becomes stronger accordingly. Further, if the strength of the magnetizing force is equal to or higher than a predetermined value, almost all the magnetization directions are aligned with the direction of the magnetizing force, and the magnetic material is entirely in a magnetically saturated state.

【0013】一方、従来のバイアス用磁性層30のよう
な均質の磁性層においては、層の磁気エネルギー状態を
安定化しようとする作用に起因して、各磁区の磁化の回
転が均等化される。すなわち、層全体で各部における磁
化の回転の生じ易さを平均した程度の磁化の回転が生
じ、結果的に、磁化の回転の生じにくい部分の影響によ
って層全体の磁化の回転が抑えられることになる。
On the other hand, in a homogeneous magnetic layer such as the conventional bias magnetic layer 30, the rotation of the magnetization of each magnetic domain is equalized due to the action of stabilizing the magnetic energy state of the layer. .. That is, the rotation of the magnetization of the entire layer is an average of the easiness of rotation of the magnetization in each part, and as a result, the rotation of the magnetization of the entire layer is suppressed by the influence of the portion where the rotation of the magnetization is hard to occur. Become.

【0014】このため、従来の磁気抵抗効果ヘッドは、
所定のバイアス磁界を発生させるために、MR素子10
から遠い側でバイアス用磁性層30全体の磁化の回転が
抑えられる分だけ余分のセンス電流Isを流す必要があ
り、消費電力の面で不利であるという問題があった。
Therefore, the conventional magnetoresistive head is
In order to generate a predetermined bias magnetic field, the MR element 10
There is a problem in that it is disadvantageous in terms of power consumption because it is necessary to flow an extra sense current Is by the amount that the rotation of the magnetization of the entire bias magnetic layer 30 can be suppressed on the side far from the.

【0015】本発明は、上述の問題に鑑み、磁気抵抗効
果素子のバイアスに係わるセンス電流の利用効率を高
め、省電力化を図ることを目的としている。
In view of the above problems, it is an object of the present invention to improve the utilization efficiency of the sense current related to the bias of the magnetoresistive effect element and save power.

【0016】[0016]

【課題を解決するための手段】請求項1の発明に係るヘ
ッドは、上述の課題を解決するため、図1及び図2に示
すように、磁気抵抗効果素子10とそのバイアスのため
の軟質磁性体層31,32とが非磁性体層20を介して
重なる積層構造を有した磁気抵抗効果ヘッド1,2であ
って、前記軟質磁性体層31が、前記磁気抵抗効果素子
10に対して遠い側が近い側に比べて飽和磁束密度の小
さい複数の層、すなわち層31A,32A、及び層31
B,32Bからなる。
In order to solve the above-mentioned problems, the head according to the invention of claim 1 is, as shown in FIG. 1 and FIG. In the magnetoresistive effect heads 1 and 2 having a laminated structure in which the body layers 31 and 32 overlap each other with the non-magnetic body layer 20 interposed therebetween, the soft magnetic body layer 31 is far from the magnetoresistive effect element 10. A plurality of layers having a smaller saturation magnetic flux density than the side closer to the side, that is, the layers 31A and 32A, and the layer 31.
It consists of B and 32B.

【0017】請求項2の発明に係るヘッドは、図3に示
すように、磁気抵抗効果素子10とそのバイアスのため
の軟質磁性体層33とが非磁性体層20を介して重なる
積層構造を有した磁気抵抗効果ヘッド3であって、前記
軟質磁性体層33が、前記磁気抵抗効果素子10に対し
て遠いほど飽和磁束密度が小さくなるように、積層方向
に連続的に組成を変化させた層からなる。
As shown in FIG. 3, the head according to the second aspect of the present invention has a laminated structure in which the magnetoresistive effect element 10 and the soft magnetic layer 33 for biasing the magnetoresistive element 10 overlap with each other via the nonmagnetic layer 20. In the magnetoresistive effect head 3 having the composition, the composition is continuously changed in the stacking direction such that the soft magnetic layer 33 has a saturation magnetic flux density smaller as the soft magnetic layer 33 is farther from the magnetoresistive element 10. Consists of layers.

【0018】[0018]

【作用】軟質磁性体層31,32及び軟質磁性体層33
は、その磁気特性に係わる飽和磁束密度を層の積層方向
に磁気抵抗効果素子10に近い側から遠い側に向かって
段階的又は連続的に変化させた層からなる。
The soft magnetic layers 31, 32 and the soft magnetic layer 33
Is a layer in which the saturation magnetic flux density related to the magnetic characteristics is changed stepwise or continuously from the side closer to the magnetoresistive element 10 to the side farther in the layer stacking direction.

【0019】例えば、軟質磁性体層31の各部位におけ
る磁化の回転の生じやすさは、印加される磁界の強さに
依存するとともに、その部位の物性定数である飽和磁束
密度Bsの大きさにも依存する。
For example, the easiness of rotation of the magnetization in each part of the soft magnetic layer 31 depends on the strength of the applied magnetic field, and depends on the magnitude of the saturation magnetic flux density Bs which is the physical property constant of the part. Also depends.

【0020】すなわち、図1に示すように、磁気抵抗効
果素子10を流れるセンス電流Isにより生じる磁界H
1が加わって、軟質磁性体層31内で磁化が回転し始め
ると、軟質磁性体層31の両端面に磁荷(いわゆるN極
及びS極)が現れ、これにより層の内部にセンス電流I
sによる磁界H1と反対方向の反磁界(減磁界ともい
う)RHが生じる。
That is, as shown in FIG. 1, a magnetic field H generated by the sense current Is flowing through the magnetoresistive effect element 10.
When 1 is added and the magnetization starts to rotate in the soft magnetic material layer 31, magnetic charges (so-called N pole and S pole) appear on both end surfaces of the soft magnetic material layer 31, whereby the sense current I is generated inside the layer.
A demagnetizing field (also referred to as a demagnetizing field) RH in the direction opposite to the magnetic field H1 due to s is generated.

【0021】そのため、センス電流Isによる磁界H1
が弱まることになるが、このとき反磁界RHの強さが飽
和磁束密度Bsの2乗に比例するので、飽和磁束密度B
sの小さい部位(磁気抵抗効果素子10から遠い部位)
では、飽和磁束密度Bsの大きい部位(磁気抵抗効果素
子10に近い部位)に比べて磁界H1の弱まる程度が小
さい。
Therefore, the magnetic field H1 generated by the sense current Is
However, since the strength of the demagnetizing field RH is proportional to the square of the saturation magnetic flux density Bs at this time, the saturation magnetic flux density B
Area where s is small (area far from the magnetoresistive effect element 10)
Then, the degree to which the magnetic field H1 is weakened is smaller than that in the portion where the saturation magnetic flux density Bs is large (the portion near the magnetoresistive effect element 10).

【0022】ところで、センス電流Isによる磁界H1
は、磁気抵抗効果素子10に近いほど強い。したがっ
て、軟質磁性体層31では、センス電流Isによる磁界
H1の強い部位では反磁界RHも強く、且つセンス電流
Isによる磁界H1の弱い部位では反磁界RHも弱いこ
とから、積層方向において磁化の回転に有効に作用する
磁界(有効磁界)の強さが均等化され、層全体で磁化の
回転の生じやすさが均一になる。
By the way, the magnetic field H1 generated by the sense current Is
Is stronger as it is closer to the magnetoresistive effect element 10. Therefore, in the soft magnetic layer 31, the demagnetizing field RH is strong in the portion where the magnetic field H1 is strong due to the sense current Is, and the demagnetizing field RH is weak in the portion where the magnetic field H1 is weak due to the sense current Is, so that the magnetization rotation occurs in the stacking direction. The strength of the magnetic field that effectively acts on the magnetic field (effective magnetic field) is equalized, and the susceptibility to rotation of magnetization is uniform over the entire layer.

【0023】これにより、磁化の回転の生じやすさに差
異がある場合に比べて、磁気損失が少なく、より少ない
センス電流Isで所定のバイアス磁界を発生させること
ができる。
As a result, compared to the case where there is a difference in the susceptibility of the rotation of the magnetization, the magnetic loss is small and the predetermined bias magnetic field can be generated with a smaller sense current Is.

【0024】[0024]

【実施例】図1〜図3はそれぞれ本発明の第1〜第3の
実施例に係る磁気抵抗効果ヘッド1,2,3の要部の構
成を模式的に示す斜視図である。これらの図において、
図4と同一機能を有する構成要素には同一の符号を付
し、その説明を省略又は簡略化する。
1 to 3 are perspective views schematically showing the construction of essential parts of magnetoresistive heads 1, 2 and 3 according to first to third embodiments of the present invention. In these figures,
Components having the same functions as those in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted or simplified.

【0025】図1において、磁気抵抗効果ヘッド1で
は、パーマロイ(Ni−Fe)層からなるMR素子1
0、例えばチタン(Ti)からなる非磁性体層20、及
びバイアスのための軟質磁性体層31が順に積層されて
いる。MR素子10の厚さd1は400Åとされ、非磁
性体層20の厚さd2は300Åとされている。
In FIG. 1, a magnetoresistive head 1 has an MR element 1 made of a permalloy (Ni-Fe) layer.
0, for example, a nonmagnetic layer 20 made of titanium (Ti), and a soft magnetic layer 31 for biasing are sequentially stacked. The thickness d1 of the MR element 10 is 400Å, and the thickness d2 of the nonmagnetic layer 20 is 300Å.

【0026】本実施例の軟質磁性体層31は、組成比の
異なる同種の磁性材料からなる2つの層31A,31B
(これらの厚さはともに200Å)から構成されてい
る。MR素子10に近い側の層31Aは、クロム(C
r)の添加量を5%としたNi−Fe−Cr磁性合金か
らなり、その飽和磁束密度(Bs)は7200ガウスで
ある。また、MR素子10から遠い側の層31Bは、ク
ロムの添加量を10%としたNi−Fe−Cr磁性合金
からなり、その飽和磁束密度は4800ガウスである。
The soft magnetic layer 31 of this embodiment is composed of two layers 31A and 31B made of the same kind of magnetic material having different composition ratios.
(These thicknesses are both 200Å). The layer 31A on the side close to the MR element 10 is made of chromium (C
It is made of a Ni-Fe-Cr magnetic alloy in which the amount of r) added is 5%, and its saturation magnetic flux density (Bs) is 7200 gauss. Further, the layer 31B on the side far from the MR element 10 is made of a Ni—Fe—Cr magnetic alloy in which the amount of chromium added is 10%, and its saturation magnetic flux density is 4800 gauss.

【0027】なお、これら各層31A,31Bは、例え
ばアルゴンガスをスパッタガスとして用いるRFスパッ
タ法によって形成することができる。その際、スパッタ
ガス圧力を5[mTorr]程度とし、高周波電力(ス
パッタパワー)を600ワット程度とする。
The layers 31A and 31B can be formed by the RF sputtering method using argon gas as the sputtering gas, for example. At that time, the sputtering gas pressure is set to about 5 [mTorr], and the high frequency power (sputtering power) is set to about 600 watts.

【0028】以上のように構成された磁気抵抗効果ヘッ
ド1では、作用の項で説明したように、センス電流Is
による磁界H1と反磁界RH(図では各磁界の強弱を矢
印の長短で示してある)の関係により、厚さ方向におけ
る磁化力が均等化され、軟質磁性体層31全体で磁化の
回転が生じやすく、バイアス磁界H2の発生にともなう
磁気損失が比較的に少ない。
In the magnetoresistive head 1 configured as described above, the sense current Is is set as described in the section of the operation.
Due to the relationship between the magnetic field H1 and the demagnetizing field RH (the strength of each magnetic field is indicated by the length of the arrow in the figure), the magnetization force in the thickness direction is equalized, and the rotation of the magnetization occurs in the entire soft magnetic layer 31. It is easy and magnetic loss due to the generation of the bias magnetic field H2 is relatively small.

【0029】これを確認するため、本実施例の磁気抵抗
効果ヘッド1及び従来の均質の軟質磁性体層を有した磁
気抵抗効果ヘッドについて、いわゆるρ−H特性の測定
を行い、磁化の回転の飽和に要するセンス電流Isの値
と、飽和状態の軟質磁性体層の両端面に現れる磁荷の量
(磁化の強さ)を比を求めて比較した。
In order to confirm this, the so-called ρ-H characteristic of the magnetoresistive effect head 1 of the present embodiment and the conventional magnetoresistive effect head having a homogeneous soft magnetic layer were measured and the rotation of magnetization was confirmed. The value of the sense current Is required for saturation and the amount of magnetic charge (magnetization strength) appearing on both end faces of the soft magnetic layer in the saturated state were calculated and compared.

【0030】その結果,磁気抵抗効果ヘッド1では、従
来のものに比べて上述の比(磁荷量/電流値)が20%
程度大きい値であった。これは磁気抵抗効果ヘッド1で
は軟質磁性体層31の磁化の回転が生じやすく、センス
電流Isの利用効率が高いことを示している。
As a result, in the magnetoresistive head 1, the above-mentioned ratio (magnetic charge amount / current value) is 20% as compared with the conventional one.
It was a large value. This indicates that in the magnetoresistive effect head 1, the magnetization of the soft magnetic layer 31 is likely to rotate, and the utilization efficiency of the sense current Is is high.

【0031】なお、軟質磁性体層31の材料として、ク
ロムに代えてジルコニウム(Zr)又はニオブ(Nb)
を添加したNi−Fe合金(Ni−Fe−Zr,Ni−
Fe−Nb)、及びモリブデン(Mo)を添加したCo
−Zr合金(Co−Zr−Mo)を用い、添加物の量に
より飽和磁束密度を調整した場合にも同様の結果が得ら
れた。
As the material of the soft magnetic layer 31, zirconium (Zr) or niobium (Nb) is used instead of chromium.
Added Ni-Fe alloy (Ni-Fe-Zr, Ni-
Fe-Nb) and Co with molybdenum (Mo) added
Similar results were obtained when the saturation magnetic flux density was adjusted by the amount of the additive using -Zr alloy (Co-Zr-Mo).

【0032】図2において、磁気抵抗効果ヘッド2で
は、MR素子10のバイアスのための軟質磁性体層32
は、異種材料からなる2つの層32A,32Bから構成
されている。
In the magnetoresistive head 2 shown in FIG. 2, a soft magnetic layer 32 for biasing the MR element 10 is provided.
Is composed of two layers 32A and 32B made of different materials.

【0033】すなわち、MR素子10に近い側の層32
Aは、窒化鉄(FeN)からなり、その厚さd4Aは1
00Åとされている。また、MR素子10から遠い側の
層32Bは、クロムの添加量を10%としたNi−Fe
−Cr磁性合金からなり、その厚さd4Bは200Åと
されている。層32Bの飽和磁束密度は層32Aの飽和
磁束密度に比べて小さい。
That is, the layer 32 on the side closer to the MR element 10.
A is made of iron nitride (FeN), and its thickness d4A is 1
It is set as 00Å. Further, the layer 32B on the side far from the MR element 10 is made of Ni-Fe in which the amount of chromium added is 10%.
It is made of a -Cr magnetic alloy and has a thickness d4B of 200Å. The saturation magnetic flux density of the layer 32B is smaller than that of the layer 32A.

【0034】これら各層32A,32Bも、上述の例と
同様のスパッタ条件によるRFスパッタ法を用いて形成
することができる。ただし、層31Aの形成に際して
は、ターゲットとしての鉄を0.2[mTorr]の窒
素雰囲気中でスパッタする。
Each of these layers 32A and 32B can also be formed by using the RF sputtering method under the same sputtering conditions as in the above example. However, when forming the layer 31A, iron as a target is sputtered in a nitrogen atmosphere of 0.2 [mTorr].

【0035】以上の構成の磁気抵抗効果ヘッド2につい
て、評価測定を行った結果、上述の比(磁荷量/電流
値)として、従来のものに比べて25%程度大きい値が
得られた。
As a result of evaluation and measurement of the magnetoresistive head 2 having the above-mentioned structure, a value larger than the conventional one by about 25% was obtained as the above-mentioned ratio (magnetic charge amount / current value).

【0036】なお、層32Bの材料としてNi−Fe−
Crに代えてCo−Zr−Moを用いた場合、層32A
の材料としてFeNに代えてFe−Si、Fe−Si−
Al、及びこれらにB,N,Cを添加した材料を用いた
場合にも同様の結果が得られた。
The material of the layer 32B is Ni-Fe-.
When Co-Zr-Mo is used instead of Cr, the layer 32A
As a material for Fe, instead of FeN, Fe-Si, Fe-Si-
Similar results were obtained when using Al and materials containing B, N, and C added thereto.

【0037】図3において、磁気抵抗効果ヘッド3で
は、MR素子10のバイアスのための軟質磁性体層33
として、MR素子10に対して遠いほど飽和磁束密度が
小さくなるように、厚さ方向に連続的にクロムの添加量
を変化させたNi−Fe−Cr層が設けられている。軟
質磁性体層33の厚さd5は500Åとされている。
In the magnetoresistive head 3 shown in FIG. 3, the soft magnetic layer 33 for biasing the MR element 10 is used.
As a result, a Ni—Fe—Cr layer in which the amount of chromium added is continuously changed in the thickness direction is provided so that the saturation magnetic flux density becomes smaller as the distance from the MR element 10 increases. The thickness d5 of the soft magnetic layer 33 is 500Å.

【0038】このような軟質磁性体層33は、2つのタ
ーゲット(パーマロイ及びクロム)を同時にスパッタ
し、各ターゲットに対する高周波電力(スパッタパワ
ー)を変化させることによって形成することができる。
その際、例えばMR素子10に近い側ではクロムの添加
量が5%となり、MR素子10から遠い側ではクロムの
添加量が10%となるように、成膜中に連続的に高周波
電力を変化させる。
Such a soft magnetic layer 33 can be formed by simultaneously sputtering two targets (permalloy and chromium) and changing the high frequency power (sputtering power) for each target.
At that time, for example, the amount of chromium added is 5% on the side closer to the MR element 10 and 10% on the side farther from the MR element 10, so that the high frequency power is continuously changed during film formation. Let

【0039】以上の構成の磁気抵抗効果ヘッド3につい
て、評価測定を行った結果、上述の比(磁荷量/電流
値)として、従来のものに比べて20%程度大きい値が
得られた。
As a result of evaluation and measurement of the magnetoresistive head 3 having the above-mentioned structure, a value 20% larger than the conventional one was obtained as the above-mentioned ratio (magnetic charge amount / current value).

【0040】なお、軟質磁性体層33の材料として、C
rに代えてZr,Nbを添加したパーマロイ、及びMo
を添加したCo−Zrを用いた場合にも同様の結果が得
られた。
As the material of the soft magnetic layer 33, C
Permalloy with Zr and Nb added in place of r, and Mo
Similar results were obtained when Co-Zr added with was used.

【0041】上述の実施例において、軟質磁性体層3
1,32,33の材料は、適宜選定することができる。
ただし、飽和磁束密度が小さいほど所定のバイアス磁界
を得る上で層の厚さを大きくする必要があり、そのため
層の抵抗値が下がってセンス電流Isが回り込み、結果
として省電力化の上で不利となるので、より飽和磁束密
度の大きい材料を用いるのが好ましい。
In the above embodiment, the soft magnetic layer 3
The materials 1, 32 and 33 can be selected appropriately.
However, as the saturation magnetic flux density is smaller, it is necessary to increase the thickness of the layer in order to obtain a predetermined bias magnetic field. Therefore, the resistance value of the layer is reduced and the sense current Is spills around, resulting in a disadvantage in power saving. Therefore, it is preferable to use a material having a higher saturation magnetic flux density.

【0042】図1及び図2の実施例においては、2層構
造の軟質磁性体層31,32を例示したが、軟質磁性体
層31,32を3層以上の複層構造としてもよい。
Although the soft magnetic layers 31 and 32 having a two-layer structure are illustrated in the embodiments of FIGS. 1 and 2, the soft magnetic layers 31 and 32 may have a multi-layer structure of three or more layers.

【0043】[0043]

【発明の効果】本発明によれば、磁気抵抗効果素子のバ
イアスに係わるセンス電流の利用効率を高めることがで
き、省電力化を図ることができる。
According to the present invention, the utilization efficiency of the sense current related to the bias of the magnetoresistive effect element can be improved, and the power consumption can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る磁気抵抗効果ヘッド
の要部の構成を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a configuration of a main part of a magnetoresistive effect head according to a first embodiment of the invention.

【図2】本発明の第2実施例に係る磁気抵抗効果ヘッド
の要部の構成を模式的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a configuration of a main part of a magnetoresistive effect head according to a second embodiment of the invention.

【図3】本発明の第3実施例に係る磁気抵抗効果ヘッド
の要部の構成を模式的に示す斜視図である。
FIG. 3 is a perspective view schematically showing a configuration of a main part of a magnetoresistive effect head according to a third embodiment of the invention.

【図4】基本的な磁気抵抗効果ヘッドの概略の構成を示
す斜視図である。
FIG. 4 is a perspective view showing a schematic configuration of a basic magnetoresistive effect head.

【符号の説明】[Explanation of symbols]

1,2,3 磁気抵抗効果ヘッド 10 MR素子(磁気抵抗効果素子) 20 非磁性体層 31,32,33 軟質磁性体層 31A,32A 層(飽和磁束密度の大きい層) 31B,32B 層(飽和磁束密度の小さい層) 1, 2 and 3 magnetoresistive effect head 10 MR element (magnetoresistive effect element) 20 non-magnetic layer 31, 32, 33 soft magnetic layer 31A, 32A layer (layer with high saturation magnetic flux density) 31B, 32B layer (saturated) Layer with low magnetic flux density)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁気抵抗効果素子(10)とそのバイアス
のための軟質磁性体層(31,32)とが非磁性体層
(20)を介して重なる積層構造を有した磁気抵抗効果
ヘッド(1,2)であって、 前記軟質磁性体層(31)が、前記磁気抵抗効果素子
(10)に対して遠い側が近い側に比べて飽和磁束密度
の小さい複数の層(31A,32A)(31B,32
B)からなることを特徴とする磁気抵抗効果ヘッド。
1. A magnetoresistive head having a laminated structure in which a magnetoresistive effect element (10) and a soft magnetic material layer (31, 32) for biasing the magnetoresistive effect element overlap each other with a nonmagnetic material layer (20) interposed therebetween. 1, 2), wherein the soft magnetic layer (31) has a plurality of layers (31A, 32A) (31A, 32A) having a smaller saturation magnetic flux density than the side closer to the magnetoresistive effect element (10) farther away. 31B, 32
A magnetoresistive effect head comprising B).
【請求項2】磁気抵抗効果素子(10)とそのバイアス
のための軟質磁性体層(33)とが非磁性体層(20)
を介して重なる積層構造を有した磁気抵抗効果ヘッド
(3)であって、 前記軟質磁性体層(33)が、前記磁気抵抗効果素子
(10)に対して遠いほど飽和磁束密度が小さくなるよ
うに、積層方向に連続的に組成を変化させた層からなる
ことを特徴とする磁気抵抗効果ヘッド。
2. A non-magnetic layer (20) comprising a magnetoresistive effect element (10) and a soft magnetic layer (33) for biasing the magnetoresistive element.
A magnetoresistive effect head (3) having a laminated structure in which the saturation magnetic flux density is smaller as the soft magnetic layer (33) is farther from the magnetoresistive element (10). In addition, a magnetoresistive effect head comprising a layer whose composition is continuously changed in the stacking direction.
JP5138592A 1992-03-10 1992-03-10 Magnetoresistance effect head Withdrawn JPH05258244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5138592A JPH05258244A (en) 1992-03-10 1992-03-10 Magnetoresistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5138592A JPH05258244A (en) 1992-03-10 1992-03-10 Magnetoresistance effect head

Publications (1)

Publication Number Publication Date
JPH05258244A true JPH05258244A (en) 1993-10-08

Family

ID=12885484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5138592A Withdrawn JPH05258244A (en) 1992-03-10 1992-03-10 Magnetoresistance effect head

Country Status (1)

Country Link
JP (1) JPH05258244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924491A1 (en) * 1997-12-22 1999-06-23 Brown & Sharpe Tesa S.A. Electronic circuit for magnetic measuring device and measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924491A1 (en) * 1997-12-22 1999-06-23 Brown & Sharpe Tesa S.A. Electronic circuit for magnetic measuring device and measuring method
EP1052473A2 (en) * 1997-12-22 2000-11-15 Brown & Sharpe Tesa S.A. Magnetic measuring devices with reduced power consumption or stand by mode
EP1052473A3 (en) * 1997-12-22 2000-11-29 Brown & Sharpe Tesa S.A. Magnetic measuring devices with reduced power consumption or stand by mode

Similar Documents

Publication Publication Date Title
JP3022023B2 (en) Magnetic recording / reproducing device
US6018443A (en) Thin film magnetic head having hard films for magnetizing a shield layer in a single domain state
JP3086731B2 (en) Magnetoresistive magnetic head
JPH08279117A (en) Gigantic magnetoresistance effect material film and its production and magnetic head using the same
JPH0261572A (en) Magnetic field sensor using ferromagnetic thin-film
JP3651619B2 (en) Magnetoresistive transducer and magnetic recording apparatus
KR100265986B1 (en) Composite-typed thin film magnetic head and method for manufacturing the same
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPH0845030A (en) Magneto-resistive magnetic head
JPH05258244A (en) Magnetoresistance effect head
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JPH0426227B2 (en)
JPH09274712A (en) Magnetic head
JPH0992904A (en) Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JP2814741B2 (en) Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same
JP2614203B2 (en) Magnetoresistance head
JPH04339309A (en) Magneto-resistance effect element using multilayred magneto-resistance effect film
JPH08203032A (en) Magneto-resistance effect reproducing head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH05267747A (en) Magnetoresistance effect element and magnetoresistance effect head
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPH08147631A (en) Magnetic recording and reproducing apparatus
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JP2642923B2 (en) Magnetoresistive magnetic head
US6706156B1 (en) Method of making an improved MR sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518