JPH0525599B2 - - Google Patents
Info
- Publication number
- JPH0525599B2 JPH0525599B2 JP10307189A JP10307189A JPH0525599B2 JP H0525599 B2 JPH0525599 B2 JP H0525599B2 JP 10307189 A JP10307189 A JP 10307189A JP 10307189 A JP10307189 A JP 10307189A JP H0525599 B2 JPH0525599 B2 JP H0525599B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- core wire
- arc
- resistance
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 claims description 78
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 21
- 239000002893 slag Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 239000005416 organic matter Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 239000011324 bead Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004111 Potassium silicate Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 3
- 229910052913 potassium silicate Inorganic materials 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000840 Capped steel Inorganic materials 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910001327 Rimmed steel Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
- B23K35/3086—Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
Description
(産業上の利用分野)
本発明は、連続鋳造プロセスで製造された線材
の心線として用いた被覆アーク溶接棒であり、高
電流で使用した場合でも耐棒焼け性に優れ、良好
なアーク状態と健全な溶接金属が確保できる被覆
アーク溶接棒に関するものである。
(従来の技術)
従来の溶接棒用心線線材は、リムド鋼またはキ
ヤツプド鋼で製造されていたが、これらの製造方
法では歩留および省エネルギーなどの面で大きな
欠点があつた。
そこで近年、従来の心線の欠点を克服するため
に、連続鋳造心線による溶接棒用心線の開発が進
められ、かなり実用化されるようになつた。
しかし、連続鋳造心線の溶接棒は従来の心線の
溶接棒に比較すると、高電流で溶接した場合、耐
棒焼け性が悪くなり、棒焼け現象を生じた溶接棒
はアーク状態の劣化を招きスパツタの飛散が多く
なりビード外観も悪く、さらに被覆剤中の脱酸剤
やガス発生剤は既に分解しているために、その機
能を果たさず、ブロホールやピツトが多発し、健
全な溶接金属が得られない問題があつた。
従つて、連続鋳造心線を使用した溶接棒は高電
流で使用すると正常な溶接ができる部分が短くな
り、溶接棒の使用量が多くなり、かつ溶接作業能
率の低下と相まつて構造物の製造コストを高めて
いた。
溶接棒用の連続鋳造心線の向上としては、種々
提案あるいは実施されている。
例えば特公昭63−57154号公報では主として、
心線中のCのOの含有量を限定することでイルミ
ナイト系、高酸化チタン系、鉄粉酸化鉄系などの
被覆剤を用いて良好なアーク状態やビード外観、
および健全な溶接金属などが得られることを提案
しているが、高電流使用での耐棒焼け性を改善す
る迄には至つておらず、溶接作業能率の向上には
貢献できないのが現状である。
また、本発明者らが先に特開昭58−176097号公
報で、心線中の介在物であるMnO、FeO、
Al2O3、SiO2の含有量を限定することにより、溶
融速度の速い溶接棒が得られることを提案し、こ
れに起因して高電流における溶接棒の加熱現象を
減少させ耐棒焼け性を向上させることも示唆し
た。しかし、これら介在物の限定では良好なアー
クの安定性を維持しながら耐棒焼け性の優れたも
のにするには不十分であつた。
さらに特開昭57−156892号公報では心線中の
Al、N、Oの含有量を限定し、高電流使用にお
いて耐ブロホール性が改善できることを提案した
が、これについても良好なアーク状態を得ること
ができない問題があり、全ての溶接性能を満足す
るには至らなかつた。
(発明が解決しようとする課題)
このように現状の溶接棒用としての連続鋳造心
線は、高電流で使用した場合に耐棒焼け性に優
れ、良好なアーク状態を維持し、スパツタ、スラ
グ状態、ビード外観などの溶接作業性を満足し、
かつブロホールやピツトの発生しない健全な溶接
金属を得ることは非常に困難であつた。しかる
に、これらの要求をすべて満たす連続鋳造心線の
溶接棒を得ることは各業界から強く要望されてい
た。
本発明は、前述した実情に鑑みて連続鋳造心線
の改善を行い、高電流使用の場合でも耐棒焼け性
に優れ、かつ良好なアーク状態と健全な溶接金属
を確保でき全ての溶接作業性を満足する溶接棒を
提供するものである。
(課題を解決するための手段)
本発明は、前述した要望に応えるために連続鋳
造心線の成分や電気的特性を種々検討した結果、
高電流使用での耐棒焼け性を著しく改善し、かつ
良好なアーク状態と健全な溶接金属を確保したも
のであつて、その要旨とするところは、Oを
0.010〜0.017重量%(以下%と称する)含有し、
比抵抗が11.5〜14.2μΩ−cmである連続鋳造心線の
周囲にアーク安定剤、スラグ生成剤、脱酸剤、有
機物および固着剤、またはこれと鉄粉52%以下か
らなる被覆剤を塗布したことを特徴とする溶接棒
にある。
本発明者らは、諸溶接性能を満足しつつ耐棒焼
け性を改善するには、アークの溶滴粒を細粒化
し、かつ溶融速度を速くすることが極めて有効で
あることに着眼し、連続鋳造心線の研究を種々積
み重ねた結果、心線のO含有量と比抵抗の限定が
極めて効果的で重要なことを見出した。
心線のOは心線および被覆剤中のCと反応して
COやCO2ガスを発生して大気からのシールド効
果を持たらすが、これらガスはアーク柱の溶滴粒
内にも介在し、内圧によつて溶滴粒を砕き、溶滴
は細粒化する効果がある。従つて、アークの安定
性が良好となり、スパツタの飛散も少なくなるの
である。
また、心線の比抵抗は溶接棒の溶融速度と関係
のあることが判明した。心線の比抵抗の値が小さ
いと溶融速度は速くなり高電流使用における耐棒
焼け性は向上するが、この値が過剰に小さい場合
は比抵抗の支配因子である脱酸剤が合金剤が少な
くなり過ぎて健全な溶接金属が得られず、機械的
性能も劣化することが判かつた。一方、逆に比抵
抗の値が過剰に大きい場合は、溶融速度がかなり
遅くなりジユール熱によつて被覆剤が燃焼され正
常な被覆筒が形成されないためアークの指向性が
悪くなると共に、脱酸剤やガス発生剤の分解に起
因して溶接金属にブロホールやピツトが発生し易
くなり、耐棒焼け性が悪くなることが判つた。従
つて、適正な心線の比抵抗の値を見出すことも重
要視する必要があつた。
本発明は、以上のような知見に基づいてなされ
たものである。
(作用)
以下に本発明における作用について詳述する。
まず、連続鋳造心線の適正なO含有量と比抵抗
を調べるために次のような実験を行つた。即ち、
Oを0.004〜0.021%含有させ、比抵抗を9.1〜
17.6μΩ−cmに変化させた心線に第1表に示す全
姿勢溶接棒イルミナイト系の被覆剤を塗装し、乾
燥した溶接棒を作製して、耐棒焼け性とアーク状
態および溶接金属の耐ブロホール性を調査した。
なお、溶接棒サイズは4.0mmφ×450mmとし、心
線はCが0.004〜0.012%、Siが0.001〜0.042%、
Mnを0.31〜0.69%のものを使用した。
心線の比抵抗の測定要領については第1図に示
すように心線1全長の内、長さl約430mmの間に
定電流発生器2より電流を与え、その値と電圧か
ら得られる心線内部の抵抗と心線断面積A、およ
び電極間距離lを測定し、次の式により比抵抗を
算出し、くり返し3回の平均値を求めることにし
た。
比抵抗(μΩ−cm)=内部を流れる電流による抵抗×心
線断面積/電極間距離
各試験条件とその良否判定基準は以下のとおり
とした。
すなわち、耐棒焼け性試験では軟鋼板(板厚
12.7mm、幅100mm、流さ500mm)を交流溶接機を使
用し、電流200Aで下向溶接を行なつた。
その判定方法は未溶融部の被覆剤が燃焼して正
常な被覆筒が形成されず、急変する位置でアーク
を消弧させ、そのときの残りの溶接棒長(以下残
棒長と称する)で表わした。値は供試溶接棒5本
の平均値であり、60mm未満を良好のO印、60mm以
上90mm未満をやや劣るの△印、90mm以上を劣るの
×印とした。
次にアーク状態の調査では、前述の鋼板を用い
T型すみ肉試験片を作製し、水平すみ肉、立向姿
勢で溶接を行つた。電流は水平すみ肉で200A、
立向で160Aを用い、アークが安定し適正なアー
ク力を持つものを良好と判定した。
また、溶接金属の耐ブロホール性の調査では
NK方式のすみ肉溶接継手の破面試験方法に準拠
し、前述のT型すみ肉試験片と電流を用いビード
長が約350mmとなるように溶接を行い、これに外
力を加えて破断し、ブロホール個所の長さの和が
溶接全長の10%以下のものを良好とし、その値は
くり返し3回の平均値とした。
以上の試験から得られた結果を第2図に示す。
心線中のO含有量が0.010%未満ではアークの
溶滴が細粒化されないのでアークが不安定でスパ
ツタの飛散が多くなりビード外観も劣化し、
0.017%を超えるとアーク中のCOまたはCO2ガス
が過剰に多くなりアーク電圧が高くなつてアーク
力が異状に強くなるので、スパツタの飛散が多
く、立向姿勢においてはビードが垂れ易くなる。
心線の比抵抗については、その値が11.5μΩ−
cm未満では心線中のSiやMnなどの脱酸成分が減
少するため耐ブロホール性が悪くなり、ブロホー
ル箇所の長さの和が溶接全長に対して10%を超え
るようになつた。しかし比抵抗の値が小さいので
被覆剤の劣化がなく耐棒焼け性は良好であつた。
一方、比抵抗が14.2μΩ−cmを超えると被覆剤が
燃焼し劣化してくるので被覆筒が形成されず正常
な溶接ができなくなり、使用可能な溶融棒長が短
く残棒長が60mm以上になつて耐棒焼け性が悪くな
つた。また、この比抵抗の高いものは、被覆剤が
劣化するために耐ブロホール性も悪いことが判つ
た。
第2図の結果から高電流を使用した場合に耐棒
焼け性に優れ、かつ良好なアーク状態と健全な溶
接金属を得るためには、心線のO含有量を0.010
〜0.017%とし、心線の比抵抗を11.5〜14.2μΩ−
cmにする必要があることが判つた。
また、本発明ではライムチタニヤ系、高酸化チ
タン系、鉄粉酸化鉄系、低水素系などの被覆剤へ
も適用できることを確認した。
なお、本発明におけるアーク安定剤とは、ルチ
ール、イルミナイト、長石などであり、スラグ生
成剤は珪砂、炭酸石灰、蛍石、マグネサイト、マ
グネシアクリンカー、マイカ、タルクなどであ
り、脱酸剤はフエロマンガン、金属マンガン、フ
エロシリコン、フエロチタン、フエロアルミニウ
ムなどを指し、有機物はセルロース、澱粉、デキ
ストリン、アルギン酸ソーダなどであり、固着剤
とは珪酸ナトリウム、珪酸カリウムを指す。これ
らはそれぞれ1種もしくは2種以上の組合わせで
使用できる。
また鉄粉は主として作業能率の向上を目的とし
て添加するものであるが、本発明の特許請求の範
囲において52%以下としたのは、これを超えて添
加すると被覆筒が短絡し易くアークが不安定にな
りビード外観が劣化するからである。
(実施例)
次に実施例により本発明の効果をさらに具体的
に述べる。
第2表に本発明溶接棒および比較溶接棒に使用
した心線の化学成分と比抵抗を示し、第3表は、
前記心線と被覆剤の組合わせによる各性能試験結
果を示すものである。
なお、供試溶接棒の被覆系統は全姿勢の非低水
素系溶接棒と低水素系溶接棒、およびすみ肉溶接
棒であり、そのサイズを全姿勢の非低水素系溶接
棒と低水素系溶接棒で4.0mmφ×450mm、すみ肉
溶接棒で4.0mmφ×550mmとし、各種溶接棒を作
製した。
また、各試験条件とその良否判定基準は次のと
おりとした。
まず、耐棒焼け性試験では、軟鋼板(板厚12.7
mm、幅100mm、長さ700mm)を用い交流溶接機で下
向溶接を行い、電流は全姿勢の非低水素系溶接棒
と低水素系溶接棒で200A、すみ肉溶接棒で190A
とした。その判定方法は未溶融部の被覆剤がジユ
ール熱により加熱燃焼して被覆筒が急に形成され
なくなる位置でアークを消孤させ、そのときの残
棒長を測定し、その値を供試溶接棒5本の平均値
とし、60mm未満を良好60mm以上90mm未満をやや劣
る90mm以上を劣るとした。アーク状態の調査で
は、前述の鋼板でT型すみ肉試験片を作製し、水
平すみ肉、立向姿勢で溶接を行い、電流は全姿勢
の非低水素系溶接棒と低水素系溶接棒の場合に水
平すみ肉で200A、立向で160Aを用い、すみ肉溶
接棒の場合には水平すみ肉溶接を行い190Aを使
用し、アークの安定性とアーク力を調査し、その
判定方法は良好をO印、やや劣るを△印、劣るを
×印とした。
また、溶接金属の耐ブロホール性調査では、前
述の水平すみ肉試験片と電流を用い、ビード長を
全姿勢の非低水素系溶接棒と低水素系溶接棒で約
350mm、すみ肉溶接棒で約600mmとなるように溶接
を行い、これに外力を加えて破断しブロホールを
測定した。その判定方法はブロホール箇所の長さ
の和が溶接全長の10%以下のものが良好、11〜20
%をやや劣る、21%以上を劣るとし、その値はく
り返し3回の平均値で表した。
また、これら溶接性能調査の他に各溶接姿勢の
スラグ状態、スパツタの多少、ビード外観などの
溶接作業性も同時に調査した。その判定方法は良
好をO印、やや劣るを△印、劣るを×印とした。
なお、総合判定でも良好をO印、やや劣るを△
印、劣るを×印とした。
第3表において本発明溶接棒E−1〜E−6、
E−7〜E−12、およびE−13〜E−18は心線の
O量が0.01〜0.017%含有され、比抵抗が11.5〜
14.2μΩ−cmであるために、高電流使用での耐棒
焼け性に優れ、その際のアーク状態と耐ブロホー
ル性が良好であり、さらにスラグ状態、スパツ
タ、ビード外観などの溶接作業性も良好であつ
た。
これに対し、E−19〜E−36は比較溶接棒の例
であり、E−19、E−25およびE−31は心線中に
Oが0.013%含まれるのでアーク状態は良好であ
るが心線の比抵抗が大き過ぎるために耐棒焼け性
が悪く、被覆剤中の脱酸剤やガス発生剤が分解し
正常な機能が得られないので溶接金属の耐ブロホ
ール性が劣化し、スラグの被包性が悪くなりビー
ド外観が劣化した。
E−20、E−26およびE−32の溶接棒は心線中
のO量が少な過ぎるためアークの安定性が悪くア
ーク力が弱くなり、スパツタも多く溶接作業性が
劣化した。しかし、心線の比抵抗が適正であるの
で耐棒焼け性と耐ブロホール性は良好であつた。
E−21、E−27およびE−33は心線中のO量が
過剰に多く含有されるのでアーク力が強過ぎるた
めスパツタの飛散が多くビード外観も劣化し溶接
作業性が悪くなつた。さらに、心線の比抵抗が大
いので耐棒焼け性と耐ブロホール性が悪くなつ
た。 E−22、E−28およびE−34は心線中のO
量が少な過ぎるのでアーク状態が悪くなりスパツ
タが多く溶接作業性も悪くなつた。また、心線の
比抵抗が小さ過ぎるので心線中のCやSiなどの含
有量が少なく溶接金属の耐ブロホール性の劣化を
招いたが、耐棒焼け性は良好であつた。
E−23およびE−35では心線中のOが0.010%
含有されるので良好なアーク状態と溶接作業性が
得られたが比抵抗が小さいので耐ブロホール性が
やや劣化した。
E−29は心線中のOが0.010%含有されるが被
覆剤中の鉄粉が多過ぎるのでアークの安定性が悪
くなり溶接作業性も劣化し、心線の比抵抗が小さ
いので耐ブロホール性がやや劣化した。
E−24、E−30およびE−36は心線中のOの含
有量が極めて多いのでアーク力が強くなり過ぎス
パツタが多く、スラグの被包性が悪いのでビード
外観が劣化し溶接作業性が悪くなつた。また、心
線の比抵抗が小さ過ぎるので耐ブロホール性が悪
くなつたが、耐棒焼け性は良好であつた。
(Industrial Application Field) The present invention is a coated arc welding rod used as the core wire of a wire manufactured by a continuous casting process, which has excellent stick burn resistance even when used at high current, and has good arc conditions. The invention relates to a coated arc welding rod that can ensure a sound weld metal. (Prior Art) Conventional core wire rods for welding rods have been manufactured from rimmed steel or capped steel, but these manufacturing methods have had major drawbacks in terms of yield and energy saving. Therefore, in recent years, in order to overcome the drawbacks of conventional core wires, continuous casting core wires for welding rods have been developed and have come into practical use. However, compared to welding rods with conventional core wires, welding rods made of continuous cast core wires have poor stick burn resistance when welded at high currents, and welding rods that have suffered stick burn phenomena are susceptible to deterioration of the arc condition. In addition, the appearance of the bead is poor due to increased scattering of spatter, and since the deoxidizing agent and gas generating agent in the coating material have already decomposed, they no longer perform their functions, resulting in frequent blowholes and pits, and the damage to the sound weld metal. I had a problem where I couldn't get it. Therefore, when welding rods using continuously cast core wires are used at high currents, the area where normal welding can be performed becomes short, increasing the amount of welding rods used, and at the same time reducing welding efficiency and making it difficult to manufacture structures. It was increasing costs. Various proposals and implementations have been made to improve continuously cast core wires for welding rods. For example, in Japanese Patent Publication No. 63-57154,
By limiting the O content of C in the core wire, good arc conditions and bead appearance can be achieved by using coating materials such as illuminite, high titanium oxide, and iron powder iron oxide.
However, it has not been possible to improve stick burn resistance when using high currents, and currently it cannot contribute to improving welding efficiency. be. In addition, the present inventors previously reported in Japanese Unexamined Patent Publication No. 176097/1987 that MnO, FeO, which are inclusions in the core wire,
We propose that by limiting the content of Al 2 O 3 and SiO 2 , a welding rod with a high melting rate can be obtained, which reduces the heating phenomenon of the welding rod at high currents and improves stick burn resistance. It was also suggested that it could improve the However, limiting these inclusions was not sufficient to provide excellent burn resistance while maintaining good arc stability. Furthermore, in JP-A-57-156892,
It was proposed that blowhole resistance could be improved when using high current by limiting the content of Al, N, and O, but this also had the problem of not being able to obtain a good arc condition, and it was difficult to satisfy all welding performance requirements. It didn't reach that point. (Problem to be solved by the invention) As described above, the current continuously cast core wire for welding rods has excellent stick burn resistance when used at high current, maintains a good arc condition, and produces spatter and slag. Satisfies welding workability such as condition and bead appearance,
Moreover, it has been extremely difficult to obtain a sound weld metal that does not generate blowholes or pits. However, there has been a strong demand from various industries to obtain a welding rod with a continuously cast core that satisfies all of these requirements. In view of the above-mentioned circumstances, the present invention has been made to improve the continuous casting core wire, which has excellent stick burn resistance even when using high current, ensures good arc conditions and sound weld metal, and improves all welding workability. The purpose is to provide a welding rod that satisfies the following. (Means for Solving the Problems) In order to meet the above-mentioned demands, the present invention has been made based on various studies on the components and electrical characteristics of continuous casting core wires.
This product significantly improves stick burn resistance when using high current, and ensures good arc conditions and sound weld metal.
Contains 0.010 to 0.017% by weight (hereinafter referred to as %),
An arc stabilizer, a slag forming agent, a deoxidizing agent, an organic substance and a fixing agent, or a coating material consisting of these and iron powder of 52% or less is applied around a continuously cast core wire with a specific resistance of 11.5 to 14.2 μΩ-cm. The welding rod is characterized by: The present inventors have focused on the fact that in order to improve stick burn resistance while satisfying various welding performances, it is extremely effective to make the arc droplet grains finer and to increase the melting speed. As a result of various studies on continuously cast core wires, we have found that limiting the O content and specific resistance of the core wire is extremely effective and important. O in the core wire reacts with C in the core wire and coating material.
CO and CO 2 gases are generated to provide a shielding effect from the atmosphere, but these gases also exist within the droplet grains of the arc column, and the internal pressure breaks the droplet grains, making the droplets finer. It has the effect of Therefore, arc stability is improved and spatter scattering is reduced. It was also found that the specific resistance of the core wire is related to the melting rate of the welding rod. If the resistivity value of the core wire is small, the melting speed will be faster and the stick-scorch resistance will be improved when using high current. However, if this value is too small, the deoxidizing agent, which is the governing factor of the resistivity, will be affected by the alloying agent. It was found that if the amount decreased too much, a sound weld metal could not be obtained and the mechanical performance would also deteriorate. On the other hand, if the specific resistance value is excessively large, the melting rate will be considerably slow and the coating material will be burned by the Joule heat, preventing the formation of a normal coating cylinder, resulting in poor arc directionality and deoxidation. It has been found that blowholes and pits are likely to occur in the weld metal due to decomposition of the agent and gas generating agent, resulting in poor stick burn resistance. Therefore, it was necessary to place importance on finding an appropriate value of specific resistance of the core wire. The present invention has been made based on the above findings. (Function) The function of the present invention will be explained in detail below. First, the following experiment was conducted to investigate the appropriate O content and specific resistance of the continuously cast core wire. That is,
Contains 0.004% to 0.021% O and has a specific resistance of 9.1% to 9.1%.
The core wire changed to 17.6 μΩ-cm was coated with an all-position welding rod illuminite coating shown in Table 1, and dried welding rods were prepared to evaluate stick burn resistance, arc conditions, and weld metal properties. Blohol resistance was investigated.
The welding rod size is 4.0 mmφ x 450 mm, and the core wire contains 0.004 to 0.012% C, 0.001 to 0.042% Si,
The one containing 0.31 to 0.69% Mn was used. As shown in Figure 1, the method for measuring the specific resistance of a core wire is to apply a current from a constant current generator 2 to a length of approximately 430 mm within the entire length of the core wire 1, and calculate the resistivity obtained from the value and voltage. The internal resistance of the wire, the core wire cross-sectional area A, and the inter-electrode distance l were measured, and the specific resistance was calculated using the following formula, and the average value of three repeated measurements was determined. Specific resistance (μΩ-cm) = resistance due to current flowing inside × cross-sectional area of core wire / distance between electrodes Each test condition and its pass/fail judgment criteria were as follows. In other words, in the stick burn resistance test, mild steel plates (plate thickness
12.7mm, width 100mm, flow rate 500mm) were welded downward at a current of 200A using an AC welding machine. The method for determining this is to extinguish the arc at the position where the coating material in the unmelted part burns, preventing the formation of a normal coating tube, and suddenly changing, and then determining the remaining welding rod length at that time (hereinafter referred to as the remaining rod length). expressed. The value is the average value of five test welding rods, and less than 60 mm is marked O for good, 60 mm or more and less than 90 mm is marked △ for slightly poor, and 90 mm or more is marked poor for ×. Next, to investigate the arc condition, a T-shaped fillet test piece was prepared using the above-mentioned steel plate, and welding was performed in a horizontal fillet position and in a vertical position. The current is 200A in the horizontal fillet,
When 160A was used in a vertical position, a stable arc and an appropriate arc force were judged to be good. In addition, in the investigation of the blowhole resistance of weld metal,
In accordance with the fracture surface test method for fillet welded joints of the NK method, welding was performed using the aforementioned T-shaped fillet test piece and electric current so that the bead length was approximately 350 mm, and fractured by applying external force. A case where the sum of the lengths of the blow holes was 10% or less of the total weld length was considered good, and the value was the average value of three repeated tests. The results obtained from the above tests are shown in FIG. If the O content in the core wire is less than 0.010%, the arc droplets will not become fine particles, so the arc will be unstable, spatter will be scattered more, and the bead appearance will deteriorate.
If it exceeds 0.017%, there will be an excessive amount of CO or CO 2 gas in the arc, the arc voltage will become high, and the arc force will become abnormally strong, resulting in a lot of spatter, and the bead tends to droop in the vertical position. The specific resistance of the core wire is 11.5μΩ−
If it is less than cm, deoxidizing components such as Si and Mn in the core wire decrease, resulting in poor blowhole resistance, and the sum of the lengths of blowhole points exceeds 10% of the total weld length. However, since the specific resistance value was small, there was no deterioration of the coating material and the burn resistance was good.
On the other hand, when the resistivity exceeds 14.2 μΩ-cm, the coating material burns and deteriorates, so a coating tube is not formed and normal welding is impossible, resulting in a short usable molten rod length and a remaining rod length of 60 mm or more. The stick scorch resistance deteriorated over time. It was also found that those with high specific resistance had poor blowhole resistance due to the deterioration of the coating material. From the results shown in Figure 2, in order to obtain excellent stick burn resistance, good arc conditions, and sound weld metal when using a high current, the O content of the core wire must be set to 0.010.
~0.017%, and the specific resistance of the core wire is 11.5~14.2μΩ−
I found out that I needed to set it to cm. Furthermore, it has been confirmed that the present invention can also be applied to coating materials such as lime titania type, high titanium oxide type, iron powder iron oxide type, and low hydrogen type. In addition, the arc stabilizer in the present invention includes rutile, illuminite, feldspar, etc., the slag forming agent includes silica sand, carbonated lime, fluorite, magnesite, magnesia clinker, mica, talc, etc., and the deoxidizing agent includes It refers to ferromanganese, metal manganese, ferrosilicone, ferrotitanium, ferroaluminum, etc., organic substances include cellulose, starch, dextrin, sodium alginate, etc., and fixing agents refer to sodium silicate and potassium silicate. Each of these can be used alone or in combination of two or more. Furthermore, iron powder is added mainly for the purpose of improving work efficiency, but the reason why it is set at 52% or less in the claims of the present invention is that if it is added in excess of this, the sheathing tube is likely to short-circuit and the arc will not occur. This is because it becomes stable and the bead appearance deteriorates. (Example) Next, the effects of the present invention will be described in more detail with reference to Examples. Table 2 shows the chemical composition and specific resistance of the core wires used in the welding rods of the present invention and comparative welding rods, and Table 3 shows the
The results of various performance tests for combinations of the core wire and coating material are shown. The coating systems of the test welding rods are non-low hydrogen welding rods in all positions, low hydrogen welding rods, and fillet welding rods, and the sizes are different from non-low hydrogen welding rods in all positions and low hydrogen welding rods. Various welding rods were made, with a welding rod of 4.0mmφ x 450mm and a fillet welding rod of 4.0mmφ x 550mm. In addition, each test condition and its pass/fail judgment criteria were as follows. First, in the stick burn resistance test, a mild steel plate (thickness 12.7
(mm, width 100mm, length 700mm) was used for downward welding with an AC welding machine, and the current was 200A for non-low hydrogen welding rods and low hydrogen welding rods in all positions, and 190A for fillet welding rods.
And so. The method for determining this is to extinguish the arc at a position where the coating material in the unmelted part is heated and burned by the Joule heat and no longer forms a coating cylinder, measure the remaining bar length at that time, and use that value for the test welding. The average value of the five bars was taken, and less than 60 mm was considered good, 60 mm or more and less than 90 mm was slightly poor, and 90 mm or more was poor. In order to investigate the arc condition, a T-shaped fillet test piece was made from the steel plate mentioned above, and welding was performed in horizontal fillet and vertical positions, and the current was applied to both non-low hydrogen welding rods and low hydrogen welding rods in all positions. In the case of horizontal fillet welding, use 200A and vertical fillet welding of 160A, and in the case of fillet welding rods, perform horizontal fillet welding and use 190A.The stability of the arc and the arc force were investigated, and the judgment method was good. It was marked O, slightly inferior was marked △, and poor was marked X. In addition, in the investigation of the blowhole resistance of weld metal, we used the horizontal fillet test piece described above and current, and measured the bead length to approximately
Welded to a length of 350mm and approximately 600mm using a fillet welding rod, applied an external force to break it, and measured the blowhole. The judgment method is that it is good if the sum of the lengths of the blow hole parts is 10% or less of the total weld length, and 11 to 20
% as slightly inferior and 21% or more as inferior, and the values were expressed as the average value of three repeated measurements. In addition to these welding performance investigations, welding workability such as the slag condition, amount of spatter, and bead appearance for each welding position was also investigated at the same time. The evaluation method was as follows: good was marked with O, slightly poor was marked with △, and poor was marked with ×. In addition, in the overall evaluation, good is marked O, and slightly poor is marked △.
The results were marked with a mark, and those that were inferior were marked with an x. In Table 3, the present invention welding rods E-1 to E-6,
For E-7 to E-12 and E-13 to E-18, the amount of O in the core wire is 0.01 to 0.017%, and the specific resistance is 11.5 to
Because it is 14.2 μΩ-cm, it has excellent stick burn resistance when using high current, and has good arc condition and blowhole resistance at that time, as well as good welding workability such as slag condition, spatter, and bead appearance. It was hot. On the other hand, E-19 to E-36 are examples of comparative welding rods, and E-19, E-25 and E-31 contain 0.013% O in the core wire, so the arc condition is good. Because the specific resistance of the core wire is too high, the stick scorch resistance is poor, and the deoxidizing agent and gas generating agent in the coating material decomposes, making it impossible to obtain normal function, resulting in a deterioration in the blowhole resistance of the weld metal, and slag. The encapsulation properties deteriorated and the bead appearance deteriorated. Welding rods E-20, E-26, and E-32 had too little O content in the core wires, resulting in poor arc stability, weak arc force, and many spatters, resulting in poor welding workability. However, since the specific resistance of the core wire was appropriate, the stick burn resistance and blowhole resistance were good. In E-21, E-27 and E-33, the amount of O in the core wire was excessively high, so the arc force was too strong, causing many spatters to fly, the bead appearance to deteriorate, and welding workability to deteriorate. Furthermore, since the specific resistance of the core wire was high, the stick burn resistance and blowhole resistance were poor. E-22, E-28 and E-34 are O in the core wire.
Since the amount was too small, the arc condition deteriorated, there were many spatters, and welding workability deteriorated. Furthermore, since the specific resistance of the core wire was too low, the content of C, Si, etc. in the core wire was low, causing deterioration in the blowhole resistance of the weld metal, but the stick burn resistance was good. E-23 and E-35 have 0.010% O in the core wire.
Because of the presence of Ni, good arc conditions and welding workability were obtained, but the blowhole resistance was slightly deteriorated due to the low specific resistance. E-29 contains 0.010% O in the core, but too much iron powder in the coating material deteriorates arc stability and welding workability, and the low specific resistance of the core makes it resistant to blowholes. The quality has deteriorated slightly. E-24, E-30, and E-36 have an extremely high O content in the core wire, so the arc force is too strong and there are many spatters, and the slag coverage is poor, resulting in poor bead appearance and poor welding workability. It got worse. Further, since the specific resistance of the core wire was too small, the blowhole resistance was poor, but the stick burn resistance was good.
【表】
※ その他はアーク安定剤、スラグ生成
剤、および固着剤中の珪酸ナト
リウム、珪酸カリウムなどの固質成分
を表す。
[Table] * Others include arc stabilizer, slag forming agent, and sodium silicate in the fixing agent.
Represents solid components such as lithium and potassium silicate.
【表】【table】
【表】【table】
【表】
※ その他はスラグ生成剤、アーク安定剤、および固
着剤中の珪酸ナトリウム、珪酸カリウムな
どの固質成分を表す。
(発明の効果)
以上説明したとおり、本発明溶接棒は連続鋳造
心線の改善を行ない、高電流を使用した場合でも
耐棒焼け性に優れ、かつ良好なアーク状態と健全
な溶接金属を確保でき、あらゆる溶接作業性を満
足することができるので溶接施工において作業能
率の向上に大いに貢献できる。[Table] *Others represent solid components such as slag forming agent, arc stabilizer, and sodium silicate and potassium silicate in the fixing agent.
(Effects of the invention) As explained above, the welding rod of the present invention improves the continuously cast core wire, has excellent stick burn resistance even when using high current, and ensures good arc condition and sound weld metal. Since it can satisfy all welding workability requirements, it can greatly contribute to improving work efficiency in welding work.
第1図aは、溶接棒心線の比抵抗の測定方法を
示した回路図、同図bはa図のX拡大図、第2図
は、心線中のO含有量と心線の比抵抗が耐棒焼け
性、アーク状態、および耐ブロホール性におよぼ
す影響を示した図である。
1……溶接棒心線、2……定電流発生器、3…
…電流計、4……電圧計、5……pt線。
Figure 1a is a circuit diagram showing the method for measuring the specific resistance of welding rod core wires, Figure 1b is an X-enlarged view of Figure a, and Figure 2 is the ratio of the O content in the core wire to the core wire. FIG. 3 is a diagram showing the influence of resistance on burn resistance, arc state, and blowhole resistance. 1... Welding rod core wire, 2... Constant current generator, 3...
...Ammeter, 4...Voltmeter, 5...PT line.
Claims (1)
11.5〜14.2μΩ−cmである連続鋳造心線の周囲にア
ーク安定剤、スラグ生成剤、脱酸剤、有機物およ
び固着剤からなる被覆剤を塗布してなることを特
徴とする被覆アーク溶接棒。 2 Oを0.010〜0.017重量%含有し、比抵抗が
11.5〜14.2μΩ−cmである連続鋳造心線の周囲にア
ーク安定剤、スラグ生成剤、脱酸剤、有機物、固
着剤および鉄粉が52重量%以下からなる被覆剤を
塗布してなることを特徴とする被覆アーク溶接
棒。[Claims] 1 Contains 0.010 to 0.017% by weight of O, and has a specific resistance of
A coated arc welding rod comprising a continuously cast core wire having a diameter of 11.5 to 14.2 μΩ-cm and coated with a coating agent consisting of an arc stabilizer, a slag forming agent, a deoxidizing agent, an organic substance, and a fixing agent. 2 Contains 0.010 to 0.017% by weight of O, and has a specific resistance of
A coating consisting of arc stabilizer, slag forming agent, deoxidizing agent, organic matter, fixing agent, and iron powder containing 52% by weight or less is applied around the continuously cast core wire having a diameter of 11.5 to 14.2 μΩ-cm. Characteristic coated arc welding rod.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10307189A JPH02280994A (en) | 1989-04-21 | 1989-04-21 | Coated arc welding rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10307189A JPH02280994A (en) | 1989-04-21 | 1989-04-21 | Coated arc welding rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02280994A JPH02280994A (en) | 1990-11-16 |
JPH0525599B2 true JPH0525599B2 (en) | 1993-04-13 |
Family
ID=14344423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10307189A Granted JPH02280994A (en) | 1989-04-21 | 1989-04-21 | Coated arc welding rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02280994A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308990A (en) * | 1996-05-17 | 1997-12-02 | Nippon Steel Corp | Core wire of covered electrode |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5524497B2 (en) * | 2009-03-23 | 2014-06-18 | 日鐵住金溶接工業株式会社 | Non-low hydrogen coated arc welding rod |
-
1989
- 1989-04-21 JP JP10307189A patent/JPH02280994A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308990A (en) * | 1996-05-17 | 1997-12-02 | Nippon Steel Corp | Core wire of covered electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH02280994A (en) | 1990-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2105243A1 (en) | Metal-based flux cored wire for Ar-CO 2 mixed gas shielded arc welding | |
KR20020090575A (en) | Flux cored wire for gas shielded arc welding of high tensile strength steel | |
JPH0525599B2 (en) | ||
Ramirez et al. | Effect of welding parameters and electrode condition on alloying enrichment of weld metal deposited with coated cellulosic electrodes | |
JP4708270B2 (en) | Non-low hydrogen coated arc welding rod | |
JPH0521677B2 (en) | ||
JPH0331555B2 (en) | ||
JP3563614B2 (en) | Low hydrogen coated arc welding rod | |
JP3068280B2 (en) | Low hydrogen coated arc welding rod | |
JPH0240435B2 (en) | GASUSHIIRUDOAAKUYOSETSUYOFURATSUKUSUIRIWAIYA | |
KR102664069B1 (en) | Flux cored wire for gas shielded arc welding | |
JPH03275294A (en) | Low-hydrogen type coated arc welding electrode | |
JP3460788B2 (en) | Low hydrogen coated arc welding rod | |
JP3822181B2 (en) | Low hydrogen type welding rod | |
JPH01502651A (en) | electrode wire | |
JPH03264193A (en) | Low hydrogen type coated arc welding electrode | |
JPH02263596A (en) | Coated electrode | |
JPH08276292A (en) | Non-low hydrogen type coated electrode | |
JPH03118978A (en) | Root submerged arc welding method for extra-thick plate multilayer welding | |
JP3488357B2 (en) | Non-low hydrogen coated arc welding rod | |
JP3532750B2 (en) | Low hydrogen coated arc welding rod | |
JP3026897B2 (en) | Non-low hydrogen coated arc welding rod | |
RU2027572C1 (en) | Consumable electrode for electric arc welding | |
JP2001259889A (en) | Non-low-hydrogen type covered electrode | |
JPS6397395A (en) | Cr-ni stainless steel covered electrode |