JPH0525692Y2 - - Google Patents

Info

Publication number
JPH0525692Y2
JPH0525692Y2 JP1988043479U JP4347988U JPH0525692Y2 JP H0525692 Y2 JPH0525692 Y2 JP H0525692Y2 JP 1988043479 U JP1988043479 U JP 1988043479U JP 4347988 U JP4347988 U JP 4347988U JP H0525692 Y2 JPH0525692 Y2 JP H0525692Y2
Authority
JP
Japan
Prior art keywords
diameter
nozzle
tube
orifice
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988043479U
Other languages
Japanese (ja)
Other versions
JPH01148729U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988043479U priority Critical patent/JPH0525692Y2/ja
Publication of JPH01148729U publication Critical patent/JPH01148729U/ja
Application granted granted Critical
Publication of JPH0525692Y2 publication Critical patent/JPH0525692Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、汚水の活性汚泥処理や還元性化合物
の空気酸化処理などに用いられる気液混合装置の
改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of a gas-liquid mixing device used for activated sludge treatment of sewage, air oxidation treatment of reducing compounds, and the like.

〔従来の技術〕[Conventional technology]

汚水の活性汚泥処理や還元性化合物の空気酸化
処理などに用いられる気液混合装置には種々のも
のが用いられているが、処理槽の底部に設けた循
環ポンプの吐出口に負圧部を形成して処理槽外か
ら空気を吸入し、気泡を発生させて気液を混合す
る気液混合装置は、その構造が簡単で機械的駆動
部を持たないので故障が少なく、比較的小さい動
力で良好な気液混合が行えるので広範囲に使用さ
れている。
Various types of gas-liquid mixing devices are used for activated sludge treatment of sewage and air oxidation treatment of reducing compounds. The gas-liquid mixing device, which sucks air from outside the treatment tank and generates bubbles to mix gas and liquid, has a simple structure and does not have a mechanical drive, so it is less likely to break down and requires relatively little power. It is widely used because it can perform good gas-liquid mixing.

〔考案が解決しようとする課題〕[The problem that the idea attempts to solve]

この気液混合装置は、上記のような利点を有す
るが処理槽の大型化に伴つて循環ポンプの動力を
大きくしなければならず、その割に空気の吸入量
が増加しないので、別に動力を用いて空気を圧送
している。また供給した空気のかなりの量が大気
へ放出されるので、気液混合(即ち物質移動性)
の面でさらに改善が望まれている。
This gas-liquid mixing device has the above-mentioned advantages, but as the processing tank becomes larger, the power of the circulation pump must be increased, and the amount of air intake does not increase accordingly, so it is necessary to increase the power separately. It is used to pump air. Also, since a significant amount of the supplied air is released into the atmosphere, gas-liquid mixing (i.e. mass transfer)
Further improvements are desired in this respect.

本考案は、上記の点に鑑み開発されたもので、
空気を圧送しなくても液中への吸入量が大きく、
かつ処理槽全体における気液の混合が極めて速い
気液混合装置を得ることを目的としている。
This invention was developed in view of the above points,
The amount of air sucked into the liquid is large even without pumping air.
Another object of the present invention is to obtain a gas-liquid mixing device in which gas-liquid mixing in the entire processing tank is extremely fast.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本考案は、循環ポ
ンプの吐出口にオリフイスを設け、該オリフイス
の下流側に、空気導入管と、前記オリフイスの径
より大径で、かつその口径に対しほぼ2倍の長さ
を有するノズルを設けるとともに、該ノズルの下
流端に隣接して前記ノズルの口径より大径で、口
径の5倍以下の長さを有するチユーブを設けたこ
とを特徴としている。
In order to achieve the above object, the present invention provides an orifice at the discharge port of the circulation pump, and an air introduction pipe on the downstream side of the orifice, the diameter of which is larger than that of the orifice, and approximately 2 times larger than the diameter of the orifice. The present invention is characterized in that a nozzle having twice the length is provided, and a tube having a diameter larger than the aperture of the nozzle and a length not more than five times the aperture is provided adjacent to the downstream end of the nozzle.

〔作用〕[Effect]

上記の如く気液混合装置を構成することによ
り、循環ポンプから吐出された液体はオリフイス
で流速を高め、空気導入管からの空気を効率よく
流入せしめてノズル内を通過する。この時、吐出
される液体がかなりの高圧になるため吸入空気の
気泡が微細化される。次いでノズルの径よりもや
や大径のチユーブ内へ送られる際に、ノズルとチ
ユーブの間から、周囲の液体を吸入しながら流れ
るので液の循環が極めて良く気液の混合が速やか
に行われる。
By configuring the gas-liquid mixing device as described above, the flow rate of the liquid discharged from the circulation pump is increased by the orifice, and air from the air introduction pipe is efficiently introduced to pass through the nozzle. At this time, the discharged liquid has a considerably high pressure, so the bubbles of the intake air become fine. Next, when the liquid is sent into a tube whose diameter is slightly larger than that of the nozzle, it flows from between the nozzle and the tube while sucking in the surrounding liquid, so that the liquid circulation is extremely good and the gas and liquid are mixed quickly.

〔実施例〕〔Example〕

以下、本考案の一実施例を第1図に基づいて説
明する。
An embodiment of the present invention will be described below with reference to FIG.

本考案の気液混合装置1は、処理槽2の底部に
設けられた循環ポンプ3と、該循環ポンプ3の吐
出口3aに設けられたオリフイス4及び該オリフ
イス4の下流側に連設された空気導入管5とノズ
ル6、さらに該ノズル6の下流に連設されたチユ
ーブ7とにより構成されている。
The gas-liquid mixing device 1 of the present invention includes a circulation pump 3 provided at the bottom of a processing tank 2, an orifice 4 provided at a discharge port 3a of the circulation pump 3, and an orifice 4 connected downstream of the orifice 4. It is composed of an air introduction pipe 5, a nozzle 6, and a tube 7 connected downstream of the nozzle 6.

本考案者等は、上記の構成を有する気液混合装
置1を用い、その混合特性に及ぼす装置因子の影
響について多くの実験を行つた。それによれば、
前記オリフイス4の口径をノズル6の口径に対し
て0.5〜0.6倍、またノズル6の長さをノズル6の
口径の約2倍とし、そして前記チユーブ7の口径
をノズル6の口径の1.4〜1.7倍、またチユーブ7
の長さをチユーブ7の口径の4倍としたときに最
も好ましい結果が得られた。
The present inventors used the gas-liquid mixing device 1 having the above-mentioned configuration and conducted many experiments on the influence of device factors on the mixing characteristics. According to it,
The diameter of the orifice 4 is 0.5 to 0.6 times the diameter of the nozzle 6, the length of the nozzle 6 is approximately twice the diameter of the nozzle 6, and the diameter of the tube 7 is 1.4 to 1.7 times the diameter of the nozzle 6. Double, tube 7 again
The most favorable results were obtained when the length of tube 7 was four times the diameter of tube 7.

〔実験例〕[Experiment example]

以下、上記気液混合装置1について行つた実験
に基づいて本考案をさらに詳しく説明する。
Hereinafter, the present invention will be explained in more detail based on experiments conducted on the above-mentioned gas-liquid mixing device 1.

実験に使用した気液混合装置1は、第2図に詳
しく示す如きもので、処理槽2(第1図参照)は
3.0m×4.0m×深さ1.2mとし、水道水を用いて液
深さを800mm(循環ポンプ3の吸込み口から600
mm)とした。また循環ポンプ3の吐出口口径を50
mmとし、空気導入管5の口径も吐出口3aと同径
の50mmに形成した。
The gas-liquid mixing device 1 used in the experiment is as shown in detail in Figure 2, and the processing tank 2 (see Figure 1) is
The dimensions are 3.0m x 4.0m x depth 1.2m, and the liquid depth is 800mm using tap water (600mm from the suction port of circulation pump 3).
mm). Also, the discharge port diameter of circulation pump 3 is set to 50
mm, and the diameter of the air introduction pipe 5 was also formed to be 50 mm, which is the same diameter as the discharge port 3a.

そして、オリフイス4の径DO(mm)、ノズル6
の管径DN(mm)と長さLN(mm)、チユーブ7の管径
DT(mm)と長さLT(mm)の種々の組合せについて、
空気の吸込み流量QG(/min)の測定を行つた。
And the diameter D O (mm) of orifice 4, nozzle 6
Pipe diameter D N (mm) and length L N (mm), pipe diameter of tube 7
For various combinations of D T (mm) and length L T (mm),
The air intake flow rate Q G (/min) was measured.

第3図は、ノズル6の長さLNが50mmと1000mm
の場合のオリフイス4の径DOを変化させて空気
の吸込み流量QGを測定した結果を示すものであ
る。オリフイス4の径DOが40mmでは空気は殆ど
吸込まれず、また20mmでは僅かであつた。
In Figure 3, the length L N of nozzle 6 is 50 mm and 1000 mm.
This figure shows the results of measuring the air suction flow rate Q G by changing the diameter D O of the orifice 4 in the case of . When the diameter D O of the orifice 4 was 40 mm, almost no air was sucked in, and when it was 20 mm, only a small amount of air was sucked in.

これよりノズル6の口径DNに対するオリフイ
ス4の径DOの比は0.5〜0.6が適当と判断される。
From this, it is determined that the ratio of the diameter D O of the orifice 4 to the diameter D N of the nozzle 6 is 0.5 to 0.6.

第4図は、オリフイス4の径DOを30mm、チソ
ーブ7の口径DTを83mm、チユーブ7の長さLT
300mmとし、ノズル6の長さLNを変化させて空気
の吸込み流量QGを測定した結果である。尚、同
時にチユーブ7を設けない場合についても測定を
行つた。
Figure 4 shows the diameter D O of orifice 4 to be 30 mm, the diameter D T of Chisobu 7 to be 83 mm, and the length L T of tube 7 to be 30 mm.
These are the results of measuring the air suction flow rate Q G while changing the length L N of the nozzle 6 at 300 mm. At the same time, measurements were also conducted in the case where the tube 7 was not provided.

チユーブ7を設けない場合は、ノズル6の長さ
LNが長くなるにつれ空気の吸込み流量QGは増加
するが、チユーブ7を設けた場合はノズル6の長
さLNが比較的短い100mm程度のところで空気の吸
込み流量QGが最大となり、以後LNの増加に伴い
減少し、チユーブ7を備えない場合の空気の吸込
み流量QGに漸近している。
If tube 7 is not provided, the length of nozzle 6
As L N becomes longer, the air suction flow rate Q G increases, but when the tube 7 is provided, the air suction flow rate Q G reaches its maximum when the length L N of the nozzle 6 is relatively short, about 100 mm, and from then on, the air suction flow rate Q G increases. It decreases as L N increases, and approaches the air suction flow rate Q G when the tube 7 is not provided.

これよりノズル6の口径DNに対するノズル6
の長さLNは、ほぼ2倍が適当と判断される。
From this, the nozzle 6 for the diameter D N of the nozzle 6
It is judged that approximately twice the length L N is appropriate.

第5図は、オリフイス4の径DOを30mm、ノズ
ル6の長さLNを100mm、チユーブ7の口径DTを83
mmとし、チユーブ7の長さLTを変化させて空気
の吸込み流量QGを測定した結果を示すものであ
る。
In Figure 5, the diameter D O of orifice 4 is 30 mm, the length L N of nozzle 6 is 100 mm, and the diameter D T of tube 7 is 83 mm.
mm, and shows the results of measuring the air suction flow rate Q G while changing the length L T of the tube 7.

これよりチユーブ7の長さLTの増加により空
気の吸込み流量QGは増加し、300mmで最大とな
り、以後はほぼ一定であることが解つた。従つ
て、チユーブ7の長さLTは、チユーブ7の口径
DTの4倍程度が適当と思われる。
From this, it was found that as the length L T of the tube 7 increases, the air suction flow rate Q G increases, reaches a maximum at 300 mm, and remains almost constant thereafter. Therefore, the length L T of tube 7 is the diameter of tube 7.
Approximately 4 times D T is considered appropriate.

第6図は、ノズル6の長さLNを100mm、ノズル
6の口径DNを50mm、またはチユーブ7の口径DT
に対するチユーブ7の長さLTを4倍とし、チユ
ーブ7の口径DTを変化させて空気の吸込み流量
QGを測定した結果である。尚、チユーブ7の口
径DTが50mm、即ちノズル6の口径DNと同じ場合
には、第7図に示すようにチユーブ6の側端に襟
7aを付設した。
In Figure 6, the length L N of the nozzle 6 is 100 mm, the diameter D N of the nozzle 6 is 50 mm, or the diameter D T of the tube 7.
The length L T of the tube 7 is set to 4 times the diameter of the tube 7, and the diameter D T of the tube 7 is changed to increase the air intake flow rate.
This is the result of measuring QG . When the diameter D T of the tube 7 is 50 mm, that is, the same as the diameter D N of the nozzle 6, a collar 7a is attached to the side end of the tube 6 as shown in FIG.

これにより、空気の吸込み流量QGは、チユー
ブ7の口径DTが71〜83mmのとき最大となつてお
り、ノズル6の口径DNに対し1.4〜1.7倍位が適当
であることが解つた。
As a result, it was found that the air suction flow rate Q G is maximum when the diameter D T of the tube 7 is 71 to 83 mm, and that the appropriate value is 1.4 to 1.7 times the diameter D N of the nozzle 6. .

第8図は、第9図に示す本考案の気液混合装置
と、第10図に示す従来の一般的な曝気槽に用い
られている分散器とを用い、循環液流量FL[m3
S]に対するガスホールドアツプε[−]と液相
物質移動容量係数KLa[1/S]を測定した結果
を示すものである。第9図における気液混合装置
1の各部の寸法は、オリフイス4の径DOが8mm、
ノズル6は管径DNが13mm、長さLNが30mm、チユ
ーブ7は管径DTが30mm、長さLTが80mmであり、
また第10図における分散器10の各部の寸法
は、ポンプ吐出口11の先端に設けたノズル11
aの径Dnが8mm、その下流のチユーブ12は管
径DTが20mm、長さLTが80mm、また空気導入管1
3の管径は5mm、流れ方向に対して直角の面にそ
れぞれ設けた通孔13aは1mmである。
FIG. 8 shows how the circulating fluid flow rate F L [m 3 /
This figure shows the results of measuring the gas hold up ε[-] and the liquid phase mass transfer capacity coefficient K La [1/S] with respect to S]. The dimensions of each part of the gas-liquid mixing device 1 in FIG. 9 are as follows: the diameter D O of the orifice 4 is 8 mm;
The nozzle 6 has a pipe diameter D N of 13 mm and a length L N of 30 mm, and the tube 7 has a pipe diameter D T of 30 mm and a length L T of 80 mm.
In addition, the dimensions of each part of the distributor 10 in FIG.
The diameter Dn of a is 8 mm, and the tube 12 downstream thereof has a pipe diameter D T of 20 mm, a length L T of 80 mm, and air introduction pipe 1.
The diameter of the pipe No. 3 is 5 mm, and the diameter of each through hole 13a provided in the plane perpendicular to the flow direction is 1 mm.

この結果から明らかなように、循環液流量FL
のいずれにおいても、本考案の気液混合装置が優
れているという結果を得ることができた。尚、水
道水に代えて酵母培養液についても同様の実験を
行つたが、水道水の場合よりも、ガスホールドア
ツプε、液相物質移動容量係数KLa共に良好な
結果を得ることができた。
As is clear from this result, the circulating fluid flow rate F L
In all cases, the results showed that the gas-liquid mixing device of the present invention was superior. A similar experiment was conducted using yeast culture solution instead of tap water, but better results were obtained in terms of gas hold up ε and liquid phase mass transfer capacity coefficient K La than with tap water. Ta.

〔考案の効果〕[Effect of idea]

以上説明したように本考案の気液混合装置は、
循環ポンプの吐出口にオリフイスを設け、これに
隣接して空気導入管を設けるとともに、口径に対
しほぼ2倍の長さを有するノズルと、該ノズルの
下流端に隣接して口径の5倍以下の長さで前記ノ
ズルの口径よりやや大径のチユーブを設けたの
で、従来のものに比べ、空気の吸込み流量が大き
くなり、処理槽全体における気液の混合が極めて
速い反応装置となり、とくに汚水の活性汚泥処理
や微生物の好気培養装置等で、酸素要求量を多く
要求される発酵に好適であるほか、通気動力の軽
減や装置の小型化も期待できる。
As explained above, the gas-liquid mixing device of the present invention is
An orifice is provided at the discharge port of the circulation pump, an air introduction pipe is provided adjacent to this, a nozzle having a length approximately twice the diameter, and an orifice adjacent to the downstream end of the nozzle that is not more than five times the diameter. Since the length of the tube is slightly larger than the diameter of the nozzle, the air suction flow rate is larger than that of conventional tubes, making it possible to mix gas and liquid in the entire treatment tank extremely quickly. It is suitable for fermentation that requires a large amount of oxygen, such as activated sludge treatment and aerobic culture equipment for microorganisms, and can also be expected to reduce aeration power and downsize equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の気液混合装置の全体を示す説
明図、第2図は実験に使用した気液混合装置の要
部を示す断面図、第3図乃至第6図はそれぞれ実
験結果を示す図、第7図はノズルとチユーブを同
径とした場合の接続状態を示す断面図、第8図は
本考案の気液混合装置と一般の分散器との比較実
験の結果を示す図、第9図は比較実験に用いた気
液混合装置の要部断面図、第10図は同じく分散
器の要部断面図である。 1……気液混合装置、2……処理槽、3……循
環ポンプ、3a……吐出口、4……オリフイス、
5……空気導入管、6……ノズル、7……チユー
ブ、DO……オリフイスの径、DN……ノズルの管
径、LN……ノズルの長さ、DT……チユーブの管
径、LN……チユーブの長さ。
Figure 1 is an explanatory diagram showing the entirety of the gas-liquid mixing device of the present invention, Figure 2 is a sectional view showing the main parts of the gas-liquid mixing device used in the experiment, and Figures 3 to 6 show the experimental results. Figure 7 is a sectional view showing the connection state when the nozzle and tube have the same diameter, Figure 8 is a diagram showing the results of a comparative experiment between the gas-liquid mixing device of the present invention and a general disperser. FIG. 9 is a sectional view of the main part of the gas-liquid mixing device used in the comparative experiment, and FIG. 10 is a sectional view of the main part of the disperser. 1... Gas-liquid mixing device, 2... Processing tank, 3... Circulation pump, 3a... Discharge port, 4... Orifice,
5... Air introduction pipe, 6... Nozzle, 7... Tube, D O ... Orifice diameter, D N ... Nozzle diameter, L N ... Nozzle length, D T ... Tube tube. Diameter, L N ...Length of the tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 処理槽の底部に設けた循環ポンプの吐出口に負
圧部を形成して処理槽外から空気を吸入し、気泡
を発生させて気液を混合する気液混合装置におい
て、前記吐出口にオリフイスを設け、該オリフイ
スの下流側に、空気導入管と、前記オリフイスの
径より大径で、かつその口径に対しほぼ2倍の長
さを有するノズルを設けるとともに、該ノズルの
下流端に隣接して前記ノズルの口径より大径で、
口径の5倍以下の長さを有するチユーブを設けた
ことを特徴とする気液混合装置。
In a gas-liquid mixing device that forms a negative pressure section at the discharge port of a circulation pump provided at the bottom of the processing tank, sucks air from outside the processing tank, and generates bubbles to mix gas and liquid, an orifice is installed at the discharge port. An air introduction pipe is provided downstream of the orifice, and a nozzle having a diameter larger than the diameter of the orifice and approximately twice the length of the orifice, and adjacent to the downstream end of the nozzle. with a diameter larger than the aperture of the nozzle,
A gas-liquid mixing device characterized by having a tube having a length not more than five times the diameter.
JP1988043479U 1988-03-31 1988-03-31 Expired - Lifetime JPH0525692Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988043479U JPH0525692Y2 (en) 1988-03-31 1988-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988043479U JPH0525692Y2 (en) 1988-03-31 1988-03-31

Publications (2)

Publication Number Publication Date
JPH01148729U JPH01148729U (en) 1989-10-16
JPH0525692Y2 true JPH0525692Y2 (en) 1993-06-29

Family

ID=31269874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988043479U Expired - Lifetime JPH0525692Y2 (en) 1988-03-31 1988-03-31

Country Status (1)

Country Link
JP (1) JPH0525692Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4451991B2 (en) * 2001-02-23 2010-04-14 日本下水道事業団 Aeration equipment
JP5103625B2 (en) * 2006-12-19 2012-12-19 国立大学法人 熊本大学 Fluid mixer and fluid mixing method
JP6559873B1 (en) * 2018-12-11 2019-08-14 三菱日立パワーシステムズ株式会社 Gas-liquid mixing device and exhaust gas desulfurization device equipped with gas-liquid mixing device

Also Published As

Publication number Publication date
JPH01148729U (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US8118283B2 (en) Apparatus for aerating an aqueous solution
KR20000047823A (en) System for the dissolution of gas
US4389312A (en) Variable venturi sewerage aerator
EP0027912A1 (en) Apparatus for contacting liquid with a gas
JPH0525692Y2 (en)
CA2101627A1 (en) A reactor
WO2018148305A1 (en) Improved venturi apparatus and method of use
CN2791033Y (en) Flow-forming aeration algae-killing device
JP3204978B2 (en) Reactor
US20180162757A1 (en) Venturi apparatus and method of use
CN108609723A (en) Novel cyclone type aerator
US9486753B1 (en) Apparatus for aerating an aqueous solution
JPH0691297A (en) Apparatus for cleaning water area
KR20030096534A (en) Apparatus for mixing and dissolving oxygen
WO2007043904A1 (en) Jet loop wastewater treatment system
JP2002113488A (en) Method and apparatus for treating liquid
JP2003056500A (en) Ejector
TWM276622U (en) Underwater gas/liquid agitating, mixing, and aerating machine
JP2539555B2 (en) Water ozonation method
CN218709593U (en) Sludge reflux treatment device applying air stripping principle
JPH1190275A (en) Negative pressure fine-foam generator
CN219792711U (en) Reaction precipitation integrated deep water aeration tower
CN209507738U (en) Fluid mixer and integrated sewage treating apparatus
JPH049038Y2 (en)
US8128741B2 (en) Gas dissolving apparatus