JPH05254921A - Beta-alumina solid electrolyte - Google Patents

Beta-alumina solid electrolyte

Info

Publication number
JPH05254921A
JPH05254921A JP4058076A JP5807692A JPH05254921A JP H05254921 A JPH05254921 A JP H05254921A JP 4058076 A JP4058076 A JP 4058076A JP 5807692 A JP5807692 A JP 5807692A JP H05254921 A JPH05254921 A JP H05254921A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfuric acid
alumina
alumina solid
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4058076A
Other languages
Japanese (ja)
Other versions
JPH07106937B2 (en
Inventor
Takehiro Kajiwara
健弘 梶原
Toshiyuki Mima
敏之 美馬
Takao Totoki
孝夫 十時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4058076A priority Critical patent/JPH07106937B2/en
Publication of JPH05254921A publication Critical patent/JPH05254921A/en
Publication of JPH07106937B2 publication Critical patent/JPH07106937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make density high, to increase mechanical strength and to lower electrical resistance by restricting remaining sulfuric acid content in a sintered body constituting an beta-alumina solid electrolyte and reducing remaining fine pore without calcining at a high temp. CONSTITUTION:The beta-alumina solid electrolyte used for a sodium-sulfur cell is composed of a sintered body having <=500ppm remaining sulfuric acid content. Sulfuric acid contained in raw materials constituting the solid electrolyte such as alumina, a source of soda, a stabilizer (magnesia, a source of lithia), etc., is regulated to <=1000ppm. Remaining sulfuric acid content is reduced by using an org. acid instead of sulfuric acid in production process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナトリウム−硫黄電池に
用いられるβ−アルミナ固体電解質に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a β-alumina solid electrolyte used in a sodium-sulfur battery.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池に用いられるβ−
アルミナ固体電解質は、アルミナ原料、マグネシア原
料、ナトリウム原料を混合し、反応合成してβ−アルミ
ナとした後に粉砕造粒した原料を用いて製造されてい
る。このβ−アルミナ固体電解質には密度が高くかつ機
械的強度が大きいことが要求され、このために各原料は
不純物の少ない高純度のものが使用されている。特に低
コスト化した高純度原料を得る手段としては、通常、原
料を酸洗浄することにより、β−アルミナ固体電解質中
に残存した場合に機械的強度、イオン伝導度の低下原因
となるCaO 、SiO2、K2O 等を低減する工程が取られてい
る。
2. Description of the Related Art β-used in sodium-sulfur batteries
The alumina solid electrolyte is manufactured by using a raw material obtained by mixing an alumina raw material, a magnesia raw material, and a sodium raw material, reacting and synthesizing them into β-alumina, and then pulverizing and granulating. This β-alumina solid electrolyte is required to have high density and high mechanical strength, and for this reason, each raw material is of high purity with few impurities. In particular, as a means of obtaining a high-purity raw material at a low cost, the raw material is usually acid-washed, and mechanical strength when remaining in the β-alumina solid electrolyte, CaO that causes a decrease in ionic conductivity, SiO 2 , steps to reduce K 2 O, etc. are taken.

【0003】ところが、このような高純度の原料を使用
しても、得られたβ−アルミナ固体電解質の理論密度に
対する相対密度が98%を越えるようにすることは容易で
はない。特に低コストの原料を使用した場合には製品密
度が低下し易く、これを補うために焼結温度を高めると
密度が上昇する反面、機械的強度が低下してしまうとい
う問題があった。
However, even if such a high-purity raw material is used, it is not easy to make the relative density of the obtained β-alumina solid electrolyte to 98% relative to the theoretical density. In particular, when a low-cost raw material is used, the product density tends to decrease, and if the sintering temperature is increased to compensate for this, the density increases, but the mechanical strength decreases.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、低コストの原料を使用した場合に
も密度が高く機械的強度の大きいβ−アルミナ固体電解
質を提供するためになされたものである。
The present invention solves the above-mentioned conventional problems and provides a β-alumina solid electrolyte having high density and high mechanical strength even when a low-cost raw material is used. It was done by.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者は同じような高純度原料を用いてもなぜ
β−アルミナ固体電解質の密度が低下する場合があるの
かを追求した。このためにβ−アルミナ固体電解質を構
成するのに必要な主原料としてアルミナ、スピネル等を
各種入手し、その不純物分析を実施するとともに、それ
らを原料としたβ−アルミナ固体電解質の特性を調査し
た。その結果、原料中の不純物を除去するために通常行
われている硫酸洗浄の工程の硫酸根が原料中に残存して
いる場合、この原料中の硫酸成分がβ−アルミナ固体電
解質の焼結に必要な最高温度付近まで残存し、結果とし
て焼結体中の微細気孔となることが分かった。β−アル
ミナ固体電解質の焼結は、その主成分であるソーダ成分
が焼結温度付近で揮発するため、十分な雰囲気保護のも
とに密閉状態で行う必要がある。この特殊なβ−アルミ
ナ固体電解質の焼成方法による特異な現象であると考え
られる。本発明は上記した知見に基づいてなされたもの
であり、β−アルミナ固体電解質を構成する焼結体中の
残留硫酸成分を500ppm以下としたことを特徴とするもの
である。
In order to solve the above problems, the present inventor sought why the density of the β-alumina solid electrolyte may decrease even when the same high-purity raw material is used. .. For this reason, various kinds of alumina, spinel, etc. were obtained as main raw materials necessary to form the β-alumina solid electrolyte, and impurity analysis was performed, and the characteristics of the β-alumina solid electrolyte using them were investigated. .. As a result, when the sulfate radicals in the step of sulfuric acid washing that is usually performed to remove impurities in the raw material remain in the raw material, the sulfuric acid component in the raw material causes sintering of the β-alumina solid electrolyte. It was found that the particles remained near the required maximum temperature, resulting in fine pores in the sintered body. Sintering of the β-alumina solid electrolyte needs to be performed in a hermetically sealed state under sufficient atmosphere protection because the soda component, which is the main component, volatilizes near the sintering temperature. It is considered that this is a peculiar phenomenon due to the firing method of this special β-alumina solid electrolyte. The present invention has been made based on the above-mentioned findings, and is characterized in that the residual sulfuric acid component in the sintered body constituting the β-alumina solid electrolyte is 500 ppm or less.

【0006】このように焼結体中の残留硫酸成分を500p
pm以下とするためには、硫酸根の含有量が少ない原料を
使用することが基本的に必要であり、原料の使用比率に
よっても許容限度が異なるものの、β−アルミナ固体電
解質を構成する主成分であるアルミナ、ソーダ源あるい
は安定化剤として添加しているマグネシア、リチア源に
使用する原料中の残留硫酸成分は1000ppm 以下の必要が
ある。またこれらの原料中の硫酸成分を低減する手段と
しては、原料製造工程で高純度化のために使用する酸を
硫酸から有機酸に変更すること、あるいは合成工程を用
いる原料についてはその合成温度を高める手段がある。
これらの手段により原料そのものの硫酸成分を減少させ
ることが効果的である。更には、β−アルミナ固体電解
質の製造工程においても、β−アルミナの均質性を向上
させるために予め原料を混合し、適当な温度で合成する
工程が一般的に採用されているが、この温度を高めるこ
とは硫酸成分の残留を低減するために効果的である。
In this way, the residual sulfuric acid component in the sintered body was reduced to 500 p
In order to be pm or less, it is basically necessary to use a raw material with a low content of sulfate radicals, and although the allowable limit varies depending on the usage ratio of the raw material, the main component that constitutes the β-alumina solid electrolyte. It is necessary that the residual sulfuric acid component in the raw material used for the alumina, soda source or magnesia and lithia source added as a stabilizer is 1000 ppm or less. Further, as a means for reducing the sulfuric acid component in these raw materials, the acid used for high purification in the raw material manufacturing process is changed from sulfuric acid to an organic acid, or the synthesis temperature of the raw material using the synthesis process is changed. There is a way to raise it.
It is effective to reduce the sulfuric acid component of the raw material itself by these means. Furthermore, in the production process of β-alumina solid electrolyte, a process of mixing raw materials in advance to improve the homogeneity of β-alumina and synthesizing at an appropriate temperature is generally adopted. It is effective to reduce the residual sulfuric acid component.

【0007】このようにして焼結体中の残留硫酸成分を
500ppm以下としたβ−アルミナ固体電解質は、硫酸根に
よる悪影響を受けにくいので高温焼成しなくても残存す
る微細気孔を減少させることができ、高密度化が可能と
なる。また低温焼成によって高い機械的強度と低い電気
抵抗とを同時に達成できるので、ナトリウム−硫黄電池
の固体電解質として使用するに適したものとなる。以下
に本発明を実施例のデータにより更に詳細に説明する。
Thus, the residual sulfuric acid component in the sintered body is
The β-alumina solid electrolyte having a concentration of 500 ppm or less is less likely to be adversely affected by sulfate radicals, and thus it is possible to reduce the remaining fine pores without high-temperature firing and to achieve high density. Also, since low mechanical strength and low electrical resistance can be achieved at the same time by low temperature firing, it becomes suitable for use as a solid electrolyte of sodium-sulfur battery. Hereinafter, the present invention will be described in more detail with reference to data of Examples.

【0008】[0008]

【実施例】まず表1に示すA〜Eの5種類のアルミナ
と、a〜fの6種類のスピネルとを準備し、表2に示す
各種の組合せによりβ−アルミナを合成するための調合
を行った。その調合物中の硫酸根量は表2に示す通りで
ある。次にこれらの調合物を表3中の合成温度により合
成してβ−アルミナを得、その合成物中の硫酸根の量を
表3中に示した。そして表3中の合成番号が12、9、2
4、2、19の5種類の合成原料を選択し、破砕造粒して
β−アルミナ固体電解質を成形したうえ、表4に示す焼
成温度で焼成してβ−アルミナ固体電解質を製造した。
そして表4中にその理論密度に対する相対密度、相対機
械的強度、相対抵抗率を記載した。
EXAMPLES First, 5 kinds of alumina of A to E shown in Table 1 and 6 kinds of spinel of a to f were prepared, and a mixture for synthesizing β-alumina by various combinations shown in Table 2 was prepared. went. The amount of sulfate radical in the formulation is as shown in Table 2. Next, these formulations were synthesized at the synthesis temperatures shown in Table 3 to obtain β-alumina, and the amount of sulfate group in the synthesized product is shown in Table 3. And the composition numbers in Table 3 are 12, 9, 2
Five kinds of synthetic raw materials 4, 2, and 19 were selected, crushed and granulated to form a β-alumina solid electrolyte, and then the β-alumina solid electrolyte was produced by firing at the firing temperature shown in Table 4.
Then, in Table 4, the relative density, relative mechanical strength, and relative resistivity with respect to the theoretical density are described.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4 】 [Table 4]

【0013】[0013]

【発明の効果】以上の説明および表4のデータから明ら
かなように、焼結体中の残留硫酸成分を500ppm以下とし
た本発明のβ−アルミナ固体電解質は、理論密度に対す
る相対密度を98.5%以上とすることができ、また焼結体
中の残留硫酸成分が610ppm以上である比較例のβ−アル
ミナ固体電解質に比較して、機械的強度が高く、抵抗率
の低いものである。このように本発明は酸洗浄工程の硫
酸根がβ−アルミナの焼結工程において微細気孔を発生
させる原因となっているという新規な発見に基づいてな
されたもので、低コストの原料を用いて高品質のβ−ア
ルミナ固体電解質を製造するうえでその効果が大きいも
のである。
As is apparent from the above description and the data in Table 4, the β-alumina solid electrolyte of the present invention in which the residual sulfuric acid component in the sintered body is 500 ppm or less has a relative density of 98.5% with respect to the theoretical density. The mechanical strength is high and the resistivity is low as compared with the β-alumina solid electrolyte of the comparative example in which the residual sulfuric acid component in the sintered body is 610 ppm or more. As described above, the present invention was made based on the novel finding that the sulfate radicals in the acid cleaning step cause fine pores in the β-alumina sintering step, and uses a low-cost raw material. The effect is great in producing a high-quality β-alumina solid electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 β−アルミナ固体電解質を構成する焼結
体中の残留硫酸成分を500ppm以下としたことを特徴とす
るβ−アルミナ固体電解質。
1. A β-alumina solid electrolyte characterized in that the residual sulfuric acid component in a sintered body constituting the β-alumina solid electrolyte is 500 ppm or less.
JP4058076A 1992-03-16 1992-03-16 β-alumina solid electrolyte Expired - Lifetime JPH07106937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058076A JPH07106937B2 (en) 1992-03-16 1992-03-16 β-alumina solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058076A JPH07106937B2 (en) 1992-03-16 1992-03-16 β-alumina solid electrolyte

Publications (2)

Publication Number Publication Date
JPH05254921A true JPH05254921A (en) 1993-10-05
JPH07106937B2 JPH07106937B2 (en) 1995-11-15

Family

ID=13073831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058076A Expired - Lifetime JPH07106937B2 (en) 1992-03-16 1992-03-16 β-alumina solid electrolyte

Country Status (1)

Country Link
JP (1) JPH07106937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213781A2 (en) * 2000-12-11 2002-06-12 Ngk Insulators, Ltd. Method for producing beta-alumina solid electrolyte
JP2005298978A (en) * 2001-09-21 2005-10-27 Nikko Materials Co Ltd Powder for sintering sputtering target, and sputtering target

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804502B2 (en) 2001-10-10 2004-10-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
WO2006002347A1 (en) 2004-06-23 2006-01-05 Peregrine Semiconductor Corporation Integrated rf front end
US8742502B2 (en) 2005-07-11 2014-06-03 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US7910993B2 (en) 2005-07-11 2011-03-22 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink
US7890891B2 (en) 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US7960772B2 (en) 2007-04-26 2011-06-14 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
EP3346611B1 (en) 2008-02-28 2021-09-22 pSemi Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US20150236748A1 (en) 2013-03-14 2015-08-20 Peregrine Semiconductor Corporation Devices and Methods for Duplexer Loss Reduction
US9406695B2 (en) 2013-11-20 2016-08-02 Peregrine Semiconductor Corporation Circuit and method for improving ESD tolerance and switching speed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213781A2 (en) * 2000-12-11 2002-06-12 Ngk Insulators, Ltd. Method for producing beta-alumina solid electrolyte
EP1213781A3 (en) * 2000-12-11 2004-01-14 Ngk Insulators, Ltd. Method for producing beta-alumina solid electrolyte
JP2005298978A (en) * 2001-09-21 2005-10-27 Nikko Materials Co Ltd Powder for sintering sputtering target, and sputtering target

Also Published As

Publication number Publication date
JPH07106937B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPH05254921A (en) Beta-alumina solid electrolyte
US3895963A (en) Process for the formation of beta alumina-type ceramics
Makovec et al. Defect structure and phase relations of highly lanthanum‐doped barium titanate
JPH01226717A (en) Production of beta alumina by inoculation
JPH01275467A (en) Solid electrolyte
JP3260988B2 (en) Method for producing solid electrolyte
EP1213781B1 (en) Method for producing beta-alumina solid electrolyte
EP0110712B1 (en) Sodium beta alumina electrolyte elements and their manufacture
JPH0117202B2 (en)
EP0495652B1 (en) Beta alumina sintered body and method of manufacturing the same
JP3450913B2 (en) Dielectric porcelain composition
JPH0258232B2 (en)
JP3581620B2 (en) Beta alumina electrolyte and method for producing the same
JPH0685363B2 (en) High voltage varistor and manufacturing method thereof
JP2579212B2 (en) Polycrystalline alumina ceramic for living body
JP3586556B2 (en) Method for producing beta alumina electrolyte
JPH06333426A (en) Dielectric ceramic composition for high frequency
JP3423332B2 (en) Sodium ion conductive solid electrolyte
JP3059503B2 (en) Beta-alumina sintered body and method for producing the same
JP2004359534A5 (en)
KR900000037B1 (en) Method for producing low-sodium alumina
JPH10212160A (en) Production of powdery starting material for beta&#34;-alumina ceramics and sodium-sulfur battery using same
JPH0859339A (en) Beta-alumina electrolyte
JPH07187771A (en) Dielectric porcelain composition
JPS59107968A (en) Manufacture of zirconia ceramics

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 17