JPH0525802B2 - - Google Patents

Info

Publication number
JPH0525802B2
JPH0525802B2 JP58076206A JP7620683A JPH0525802B2 JP H0525802 B2 JPH0525802 B2 JP H0525802B2 JP 58076206 A JP58076206 A JP 58076206A JP 7620683 A JP7620683 A JP 7620683A JP H0525802 B2 JPH0525802 B2 JP H0525802B2
Authority
JP
Japan
Prior art keywords
metal
polynuclear
inorganic
metal hydroxide
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58076206A
Other languages
Japanese (ja)
Other versions
JPS59203719A (en
Inventor
Kunio Ootsuka
Mitsuru Suda
Mikya Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP58076206A priority Critical patent/JPS59203719A/en
Publication of JPS59203719A publication Critical patent/JPS59203719A/en
Publication of JPH0525802B2 publication Critical patent/JPH0525802B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、触媒、磁性材料、導電性フイラー等
に適する無機物金属複合体およびその合成方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inorganic-metal composite suitable for catalysts, magnetic materials, conductive fillers, etc., and a method for synthesizing the same.

〔従来の技術〕[Conventional technology]

従来、金属超微粒子の粉体を用いて触媒、磁性
体、熱交換媒体等への応用が試みられてきた。す
なわち触媒反応では、反応物質が固体表面に活性
化吸着を行うことにより吸着分子同士や、吸着分
子と表面原子との化学反応が促進されることを特
長としているため、比表面積が大きくて表面エネ
ルギーの大きい超微粒子が優れた触媒特性を示
す。
Conventionally, attempts have been made to apply ultrafine metal particles to catalysts, magnetic materials, heat exchange media, and the like. In other words, a catalytic reaction is characterized by activated adsorption of a reactant onto a solid surface, which promotes chemical reactions between adsorbed molecules and between adsorbed molecules and surface atoms. Ultrafine particles with a large size exhibit excellent catalytic properties.

また強磁性体では、粒径の減少とともに磁区集
合体の多磁区構造から、粒子が単一磁区の単磁区
構造となり、極めて大きな保磁力を示す「安定単
磁区構造」となることが知られている。このよう
な性質は優れた磁気記録材料としての応用が考え
られる。
It is also known that in ferromagnetic materials, as the grain size decreases, the multi-domain structure of the magnetic domain aggregate changes to a single-domain structure, resulting in a "stable single-domain structure" that exhibits an extremely large coercive force. There is. Such properties can be considered to be applied as an excellent magnetic recording material.

しかし金属超微粒子の触媒、磁性体等への応用
は次の二つの理由により、現状では未だ十分では
ない。第一の理由は、製造コストが高いことであ
る。すなわち金属超微粒子の製造法の中で、金属
超微粒子の粒径の制御を正確に行うことができ、
しかも清浄な表面が得られるガス中蒸発法が支配
的であるが、金属超微粒子の製造に大量のエネル
ギーを要することにより、極めて高価なものにな
つていることである。
However, the application of ultrafine metal particles to catalysts, magnetic materials, etc. is still insufficient at present for the following two reasons. The first reason is that manufacturing costs are high. In other words, in the method for producing ultrafine metal particles, the particle size of ultrafine metal particles can be accurately controlled.
Moreover, although the evaporation method in gas is dominant because it provides a clean surface, it requires a large amount of energy to produce ultrafine metal particles, making it extremely expensive.

また第二の理由は、金属超微粒子は極めて活性
で凝集し易く、大気中で吸湿し、酸化して粘性の
高い不定形となるため、成形性が極めて悪い等の
取扱いの困難さがある。このため金属超微粒子の
特性は損なわない固有の取扱いが要求されている
が、未解決であることによる。
The second reason is that ultrafine metal particles are extremely active and easily aggregate, absorb moisture in the atmosphere, and become oxidized to become highly viscous and amorphous, making them difficult to handle such as extremely poor moldability. For this reason, a unique handling method that does not impair the properties of ultrafine metal particles is required, but this problem remains unsolved.

例えば触媒としての金属超微粒子の応用の可能
性は、触媒研究者から注目されてきたが、未だに
顕著な成果が得られていないのは、金属超微粒子
の取扱い方法が確立されていないことによる。す
なわち金属触媒の多くは、担持触媒の形態で担体
上に分散して、反応表面積の増大および金属粒同
士の焼結を防ぐとともに、同時に触媒寿命を長期
化して、金属触媒を有効に働かせねばならない
が、金属超微粒子を触媒として利用するときに
は、どのように超微粒子を担体に担持させるかが
未解決である。
For example, the potential application of ultrafine metal particles as catalysts has attracted attention from catalyst researchers, but the reason that no significant results have been achieved is that methods for handling ultrafine metal particles have not yet been established. In other words, most metal catalysts must be dispersed on a carrier in the form of a supported catalyst to increase the reaction surface area and prevent sintering of metal particles, while at the same time prolonging the catalyst life and making the metal catalyst work effectively. However, when ultrafine metal particles are used as a catalyst, it remains unresolved how to support the ultrafine particles on a carrier.

本発明者らは、無機イオン交換体の研究を重ね
て行く過程で金属超微粒子の性質を備え、かつ取
扱いの容易な新規な物質を得るに至つた。
In the course of repeated research on inorganic ion exchangers, the present inventors have obtained a new material that has the properties of ultrafine metal particles and is easy to handle.

〔発明の目的〕[Purpose of the invention]

本発明は、上記現状の問題点を解消し、超微粒
子の性質を備え、成形性が良好で取扱いが容易な
無機物金属複合体と、この無機物金属複合体をエ
ネルギー消費が少なくかつ製造コストを安価に合
成することができる合成方法を提供することを目
的とする。
The present invention solves the above-mentioned current problems and provides an inorganic-metal composite that has the properties of ultrafine particles, good moldability, and is easy to handle. The purpose of the present invention is to provide a synthesis method that can synthesize .

〔問題点を解決するための手段〕[Means for solving problems]

第一発明の特徴は、陽イオン交換能を有する無
機化合物をホストとし、このホストの表面あるい
はこのホストの層間にゲストとして多核金属水酸
化イオンを核として生成した金属水酸化物が還元
した形態の金属粒子が所望の量または所望の粒径
で複合した無機物金属複合体にある。
The feature of the first invention is that an inorganic compound having cation exchange ability is used as a host, and a reduced form of metal hydroxide generated with polynuclear metal hydroxide ions as a core is formed as a guest on the surface of this host or between the layers of this host. The inorganic-metal composite contains metal particles in a desired amount or particle size.

第二発明の特徴は、陽イオン交換能を有する無
機化合物の表面あるいは層間に配位するカチオン
の一部または全部を多核金属水酸化イオンで置換
し、このカチオンを置換した多核金属水酸化イオ
ンを核として金属水酸化物を所望量だけ沈澱させ
た後、この金属水酸化物を還元して上記無機化合
物の表面あるいは層間に所望の量または所望の粒
径の金属粒子を複合させる無機物金属複合体の合
成方法にある。
A feature of the second invention is that a part or all of the cations coordinated on the surface or between layers of an inorganic compound having cation exchange ability are replaced with polynuclear metal hydroxide ions, and the polynuclear metal hydroxide ions substituted with the cations are replaced with polynuclear metal hydroxide ions. An inorganic-metal composite in which a desired amount of metal hydroxide is precipitated as a core, and then this metal hydroxide is reduced to compound metal particles of a desired amount or particle size between the surfaces or layers of the inorganic compound. In the synthesis method.

第三発明の特徴は、陽イオン交換能を有する無
機化合物の表面あるいは層間に配位するカチオン
の一部または全部を多核金属水酸化イオンで置換
し、このカチオンを置換した多核金属水酸化イオ
ンを核として金属水酸化物を所望量だけ沈澱させ
た後、この金属水酸化物を加熱脱水して金属酸化
物とした後、この金属酸化物を還元して上記無機
化合物の表面あるいは層間に金属粒子を複合させ
る無機物金属複合体の合成方法にある。
The third invention is characterized in that part or all of the cations coordinating on the surface or between layers of an inorganic compound having cation exchange ability are replaced with polynuclear metal hydroxide ions, and the polynuclear metal hydroxide ions substituted with the cations are replaced with polynuclear metal hydroxide ions. After precipitating a desired amount of metal hydroxide as a core, this metal hydroxide is heated and dehydrated to form a metal oxide, and this metal oxide is reduced to form metal particles on the surface or between the layers of the above-mentioned inorganic compound. A method for synthesizing inorganic-metal composites.

以下本発明を補足的に説明する。 The present invention will be supplementarily explained below.

本発明の無機物金属複合体は、陽イオン交換能
を有する無機化合物が層状構造である場合には、
その層間をホストとし、その層間にゲストとして
金属粒子が複合したものである。また無機化合物
が層状構造でない場合には、その表面をホストと
し、その表面にゲストとして金属粒子が複合した
ものである。この陽イオン交換能を有する無機化
合物は、構造上、非晶質のものと、結晶質のもの
とに分類される。非晶質のものとしては、シリカ
ゲル、アルミナゲル等に代表される各種の含水酸
化物が挙げられる。また結晶質のものとしては、
合成アルミナけい酸塩、粘土鉱物、多価金属の酸
性塩、ヘテロポリ酸塩等、数多くのものが挙げら
れる。
In the inorganic-metal composite of the present invention, when the inorganic compound having cation exchange ability has a layered structure,
The interlayer is a host, and the metal particles are a composite between the layers as a guest. Further, when the inorganic compound does not have a layered structure, the surface thereof serves as a host, and metal particles are composited on the surface as a guest. Inorganic compounds having cation exchange ability are classified into amorphous and crystalline compounds based on their structure. Examples of amorphous materials include various hydrous oxides typified by silica gel, alumina gel, and the like. Also, as a crystalline substance,
Numerous examples include synthetic alumina silicates, clay minerals, acid salts of polyvalent metals, and heteropolyacid salts.

一般に多価金属イオンの塩は水に溶けたとき、
酸性を示す。このときの加水分解反応は次のよう
に表される。
Generally, when salts of polyvalent metal ions are dissolved in water,
Shows acidity. The hydrolysis reaction at this time is expressed as follows.

zMen++yH2OMez(OH)y (zn-y)+yH+ … (なお式では、配位水は省略した。) 多くの金属イオンの塩の水溶液において、溶液
が十分酸性ならば、金属イオンの大部分は単核イ
オンとして存在するが、アルカリを加えるに従つ
て、式の平衡が右側に進み、次第に多核金属水
酸化イオンの多核錯体が多くなり、ついには水酸
化物として沈澱する。生成したばかりの金属水酸
化物の沈澱は、各種の重合度の多核錯体からなつ
ていると考えられる。多くの金属イオンは加水分
解により直ちに水酸化物の沈澱を析出させるが、
多核金属水酸化イオンがアルカリ溶液中で直ちに
金属水酸化物として沈澱しない安定なものもあ
る。例えば塩化アルミニウムの水溶液にアルカリ
を添加していく場合で、OHイオンに対するAlイ
オンの比が「3」以下の場合には、安定な多核ア
ルミニウム水酸化カチオンを生成し、その組成は
〔Al6(OH)126+と推定されている。このように加
水分解がある程度進行するまでは沈澱を生成せ
ず、溶液中に可溶性の多核金属水酸化イオンを生
じるものとしては、多核クロム水酸化イオン、多
核ビスマス水酸化イオン等も挙げられる。
zMe n+ +yH 2 OMe z (OH) y (zn-y)+ yH + … (In the formula, the coordinated water is omitted.) In many aqueous solutions of salts of metal ions, if the solution is sufficiently acidic, the metal Most of the ions exist as mononuclear ions, but as alkali is added, the equilibrium of the equation shifts to the right, and polynuclear complexes of polynuclear metal hydroxide ions gradually increase, eventually precipitating as hydroxides. The freshly formed metal hydroxide precipitate is thought to consist of polynuclear complexes with various degrees of polymerization. Many metal ions immediately precipitate hydroxide upon hydrolysis, but
Some polynuclear metal hydroxide ions are stable and do not immediately precipitate as metal hydroxides in alkaline solutions. For example, when adding an alkali to an aqueous solution of aluminum chloride, if the ratio of Al ions to OH ions is "3" or less, stable polynuclear aluminum hydroxide cations are produced, and the composition is [Al 6 ( OH) 12 ] Estimated to be 6+ . In this way, polynuclear chromium hydroxide ions, polynuclear bismuth hydroxide ions, and the like can be cited as examples of substances that do not form a precipitate until the hydrolysis progresses to a certain extent and produce soluble polynuclear metal hydroxide ions in the solution.

本発明は上記多価金属イオンの塩の加水分解の
特性に鑑みてなされたもので、本発明の無機物金
属複合体の合成方法は、まず陽イオン交換能を有
する無機化合物の表面あるいは層間に配位するカ
チオンの一部または全部を多核金属水酸化イオン
により置換する。この置換方法には、次の二つの
方法がある。
The present invention has been made in view of the above-mentioned characteristics of hydrolysis of salts of polyvalent metal ions, and the method for synthesizing an inorganic-metal composite of the present invention first involves dissolving an inorganic compound on the surface or between layers of an inorganic compound having cation exchange ability. A part or all of the cations at the position are replaced by polynuclear metal hydroxide ions. There are two methods for this replacement:

(a) イオン交換法:多核金属水酸化イオンが溶液
中で安定な場合には、多核金属水酸化イオンを
含む溶液を調整した後、この溶液中に陽イオン
交換能を有する無機化合物を投入し、イオン交
換して置換する。
(a) Ion exchange method: When polynuclear metal hydroxide ions are stable in solution, after preparing a solution containing polynuclear metal hydroxide ions, an inorganic compound with cation exchange ability is added to this solution. , ion exchange and substitution.

(b) 滴定法:多核金属水酸化イオンが溶液中で不
安定な場合、すなわち金属イオンが加水分解に
より直ちに水酸化物の沈澱を析出する場合に
は、金属の塩の水溶液に上記無機化合物を投入
し、さらにアルカリ溶液を徐々に加えて加水分
解を行いながら、多核金属水酸化イオンを無機
イオン交換体の表面あるいは層間にイオン交換
で置換させる。上記二つの方法のいずれかの方
法により、多核金属水酸化イオンの置換がなさ
れた後に、還元処理が施されるが、この還元処
理方法には次の方法がある。
(b) Titration method: When polynuclear metal hydroxide ions are unstable in solution, that is, when metal ions immediately precipitate hydroxides by hydrolysis, the above inorganic compound is added to an aqueous solution of a metal salt. The polynuclear metal hydroxide ions are replaced on the surface or between the layers of the inorganic ion exchanger by ion exchange while hydrolysis is carried out by gradually adding an alkaline solution. After the polynuclear metal hydroxide ions are replaced by either of the above two methods, a reduction treatment is performed, and the following methods are available for this reduction treatment method.

第一の方法は、無機化合物のカチオンを置換し
た多核金属水酸化イオンを核として金属水酸化物
を沈澱させた後、この金属水酸化物を還元して上
記無機化合物の表面あるいは層間に金属粒子を複
合して無機物金属複合体を合成する方法である。
この方法は、多核金属水酸化イオンを核とした金
属水酸化物の沈澱量を適宜調整することができる
ため、得られる無機物金属複合体に含有する金属
粒子の量または粒径を任意に変えることができ
る。
The first method is to precipitate a metal hydroxide using polynuclear metal hydroxide ions that have replaced the cations of the inorganic compound as a core, and then reduce this metal hydroxide to form metal particles on the surface or between the layers of the inorganic compound. This is a method of synthesizing an inorganic-metal composite by combining.
In this method, the amount of precipitated metal hydroxide with polynuclear metal hydroxide ions as the nucleus can be adjusted as appropriate, so the amount or particle size of metal particles contained in the obtained inorganic metal composite can be arbitrarily changed. I can do it.

第二の方法は、上記カチオンを置換した多核金
属水酸化イオンを核として金属水酸化物を沈澱さ
せた後、この金属水酸化物を加熱脱水して金属酸
化物とし、この金属酸化物を還元して上記無機化
合物の表面あるいは層間に金属粒子を複合して無
機物金属複合体を合成する方法である。この方法
は、金属水酸化物の沈澱量の調整により、金属粒
子の複合量を任意に変えることができるととも
に、金属水酸化物を一旦金属酸化物にするため、
複合がより安定な状態で行われる。第一および第
二の方法により得られた無機物金属複合体が備え
る特性はほぼ同一である。
The second method is to precipitate a metal hydroxide using polynuclear metal hydroxide ions that have replaced the cations as nuclei, then heat and dehydrate the metal hydroxide to form a metal oxide, and then reduce this metal oxide. This is a method of synthesizing an inorganic-metal composite by compounding metal particles on the surface or between the layers of the above-mentioned inorganic compound. In this method, the amount of composite metal particles can be arbitrarily changed by adjusting the amount of precipitated metal hydroxide, and since the metal hydroxide is once converted into a metal oxide,
Composite is performed in a more stable state. The properties of the inorganic metal composites obtained by the first and second methods are almost the same.

なお第一および第二の方法における金属水酸化
物の沈澱は、上記カチオンを多核金属水酸化イオ
ンによりイオン交換した溶液に、さらにアルカリ
を添加し、溶液中に残存している多核金属水酸化
イオンを加水分解により金属水酸化物の形で、無
機化合物の表面あるいは層間に配位している多核
金属水酸化イオンを核として沈澱させるものであ
る。生成したばかりの金属水酸化物の沈澱物は、
各種重合度の多核錯体からなつていると考えられ
る。
The precipitation of metal hydroxides in the first and second methods is achieved by adding an alkali to a solution in which the above cations are ion-exchanged with polynuclear metal hydroxide ions, and then removing the remaining polynuclear metal hydroxide ions in the solution. is precipitated in the form of metal hydroxide by hydrolysis, with polynuclear metal hydroxide ions coordinating on the surface or between the layers of the inorganic compound as the nucleus. The newly formed metal hydroxide precipitate is
It is thought to consist of polynuclear complexes with various degrees of polymerization.

また第二の方法における加熱脱水は、常圧下で
必要あれば高圧下で100℃以上の加熱温度で多核
金属水酸化イオンまたは金属水酸化物を乾燥して
行われる。具体的な加熱温度は、多核金属水酸化
イオンおよび金属水酸化物の種類に応じて選定さ
れる。
The thermal dehydration in the second method is carried out by drying polynuclear metal hydroxide ions or metal hydroxides under normal pressure and, if necessary, under high pressure at a heating temperature of 100° C. or higher. The specific heating temperature is selected depending on the type of polynuclear metal hydroxide ion and metal hydroxide.

また第一および第二の方法における還元処理の
方法は、水素あるいは一酸化炭素等の気相で還元
するか、または水酸化アルミニウムリチウム、ヒ
ドラジン等の溶液で行う。複合化された金属の量
は、溶液中の金属の量で正確に調整される。また
このように複合化された金属粒子の粒径は、主と
して還元方法の調整によりなされる。例えば高温
水素ガスによる還元では、金属粒子の焼結が生
じ、粒径が大きくなる。また低温水素ガスによる
還元では、粒径の小さい金属粒子が得られる。
Further, the reduction treatment in the first and second methods is carried out using a gas phase such as hydrogen or carbon monoxide, or using a solution such as lithium aluminum hydroxide or hydrazine. The amount of complexed metal is precisely adjusted by the amount of metal in the solution. Further, the particle size of the metal particles composited in this manner is mainly determined by adjusting the reduction method. For example, reduction with high-temperature hydrogen gas causes sintering of metal particles, increasing the particle size. Furthermore, reduction with low-temperature hydrogen gas yields metal particles with small particle sizes.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、陽イオン
交換能を有する無機化合物の表面あるいは層間に
ゲストとして金属粒子を任意の量および任意の粒
径で複合させて無機物金属複合体を得ることによ
り、極めて安価に無機物金属複合体を合成するこ
とができる。また無機化合物に複合された金属粒
子を所望の粒径に調整して無機化合物の表面ある
いは層間に複合させるか、または無機化合物の表
面あるいは層間をすべて金属粒子で包込むことに
より、従来の金属超微粒子の取扱いの困難性を解
決し、触媒、磁性体、導電性フイラー、熱交換媒
体等としての用途が期待される。
As described above, according to the present invention, an inorganic-metal composite is obtained by compounding metal particles as guests on the surface or between layers of an inorganic compound having cation exchange ability in an arbitrary amount and particle size. , it is possible to synthesize inorganic-metal composites at extremely low cost. In addition, by adjusting the metal particles composited with an inorganic compound to a desired particle size and combining them on the surface or between the layers of the inorganic compound, or by wrapping the entire surface or between the layers of the inorganic compound with metal particles, it is possible to It solves the difficulty of handling fine particles, and is expected to be used as a catalyst, magnetic material, conductive filler, heat exchange medium, etc.

特に、多核金属水酸化イオンを核として金属水
酸化物を沈澱させてこの沈澱物を還元する方法を
採ることにより、無機化合物に複合される金属粒
子を「安定単磁区構造」に適した粒径に変化させ
ることができ、極めて大きな保磁力を示す磁気記
録材料として好適な無機物金属複合体が得られ
る。
In particular, by adopting a method of precipitating metal hydroxide using polynuclear metal hydroxide ions as cores and reducing this precipitate, metal particles composited with inorganic compounds can be adjusted to a particle size suitable for a "stable single domain structure." An inorganic-metal composite suitable as a magnetic recording material exhibiting an extremely large coercive force can be obtained.

〔実施例による説明〕[Explanation based on examples]

以下本発明の具体的態様を示すために、本発明
を実施例によりさらに詳細に説明するが、以下に
示す例はあくまでも一例であつて、これにより本
発明の技術的範囲を限定するものではない。
Hereinafter, the present invention will be explained in more detail using Examples in order to show specific embodiments of the present invention. However, the examples shown below are merely examples, and are not intended to limit the technical scope of the present invention. .

実施例 100〜200メツシユの粒径の和光純薬クロマトグ
ラフ用シリカゲルをIN塩酸に24時間浸漬して鉄
分を除き長時間水洗した後、風乾して非晶質のシ
リカゲルを得た。
Example Silica gel for Wako Pure Chemical chromatography with a particle size of 100 to 200 mesh was immersed in IN hydrochloric acid for 24 hours to remove iron, washed with water for a long time, and then air-dried to obtain an amorphous silica gel.

0.1モルの硝酸クロム溶液に、0.1N NaOHを
徐々に加え、加水分解を進行させ、OH/Cr=
2.0の条件で多核クロム水酸化イオンを含む溶液
を作製した。
Gradually add 0.1N NaOH to 0.1M chromium nitrate solution to proceed with hydrolysis, OH/Cr=
A solution containing polynuclear chromium hydroxide ions was prepared under conditions of 2.0.

この溶液に前記シリカゲルを投入し、室温で4
日間撹拌しながらイオン交換を行つた。イオン交
換が行われたシリカゲルの入つた溶液に、さらに
0.1N NaOHを滴下し、溶液中のCrをすべて水酸
化物の形でシリカゲルの外表面に多核クロム水酸
化イオンを核として沈澱させた。この試料をヒド
ラジンにより還元した。化学分析の結果、Cr2O3
換算で68重量%のCrが存在していることが判明
した。この量は、最初に溶液中に存在したCrの
量に相当する。このものの体積固有抵抗は、1Ω
cm前後であつて、シリカゲルが完全にCrで包込
まれた構造となつており、球状の導電性フイラー
として十分適用できるものであつた。
The silica gel was added to this solution and the solution was heated to room temperature for 4 hours.
Ion exchange was performed while stirring for days. Further, the solution containing ion-exchanged silica gel is
0.1N NaOH was added dropwise to cause all of the Cr in the solution to precipitate in the form of hydroxide on the outer surface of the silica gel with polynuclear chromium hydroxide ions as nuclei. This sample was reduced with hydrazine. As a result of chemical analysis, Cr 2 O 3
It was found that 68% by weight of Cr was present. This amount corresponds to the amount of Cr that was initially present in the solution. The volume resistivity of this thing is 1Ω
It had a structure in which the silica gel was completely wrapped in Cr, and could be sufficiently applied as a spherical conductive filler.

実施例 結晶質の無機イオン交換体として知られる人工
ふつ素雲母系鉱物Na Mg2.5(Si4O12)F2中のNa
カチオンを多核ニツケル水酸化カチオンで交換し
た。Niは加水分解により直ちに中性の水酸化物
を沈澱するので、滴定法を用いた。すなわち、
0.1N硝酸ニツケル水溶液に人工ふつ素雲母系鉱
物を投入撹拌しながら、0.1N NaOHを徐々に加
え、加水分解を行いながら、人工ふつ素雲母系鉱
物中のNaと多核ニツケル水酸化カチオンとを置
換させた。この置換終了後も0.1N NaOHの添加
を続け、溶液中のNiをすべて水酸化ニツケルと
して、人工ふつ素雲母系鉱物中の多核ニツケル水
酸化イオンを核として沈澱させた。この沈澱物を
水洗した後、100℃の温度で乾燥した。化学分析
の結果、溶液中に存在したNiはすべて沈澱し、
NiO換算で60.0重量%のNiが存在していることが
判明した。
Example Na in artificial fluorine mica mineral Na Mg 2.5 (Si 4 O 12 ) F 2 known as a crystalline inorganic ion exchanger
The cation was exchanged with a polynuclear nickel hydroxide cation. Since Ni immediately precipitates neutral hydroxide upon hydrolysis, a titration method was used. That is,
Add the artificial fluorine mica mineral to a 0.1N nickel nitrate aqueous solution and gradually add 0.1N NaOH while stirring to perform hydrolysis, replacing Na in the artificial fluorine mica mineral with polynuclear nickel hydroxide cations. I let it happen. Even after this substitution was completed, addition of 0.1N NaOH was continued to convert all the Ni in the solution into nickel hydroxide and precipitate the polynuclear nickel hydroxide ions in the artificial fluorine mica mineral as nuclei. This precipitate was washed with water and then dried at a temperature of 100°C. As a result of chemical analysis, all the Ni present in the solution precipitated,
It was found that 60.0% by weight of Ni was present in terms of NiO.

これをH2気流中で100℃の温度で1時間焼成し
た場合には、この焼成物のNiの結晶粒径の大き
さは、X線回折および電子顕微鏡の観測から、約
40Åと認められた。
When this was fired at a temperature of 100°C for 1 hour in a H 2 stream, the size of the Ni crystal grain size of this fired product was determined to be approximately
It was recognized as 40Å.

またH2気流中で300℃の温度で1時間焼成した
場合には、同様の測定方法で、この焼成物のNi
の結晶粒径の大きさは80Å、500℃の温度で1時
間焼成した場合には220Å、700℃の温度で1時間
焼成した場合には800Å前後であつた。因に、220
ÅのNiを複合化させたものは、Ni単独のものに
比べて1.5倍程度の保持力を有していた。
In addition, when fired at a temperature of 300°C for 1 hour in a H 2 stream, the Ni of this fired product was measured using the same measurement method.
The crystal grain size was 80 Å, 220 Å when fired at a temperature of 500°C for 1 hour, and around 800 Å when fired at a temperature of 700°C for 1 hour. Incidentally, 220
The composite with Å of Ni had about 1.5 times the retention power compared to the one with Ni alone.

またNiO換算で30.0重量%のNiを複合化させた
ものをH2気流中で100℃の温度で1時間焼成した
場合には、この焼成物のNiの結晶粒径の大きさ
は、約30Åであつた。また300℃の温度で1時間
焼成した場合には60Å、500℃の温度で1時間焼
成した場合には105Åであつた。
Furthermore, when a compound containing 30.0% by weight of Ni (calculated as NiO) is fired in a H2 stream at a temperature of 100°C for 1 hour, the size of the Ni crystal grains in the fired product is approximately 30 Å. It was hot. The thickness was 60 Å when fired at a temperature of 300°C for 1 hour, and 105 Å when fired at a temperature of 500°C for 1 hour.

このように最初に溶液中に存在した金属イオン
の量で複合させる金属の量を調整し、さらに還元
条件を調整することにより、金属粒子の粒径を任
意にコントロールすることができる。上述した方
法により、無機化合物に金属粒子を任意の量およ
び任意の粒径で複合化したものは、触媒、磁性
体、導電性フイラー等広範囲の用途に適するもの
である。
In this way, by adjusting the amount of metal to be combined with the amount of metal ions initially present in the solution and further adjusting the reduction conditions, the particle size of the metal particles can be arbitrarily controlled. A composite obtained by combining an inorganic compound with metal particles in an arbitrary amount and particle size by the method described above is suitable for a wide range of uses such as catalysts, magnetic materials, and conductive fillers.

Claims (1)

【特許請求の範囲】 1 陽イオン交換能を有する無機化合物をホスト
とし、このホストの表面あるいはこのホストの層
間にゲストとして多核金属水酸化イオンを核とし
て生成した金属水酸化物が還元した形態の金属粒
子が複合した無機物金属複合体。 2 陽イオン交換能を有する無機化合物の表面あ
るいは層間に配位するカチオンの一部または全部
を多核金属水酸化イオンで置換する置換工程と、 上記カチオンを置換した多核金属水酸化イオン
を核として金属水酸化物を沈澱させる沈澱工程
と、 この金属水酸化物を還元して上記無機化合物の
表面あるいは層間に金属粒子を複合させる複合工
程と を含む無機物金属複合体の合成方法。 3 陽イオン交換能を有する無機化合物の表面あ
るいは層間に配位するカチオンの一部または全部
を多核金属水酸化イオンで置換する置換工程と、 上記カチオンを置換した多核金属水酸化イオン
を核として金属水酸化物を沈澱させる沈澱工程
と、 この金属水酸化物を加熱脱水して金属酸化物と
する脱水工程と、 この金属酸化物を還元して上記無機化合物の表
面あるいは層間に金属粒子を複合させる複合工程
と を含む無機物金属複合体の合成方法。
[Claims] 1. An inorganic compound having a cation exchange ability as a host, and a reduced form of a metal hydroxide generated with a polynuclear metal hydroxide ion as a nucleus as a guest on the surface of this host or between the layers of this host. An inorganic metal composite made of metal particles. 2. A substitution step in which part or all of the cations coordinated on the surface or between layers of an inorganic compound having cation exchange ability are replaced with polynuclear metal hydroxide ions, and a metal A method for synthesizing an inorganic-metal composite comprising a precipitation step of precipitating a hydroxide, and a composite step of reducing the metal hydroxide to composite metal particles on the surface or between the layers of the inorganic compound. 3. A substitution step in which part or all of the cations coordinated on the surface or between layers of an inorganic compound having cation exchange ability are replaced with polynuclear metal hydroxide ions, and a metal A precipitation step in which the hydroxide is precipitated, a dehydration step in which the metal hydroxide is heated and dehydrated to form a metal oxide, and the metal oxide is reduced to combine metal particles on the surface or between the layers of the inorganic compound. A method for synthesizing an inorganic-metal composite including a composite step.
JP58076206A 1983-05-02 1983-05-02 Inorganic substance-metal composite body and its synthesizing method Granted JPS59203719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076206A JPS59203719A (en) 1983-05-02 1983-05-02 Inorganic substance-metal composite body and its synthesizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076206A JPS59203719A (en) 1983-05-02 1983-05-02 Inorganic substance-metal composite body and its synthesizing method

Publications (2)

Publication Number Publication Date
JPS59203719A JPS59203719A (en) 1984-11-17
JPH0525802B2 true JPH0525802B2 (en) 1993-04-14

Family

ID=13598685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076206A Granted JPS59203719A (en) 1983-05-02 1983-05-02 Inorganic substance-metal composite body and its synthesizing method

Country Status (1)

Country Link
JP (1) JPS59203719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964606A (en) * 1995-08-21 1997-03-07 Fukushima Nippon Denki Kk Mic isolator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106953B2 (en) * 1985-05-18 1995-11-15 松下電工株式会社 Inorganic layered porous body and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542878A (en) * 1967-11-22 1970-11-24 Gulf Research Development Co Aldol condensation process
JPS52124491A (en) * 1976-04-12 1977-10-19 Du Pont Surfaceesoaked catalysts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542878A (en) * 1967-11-22 1970-11-24 Gulf Research Development Co Aldol condensation process
JPS52124491A (en) * 1976-04-12 1977-10-19 Du Pont Surfaceesoaked catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964606A (en) * 1995-08-21 1997-03-07 Fukushima Nippon Denki Kk Mic isolator

Also Published As

Publication number Publication date
JPS59203719A (en) 1984-11-17

Similar Documents

Publication Publication Date Title
Tatarchuk et al. Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites
Prince et al. Proposed general sol− gel method to prepare multimetallic layered double hydroxides: synthesis, characterization, and envisaged application
CN108370025B (en) Synthetic surface functionalized acidified metal oxide materials for energy storage, catalysis, photovoltaic and sensor applications
Sasaki et al. Intercalation of pyridine in layered titanates
Prevot et al. Glycine-assisted hydrothermal synthesis of NiAl-layered double hydroxide nanostructures
Vila et al. Structural and Thermal Properties of the Tetragonal Cobalt Manganese Spinels Mn x Co3-x O4 (1.4< x< 2.0)
Huang et al. Multifunctional Prussian blue analogue magnets: Emerging opportunities
Utkina et al. TG and DSC investigation of water intercalation and protonation processes in perovskite-like layered structure of titanate K 2 Nd 2 Ti 3 O 10
JPS63112413A (en) Crosslinked clay having improved thermal stability
CN114702939B (en) Spinel type carrier modified copper-based metal oxide heat storage material and preparation method thereof
WO2004009233A1 (en) Magnetic nanometer solid base catalyst and its preparation method
Bhatt et al. Synthesis of CoFe Prussian blue analogue/poly vinylidene fluoride nanocomposite material with improved thermal stability and ferroelectric properties
Bai et al. Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites
Rana et al. Synthesis of NiO nanoparticles via calcination of surfactant intercalated layered nickel hydroxides and their application as adsorbent
Zhang et al. Heterostructure design of MoO2/FeCo/NPC nanocomposites via supramolecular self-assembly for efficient electromagnetic wave absorption
Guzmán-Vargas et al. Influence on the electrocatalytic water oxidation of M 2+/M 3+ cation arrangement in NiFe LDH: Experimental and theoretical DFT evidences
US5559070A (en) Synthetic inorganic porous material and method for the preparation thereof
JPH0525802B2 (en)
Mokhtar et al. Structural and antibacterial properties of H y Zn x Na 2− x Si 14 O 29 nH 2 O layered silicate compounds, prepared by ion-exchange reaction
Bugosh et al. A novel fine alumina powder, fibrillar boehmite
JPH10130013A (en) Cluster inclusion material
Nunes et al. Layered titanates in alkaline, acidic and intercalated with 1, 8-octyldiamine forms as ion-exchangers with divalent cobalt, nickel and copper cations
JP2006281068A (en) Adsorbent
Wang et al. Electrochemical synthesis of magnetic nanoparticles within mesoporous silica microspheres
de Farias et al. Thermochemical features of lamellar silica, copper, nickel and cobalt-doped forms synthesized from neutral amine route