JPH0525481A - Method for hydrogenation treatment of heavy hydrocarbon feeding raw material containing precipitable metal compound - Google Patents

Method for hydrogenation treatment of heavy hydrocarbon feeding raw material containing precipitable metal compound

Info

Publication number
JPH0525481A
JPH0525481A JP23692491A JP23692491A JPH0525481A JP H0525481 A JPH0525481 A JP H0525481A JP 23692491 A JP23692491 A JP 23692491A JP 23692491 A JP23692491 A JP 23692491A JP H0525481 A JPH0525481 A JP H0525481A
Authority
JP
Japan
Prior art keywords
reaction zone
catalyst
temperature
hydrogen
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23692491A
Other languages
Japanese (ja)
Other versions
JPH0730341B2 (en
Inventor
Paul H Kydd
エイチ キツド ポール
Michael C Chervenak
シー チヤーベナツク マイケル
Alfred G Comolli
ジー コモーリ アルフレツド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRI Inc
Hydrocarbon Research Inc
Original Assignee
HRI Inc
Hydrocarbon Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRI Inc, Hydrocarbon Research Inc filed Critical HRI Inc
Publication of JPH0525481A publication Critical patent/JPH0525481A/en
Publication of JPH0730341B2 publication Critical patent/JPH0730341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/16Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To obtain a fuel with an appropriate quality for being used in jet and diesel engines without generating pollution problem by a method wherein a hydrocarbon feedstock such as crude oil shell is hydrogenation-treated in a specified system having an ebullition type catalyst bed reactor and a fixed bed catalytic reactor.
CONSTITUTION: A hydrocarbon feedstock (e.g. a crude oil shell) contg. a precipitable metal compd. is fed into a heater 12 from a line 10 and it is heated at most about 315.6°C to remove the precipitate formed and water from a line 13. The preheated oil is fed into an ebullated catalyst bed reactor 16 provided with an ebullition bed 16a for a particulate catalyst, wherein hydrogenation treatment is performed under a condition of 426.7-460.0°C and a hydrogen partial pressure of 126.55-210.92 Kg/cm2. The steam effluent from a line 19 is fed with hydrogen into a fixed bed catalytic reactor (Ni-Mo catalyst) 30 through a heat separator 20 and flash processes 24 and 26 and hydrogenation treatment is performed under approximately the same temp. and pressure conditions as those in the reactor 16 to perform almost completely desulfurization and denitrification. The product is fed into a fractionating tower 36 through a cooler 32 and a phase separator 34 to obtain a fractionated refined oil.
COPYRIGHT: (C)1993,JPO

Description

【発明の詳細な説明】 【0001】 【技術分野】本発明は普通の予熱処理中に堆積する沈殿
性不純物を含有する炭化水素供給原料、特に沈殿性金属
化合物を含有する粗オイルシェールを処理してジェット
およびジーゼルエンジン用として適当な接触水素化処理
燃料を生成する方法に関する。 【0002】 【背景技術】粗オイルシェールを接触水素化処理して改
良軽質油生成物を生成する場合には、予熱器流路が通常
約204.4 ℃ (400 °F)以上の温度においてオイルシェ
ールからの微粒状堆積物によって汚染されることは知ら
れている。この堆積物は高い圧力降下を生じさせたり、
流路をふさいだりして非常にやっかいでかつ望ましくな
い問題を生ずる。オイルシェール供給原料の水素化処理
中に遭遇する特別の問題としては予熱器の流路が約204.
4℃ (400 °F) の温度において粒状堆積物によって反
復汚染されること、および固定触媒床反応器が高鉄含有
量を有する極めて細い粒状堆積物によって汚染されるこ
と、これによって高い圧力降下が生じたりおよび油の転
化を不十分にすることである。 【0003】これらの堆積物は主として周囲温度で液体
供給流の濾過し難い、特に鉄および砒素化合物を含有す
る化合物である。このために、オイルシェールを連続接
触処理して品質の向上した(upgraded)燃料生成物を生成
する場合に、粗オイルシェール処理における汚染問題を
回避または防止する解決策が試みられている。重質石油
原油および残油の多段接触処理は知られている。例え
ば、米国特許第3705849 号明細書には、一連の沸騰型(e
bullated) 触媒床水素化反応器を用いて水素消費を減少
し、かつ触媒寿命を増大にする石油残渣供給原料を脱硫
する方法が記載されている。米国特許第3773653 号およ
び3788973 号明細書には石油残渣についての類似する接
触、転化方法が記載されている。米国特許第3887455 号
明細書には一連の沸騰型触媒床または固定床反応器を用
い、しかも第2反応器に小さい細孔大きさの触媒を用い
る重質原油および残油の水素化処理方法が記載されてい
る。 【0004】また、米国特許第4046670 号明細書には酸
化鉄を含有する無機物を詰り防止剤(anti-clogging age
nt) として供給原料流に添加する重質石油を管状加熱炉
で熱分解する方法が記載されている。米国特許第418159
6 号明細書にはオイルシェールレトルト流出物を処理し
て流動点を低下させ、かつかかる流出物を冷却し、液相
を315.6 〜426.7 ℃ (600 〜800 °F) の範囲の臨界温
度で1〜120 分間にわたり維持することにより可溶性砒
素および鉄の如き汚染物を減少するオイルシェールレト
ルト流出物の処理が記載されている。また、米国特許第
4158622 号明細書には更に水素化処理するために蒸気部
分を固定床反応器に通す沸騰型触媒床反応器を用いてオ
イルシェールの如き微粒子を含有する炭化水素の二段水
素化法が記載されている。この場合、沈殿性無機材料お
よび化合物を含有する粗オイルシェールを処理するため
に流路および触媒床の汚れを回避し、かつ優れた操作条
件を得る必要がある。 【0005】 【発明の開示】本発明は流路の汚染問題を生ずる沈殿性
化合物を含有する炭化水素供給原料、および粗オイルシ
ェールの如きかかる炭化水素供給原料を水素化処理して
ジェットおよびジーゼルエンジン使用に適当な品質の向
上した燃料を生成する方法を提供することである。本発
明の水素化処理を実施するために、先づ炭化水素供給原
料は約204.4 〜315.6 ℃ (400 〜600 °F) の如き無機
化合物の任意の沈殿を生ずる低い中位の温度に直接に加
熱し、次いで最初の水素化処理のために第1段−沸騰型
触媒床反応工程に通す。本発明においては、この沸騰型
触媒床反応工程からの生成流出物液体を相に分離し、そ
の蒸気部分をより苛酷な条件、すなわち、高い温度およ
び圧力条件、または低い空間速度で一般に操作する1ま
たは2個以上の固定触媒床の水素化処理工程に通す。 【0006】また、本発明を実施する場合には、供給原
料、例えば粗オイルシェールを少なくとも約176.7 ℃
(350 °F) の温度に予熱して沈積物および水を分離す
ることを含んでいる。しかし、この場合予熱器流路に沈
積および汚染を生ずる温度は避けるようにする。次い
で、予熱供給流を水素と共に沸騰型触媒床反応器を用い
る第一段水素化分解操作に通してかかる供給流を水素添
加の熱を介して更に加熱し、沈殿固形物を触媒上に堆積
する。 【0007】再循環水素流および/または約343.3 ℃
(約650 °F) +の如き重質再循環油留分を追加加熱す
るのに十分な程度に加熱して沸騰型触媒床反応器におい
て約398.9 ℃ (約750 °F) 以上の反応温度に加熱する
ことができる。反応条件は426.7 〜460.0 ℃ (800 〜86
0 °F) の温度、126.55〜210.92kg/cm2 (1800 〜3000
psig) の水素分圧および0.7 〜3Vf /hr /Vr の空
間速度を用いる。 【0008】上述するように、沸騰型触媒床反応器にお
ける最初の接触水素添加工程に次いで、温度および圧力
の過激な条件で操作する順流固定床接触水素化処理にお
いてオイルシェールの如き重質供給原料を更に処理する
ことによって、H2S およびNH3 の高い分圧が存在するに
もかかわらず、極めて高品質の生成物が生成する予期し
ない事実を見出した。使用した過激な条件は410.0 ℃
(780 °F) 以上の温度および126.55kg/cm2 (1800 psi
g) 以上の水素分圧である。この温度は265.6 ℃(510 °
F) 以下の沸騰点のこの操作の液体生成物をJP−4 ジェ
ットおよびジーゼル燃料に対する軍用規格に適合する幾
分かの水素化処理を達成することができる。また、この
水素化処理は生成物の脱窒素を容易にする。 【0009】約1.27重量%の窒素含有量および0.75重量
%の硫黄含有量を有する粗オイルシェールを処理する操
作条件は4ppm 以下の窒素含有量および0.01重量%以下
の硫黄含有量を有する燃料油生成物をJP−4 燃料規格に
適合する。 【0010】 【実施例】次に、本発明を添付図面について説明する。
図は沸騰型触媒床水素添加工程の炭化水素供給流上流を
直接加熱し、次いで固定床反応器において更に接触水素
化処理する二段接触反応プロセスのフローシートを示し
ている。図1に示すように、ライン10からの粗オイルシ
ェール供給原料を加熱器12で低い熱量単位ガス(Btu ga
s) の如き普通の熱源を用いて176.7 〜204.4 ℃ (350
〜400 °F) の範囲で、かつ約315.6 ℃ (約600 °F)
以下の如き無機化合物沈殿物を含有する低い温度に加熱
する。沈殿物および水をライン13から除去する。予熱油
をライン14から沸騰型触媒床反応器16にライン15からの
水素と一緒に導入する。反応器16には供給原料と一緒に
ライン14a から新しい触媒を添加するか、または新しい
触媒をライン17から反応器に添加する。図面に示すよう
に使用済触媒はライン18から取出す。一般に、反応条件
は440.5 〜460 ℃ (825 〜860 °F)の温度、140.61〜1
82.80kg/cm2 (2000 〜2600psig)の水素分圧および0.7
〜1.5 Vf /hr /Vr の範囲の液空間速度にする。反
応器には粒状触媒の沸騰床16a を有する。適当な触媒は
一般に入手しうるアルミナ担体に担持したコバルト−モ
リブデンまたはニッケル−モリブデンで0.076 〜1.524m
m (0.003〜0.060 インチ)の範囲の粒子径を有する。触
媒および固形物を反応器16よりライン18を介してまたは
熱分離器20からの非揮発生成物と取出す。 【0011】反応器流出物流をライン19から熱分離器20
に通し、この分離器20からの蒸気流をライン21から水素
化処理圏30に通す。熱分離器20の液体をライン22から二
段フラッシュ工程24および26に送って順次に低い圧力で
フラッシュし、生成した合流蒸気をライン23から蒸気生
成物ライン27に通す。最終フラッシュ工程26からの残留
液体の1部をライン28から更に分解するために反応器に
再循環し、残部液体をライン28a から燃料として燃焼す
るか、または廃棄する。 【0012】生成炭化水素含有流をライン27から順流型
固定床接触水素化処理圏30に水素と一緒に反応器16にお
けると殆んど同じ高温および圧力条件で直接に導入す
る。426.7 〜440.6 ℃ (800 〜825 °F) の温度、126.
55〜175.77kg/cm2 (1800 〜2500psig) の水素分圧およ
び0.8 〜1.5 Vf /hr /Vr の空間速度の過激な水素
化処理で操作するのが好ましい水素化処理圏30におい
て、蒸気生成物を更に分解し、殆んど完全に脱硫および
脱窒素する。 【0013】触媒としては1.524 〜3.175mm (0.060〜0.
125 インチ)の粒子径を有するアルミナ担体に担持した
ニッケル−モリブデン触媒が適当である。反応温度は発
熱反応のために触媒床において増加する。水素化処理圏
30は一連の2または3個以上の触媒床から形成すること
ができる。触媒床における温度上昇は30a で示す触媒床
間に冷却水素ガスを導入することによって制御する。 【0014】水素化処理圏30からの生成物はライン31か
ら冷却器32に送って冷却し、分離器34で相分離する。生
成する液体部分を35で減圧し、分留塔36において燃料ガ
スをライン37から、ナフサをライン37a から、ジェット
燃料をライン38から、およびジーゼル燃料生成物をライ
ン38a からそれぞれ分留する。生成するナフサはガソリ
ンを生成する接触改質に適当である。分留塔36から343.
3℃ (650 °F) +の如き重質液体留分はライン39を通
って加熱器51に送って426.7 ℃ (800 °F) 以上に加熱
し、更に処理するために反応器16に再循環する。 【0015】相分離器34からの流出蒸気流はライン33を
介して分離工程40に送って分離し、C1〜C3ガス、H2S お
よびNH3 の如き汚染物をライン42から除去する。水素は
ライン41を介して加圧機44で加圧し、ライン15を介して
加熱器45に送って454.4 〜537.8 ℃ (850 〜1000°F)
に加熱し、反応器16に直接再循環する。ライン49から補
給される幾分かの天然ガスと共に分離工程40からのC1
C3ガスをライン49を介して工程50に送ってリフォーム
し、ここでプロセスに必要とする付加水素を生成し、こ
の付加水素流をライン46から送出する。 【0016】オイルシェールの如き炭化水素供給原料の
品質を向上するための本発明の方法の重要な特徴は(a)
かかる供給原料の予熱を制限し、水素およびきれいな再
循環重質液体留分を加熱することによって付加熱を供給
し、これにより予熱器流路にける堆積物の沈殿するのを
防止し;(b) 無機化合物を沸騰床反応器における触媒上
に沈殿させ;および(c) 過激な条件で操作する接触水素
化処理工程で最終液体燃料生成物を生成することができ
ることである。きれいな再循環重質生成物留分および水
素は第1加熱器を用いて別々に加熱して必要な熱を沸騰
床接触反応に供給する。これらのプロセス工程およびプ
ロセスの他の特徴は重質油およびタールサンド歴青質の
処理に、および好ましくは粗オイルシェールの精製燃料
油生成物への処理に適用することができる。 【0017】次に、本発明を例について説明するが、本
発明はこれにより制限されるものではない。例 1 本例においては、品質向上操作を1.6 重量%の窒素、20
ppmの砒素、60ppm の鉄および約0.06重量%の灰分不純
物を含有する粗オイルシェールを用いて行った。このオ
イルシェールを管状交換器で約371.1 ℃ (700 °F) に
予熱し、水素と一緒に水素化処理のための一般に入手さ
れるニッケル触媒粒子の固定床を有する順流型接触反応
器に通した。予熱器管を横切る圧力降下は12日間にわた
って約0.70〜14.16 kg/cm2 (約10〜200psig) に増加
したので、操作を中断し、予熱器コイルに交換した。こ
のコイルにおよび反応器床の頂部に堆積した材料を分析
した所、約38重量%の油、および2重量%炭素、45重量
%鉄および6.3 重量%砒素を含有する62重量%の灰分で
あることを確めた。 【0018】例 2 本例においては、他の品質向上操作を例1に記載すると
同じ粗オイルシェール供給原料を用いて行った。しか
し、供給原料を管状熱交換器で約232.2 ℃ (約450 °
F) に加熱し、次いで一般に入手しうるコバルト−モリ
ブデン触媒押出成形粒子の沸騰床を有する逆流型反応器
の底部に通した。また、再循環水素ガスを496.1 〜510.
1 ℃ (925 〜950 °F) に加熱し、重質 (343.3 ℃ (65
0 °F) ) +再循環油を426.7 〜438.6 ℃ (800 〜825
°F) に加熱して上記反応器の底部に導入した。反応条
件は439.6 〜454.4 ℃ (825 〜850 °F) の温度、140.
61〜182.80kg/cm2 (2000 〜2600psig) の水素分圧およ
び約1.2 Vf /hr /Vr の空間速度に維持した。流出
物流を反応器の上端部から除去し、他の処理工程に通し
て生成油を回収した。鉄および砒素不純物は反応器の触
媒粒子上に殆んど堆積し、使用済触媒と一緒に除去し
た。このために、圧力降下を高めおよびプロセスにおけ
る操作問題を生ずるオイルシェールからの上記汚染物の
堆積による欠点を回避でき、かつ長時間にわたり連続操
作できることを確めた。 【0019】例 3 約0.9 重量%の窒素含有量を有する例1の沸騰型触媒床
反応器からの予熱流出物流を更に処理するために第二段
固定床接触反応器に通した。油を426.7 〜438.6 ℃ (80
0 〜825 °F) の温度および126.55〜140.61kg/cm2 (1
800 〜2000psig) の水素分圧の入口条件で、約1.0 Vf
/hr /Vr の空間速度でニッケル−モリブデンをアル
ミナ担体に担持した適当な水素化処理触媒上に通して水
素化処理した。水素化処理した油生成物は高められたAP
I 比重、約4ppm 以下の窒素含有量および約0.01重量%
以下の硫黄含有量を有し、ジェットおよびジーゼルエネ
ルギー使用において高品質燃料として適当であることを
確めた。 【0020】上述において本発明の好適な例について記
載したけれども、本発明は本明細書および特許請求の範
囲の記載を逸脱しない限り種々変更を加えることができ
る。
Description: FIELD OF THE INVENTION The present invention treats hydrocarbon feedstocks containing precipitating impurities deposited during normal preheat treatment, especially crude oil shale containing precipitating metal compounds. For producing catalytic hydrotreating fuel suitable for jet and diesel engines. BACKGROUND OF THE INVENTION When crude oil shale is catalytically hydrotreated to produce an improved light oil product, the preheater flow path is typically from the oil shale at temperatures above about 204.4 ° C (400 ° F). It is known to be contaminated by the fine particulate deposits of This deposit causes a high pressure drop,
Blocking the flow path creates a very troublesome and undesirable problem. A particular problem encountered during the hydrotreating of oil shale feedstocks is about 204 preheater channels.
Repeated fouling by particulate deposits at temperatures of 400 ° F. (4 ° C.) and fixed catalyst bed reactors by very fine particulate deposits with high iron content, which results in high pressure drops. The result is inadequate oil conversion. These deposits are primarily compounds which are difficult to filter in liquid feed streams at ambient temperatures, especially those containing iron and arsenic compounds. To this end, solutions have been attempted to avoid or prevent the pollution problems in crude oil shale processing when the oil shale is subjected to continuous catalytic processing to produce upgraded fuel products. Multi-stage catalytic processing of heavy petroleum crude oil and resid is known. For example, U.S. Pat.
bullated) A method for desulfurizing petroleum residue feedstocks using a catalyst bed hydrogenation reactor to reduce hydrogen consumption and increase catalyst life is described. U.S. Pat. Nos. 3,773,673 and 3,887,973 describe similar catalytic conversion processes for petroleum residues. U.S. Pat. No. 3,874,555 describes a process for hydrotreating heavy crude oils and residual oils which employs a series of boiling catalyst bed or fixed bed reactors, and a small reactor size catalyst in the second reactor. Have been described. US Pat. No. 4,046,670 discloses an anti-clogging age agent containing an iron oxide-containing inorganic material.
nt) is added to the feed stream and the heavy petroleum is pyrolyzed in a tubular furnace. US Patent 418159
No. 6 describes treating oil shale retort effluents to lower the pour point, and cooling such effluents to produce a liquid phase at a critical temperature in the range of 315.6 to 426.7 ° C (600 to 800 ° F). Treatment of oil shale retort effluent to reduce contaminants such as soluble arsenic and iron by maintaining for ~ 120 minutes is described. In addition, US patent
No. 4158622 describes a two stage hydrogenation process for hydrocarbons containing particulates such as oil shale using a boiling catalytic bed reactor in which the vapor portion is passed through a fixed bed reactor for further hydrotreatment. ing. In this case, it is necessary to avoid fouling of the channels and the catalyst bed and to obtain good operating conditions in order to treat the crude oil shale containing the precipitable inorganic materials and compounds. DISCLOSURE OF THE INVENTION The present invention is directed to hydrocarbon feedstocks containing precipitating compounds that cause channel fouling problems, and hydrotreating such hydrocarbon feedstocks such as crude oil shale to jet and diesel engines. It is to provide a method of producing an improved fuel suitable for use. To carry out the hydrotreating of the present invention, the hydrocarbon feedstock is first heated directly to a low, moderate temperature which results in any precipitation of inorganic compounds, such as about 204.4 to 315.6 ° C (400 to 600 ° F). And then passed to the first stage-boiling catalyst bed reaction step for the first hydrotreatment. In the present invention, the product effluent liquid from this boiling catalyst bed reaction process is separated into phases and its vapor portion is generally operated under more severe conditions, i.e. higher temperature and pressure conditions, or lower space velocities. Alternatively, it is passed through a hydrotreating step of two or more fixed catalyst beds. Also, in practicing the present invention, the feedstock, eg, crude oil shale, is at least about 176.7 ° C.
Includes preheating to a temperature of (350 ° F) to separate deposits and water. However, in this case temperatures which cause deposits and contamination in the preheater flow path should be avoided. The preheated feed stream is then passed through a first stage hydrocracking operation using a boiling catalyst bed reactor with hydrogen to further heat the feed stream via the heat of hydrogenation to deposit a precipitated solid on the catalyst. .. Recycled hydrogen stream and / or about 343.3 ° C
(About 650 ° F) +, such as a heavy recycle oil fraction, should be heated to a temperature sufficient to provide additional heating to a reaction temperature of about 398.9 ° C (about 750 ° F) or higher in a boiling catalyst bed reactor. It can be heated. The reaction conditions are 426.7-460.0 ° C (800-86
0 ° F) temperature, 126.55 to 210.92kg / cm 2 (1800 to 3000)
using spatial velocity of the hydrogen partial pressure and 0.7 ~3V f / h r / V r of psig). As mentioned above, the first catalytic hydrogenation step in a boiling catalyst bed reactor is followed by a heavy feedstock such as oil shale in a forward flow fixed bed catalytic hydrotreatment operating at extremes of temperature and pressure. Was further processed to find the unexpected fact that a very high quality product was produced despite the presence of high partial pressures of H 2 S and NH 3 . The extreme conditions used are 410.0 ° C
Temperatures above (780 ° F) and 126.55 kg / cm 2 (1800 psi)
g) Hydrogen partial pressure above. This temperature is 265.6 ° C (510 °
F) It is possible to achieve some hydrotreating of liquid products of this operation with boiling points below that meet military specifications for JP-4 jet and diesel fuels. This hydrotreatment also facilitates denitrification of the product. The operating conditions for treating a crude oil shale having a nitrogen content of about 1.27 wt% and a sulfur content of 0.75 wt% are fuel oil production with a nitrogen content of 4 ppm or less and a sulfur content of 0.01 wt% or less. Meet the JP-4 fuel standard. The present invention will now be described with reference to the accompanying drawings.
The figure shows a flow sheet of a two-step catalytic reaction process in which the hydrocarbon feed stream upstream of the boiling catalyst bed hydrogenation step is directly heated and then further catalytically hydrotreated in a fixed bed reactor. As shown in FIG. 1, the crude oil shale feedstock from line 10 is fed to a heater 12 in a low calorific unit gas (Btu ga
s) using an ordinary heat source such as 176.7-204.4 ° C (350
~ 400 ° F) and about 315.6 ° C (about 600 ° F)
Heat to a low temperature containing an inorganic compound precipitate as follows. Precipitate and water are removed from line 13. Preheated oil is introduced through line 14 into boiling catalyst bed reactor 16 along with hydrogen from line 15. Fresh catalyst is added to reactor 16 along with feedstock via line 14a, or fresh catalyst is added to the reactor via line 17. The spent catalyst is removed from line 18 as shown in the drawing. Generally, the reaction conditions are a temperature of 440.5 to 460 ° C (825 to 860 ° F), 140.61 to 1
82.80 kg / cm 2 (2000 to 2600 psig) hydrogen partial pressure and 0.7
To liquid hourly space velocity in the range of ~1.5 V f / h r / V r. The reactor has a boiling bed 16a of granular catalyst. Suitable catalysts are cobalt-molybdenum or nickel-molybdenum supported on commonly available alumina supports at 0.076 to 1.524 m.
It has a particle size in the range of m (0.003 to 0.060 inches). The catalyst and solids are withdrawn from reactor 16 via line 18 or with the non-volatile products from thermal separator 20. Reactor effluent stream from line 19 to heat separator 20
The vapor stream from this separator 20 is passed through line 21 to hydrotreating zone 30. The liquid in the heat separator 20 is sent from the line 22 to the two-stage flashing steps 24 and 26 to be sequentially flashed at low pressure, and the combined steam produced is passed from the line 23 to the vapor product line 27. A portion of the residual liquid from the final flash step 26 is recycled to the reactor for further decomposition from line 28 and the remaining liquid is burned as fuel from line 28a or discarded. The product hydrocarbon-containing stream is introduced directly from line 27 into the cocurrent fixed bed catalytic hydrotreating zone 30 with hydrogen at about the same high temperature and pressure conditions as in reactor 16. 426.7 to 440.6 ° C (800 to 825 ° F), 126.
In 55~175.77kg / cm 2 (1800 ~2500psig) hydrogen partial pressure and 0.8 ~1.5 V f / h r / V preferred hydrotreating zone 30 is to operate in extreme hydrotreating space velocity r of The steam product is further decomposed and almost completely desulfurized and denitrogenated. As a catalyst, 1.524-3.175 mm (0.060-0.
A nickel-molybdenum catalyst supported on an alumina support having a particle size of 125 inches) is suitable. The reaction temperature increases in the catalyst bed due to the exothermic reaction. Hydroprocessing area
30 can be formed from a series of two or more catalyst beds. The temperature rise in the catalyst bed is controlled by introducing cooling hydrogen gas between the catalyst beds indicated by 30a. The product from hydrotreating zone 30 is sent via line 31 to cooler 32 for cooling and phase separation in separator 34. The liquid portion produced is decompressed at 35 and the fractional column 36 fractionates fuel gas from line 37, naphtha from line 37a, jet fuel from line 38, and diesel fuel product from line 38a, respectively. The naphtha produced is suitable for catalytic reforming to produce gasoline. Fractionation tower 36 to 343.
Heavy liquid fractions such as 3 ° C (650 ° F) + are sent through line 39 to heater 51 to heat above 426.7 ° C (800 ° F) and recirculate to reactor 16 for further processing. To do. The effluent vapor stream from phase separator 34 is sent via line 33 to separation step 40 for separation and removal of contaminants such as C 1 -C 3 gases, H 2 S and NH 3 from line 42. .. Hydrogen is pressurized by a pressurizer 44 via line 41 and sent to a heater 45 via line 15 at 454.4 to 537.8 ° C (850 to 1000 ° F).
And is recycled directly to the reactor 16. C 1 from separation step 40 along with some natural gas replenished from line 49
C 3 gas is sent via line 49 to step 50 for reforming, where it produces the additional hydrogen required for the process and this additional hydrogen stream is delivered via line 46. An important feature of the process of the invention for improving the quality of hydrocarbon feedstocks such as oil shale is (a)
Limiting the preheating of such feedstock and supplying additional heat by heating hydrogen and clean recycle heavy liquid fractions, thereby preventing sedimentation of deposits in the preheater channel; (b ) Inorganic compounds are precipitated on the catalyst in ebullated bed reactors; and (c) the final liquid fuel product can be produced in a catalytic hydrotreating step operating under extreme conditions. The clean recycle heavy product cut and hydrogen are heated separately using the first heater to provide the required heat to the boiling bed catalytic reaction. These process steps and other features of the process can be applied to the treatment of heavy oils and tar sands bituminous material, and preferably to the treatment of crude oil shale to refined fuel oil products. Next, the present invention will be described by way of example, but the present invention is not limited thereto. Example 1 In this example, the quality improvement procedure was carried out using 1.6% by weight of nitrogen, 20
Performed with a crude oil shale containing ppm arsenic, 60 ppm iron and about 0.06 wt% ash impurities. The oil shale was preheated to about 371.1 ° C (700 ° F) in a tubular exchanger and passed with hydrogen through a forward flow catalytic reactor with a fixed bed of commonly available nickel catalyst particles for hydrotreatment. .. The pressure drop across the preheater tube increased to about 0.70 to 14.16 kg / cm 2 (about 10 to 200 psig) over 12 days, so the operation was interrupted and replaced with the preheater coil. The material deposited on this coil and on the top of the reactor bed was analyzed to be about 38 wt% oil and 62 wt% ash containing 2 wt% carbon, 45 wt% iron and 6.3 wt% arsenic. I confirmed that. Example 2 In this example, another quality enhancement operation was performed using the same crude oil shale feed as described in Example 1. However, the feedstock is fed in a tubular heat exchanger at about 232.2 ° C (about 450 ° C).
It was heated to F) and then passed through the bottom of a countercurrent reactor with a boiling bed of commonly available cobalt-molybdenum catalyst extruded particles. Also, recirculate hydrogen gas to 496.1 ~ 510.
Heat to 1 ° C (925 to 950 ° F) and heat to heavy (343.3 ° C (65
0 ° F)) + recirculating oil 426.7 to 438.6 ℃ (800 to 825
It was heated to ° F) and introduced at the bottom of the reactor. The reaction conditions are a temperature of 439.6 to 454.4 ° C (825 to 850 ° F), 140.
It was maintained at a space velocity of the hydrogen partial pressure and about 1.2 V f / h r / V r of 61~182.80kg / cm 2 (2000 ~2600psig) . The effluent stream was removed from the top of the reactor and passed through another process step to recover the product oil. Most of the iron and arsenic impurities were deposited on the catalyst particles in the reactor and were removed along with the spent catalyst. For this reason, it has been established that the drawbacks due to the accumulation of said contaminants from the oil shale, which raises the pressure drop and causes operating problems in the process, can be avoided and that it can be operated continuously for a long time. Example 3 The preheated effluent stream from the boiling catalyst bed reactor of Example 1 having a nitrogen content of about 0.9% by weight was passed through a second stage fixed bed catalytic reactor for further processing. Oil at 426.7 to 438.6 ° C (80
0 to 825 ° F) and 126.55 to 140.61 kg / cm 2 (1
800 V to 2000 psig) hydrogen partial pressure inlet conditions, about 1.0 V f
/ H r / V r nickel at a space velocity of - molybdenum was hydrotreated through on a suitable hydrotreating catalyst supported on an alumina carrier. Hydrotreated oil products have enhanced AP
I Specific gravity, nitrogen content below about 4ppm and about 0.01wt%
It has the following sulfur content and has been found suitable as a high quality fuel in jet and diesel energy use. Although the preferred examples of the present invention have been described above, the present invention can be variously modified without departing from the description of the present specification and claims.

【図面の簡単な説明】 【図1】本発明の方法を実施する二段接触反応プロセス
のフロートシートである。 【符号の説明】 16 沸騰型触媒床反応器 16a 沸騰型触媒床 20 熱分離器 24, 26 二段フラッシュ工程 30 水素化処理圏 30a 触媒床 32 冷却器 34, 40 分離器 36 分留塔 44 加圧器 45 加熱器 51 加熱器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a float sheet of a two-step catalytic reaction process for carrying out the method of the present invention. [Explanation of symbols] 16 Boiling catalyst bed reactor 16a Boiling catalyst bed 20 Thermal separator 24, 26 Two-stage flash process 30 Hydrotreating zone 30a Catalyst bed 32 Cooler 34, 40 Separator 36 Fractionation tower 44 Addition Pressure device 45 Heater 51 Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 マイケル シー チヤーベナツク アメリカ合衆国 ニユージヤージー州 08534ペニングトン ダブリン ロード 26 (72)発明者 アルフレツド ジー コモーリ アメリカ合衆国 ペンシルベニア州 19067 ヤードレイ ユニバーシテイ ド ライブ 1128   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Michael See Chebebenatsk             United States New Jersey             08534 Pennington Dublin Road             26 (72) Inventor Alfredos G. Komori             United States Pennsylvania             19067 Yardley University             Live 1128

Claims (1)

【特許請求の範囲】 1. (a) 沈殿性金属化合物を含有する炭化水素供給原料
をかかる金属化合物の沈殿温度以下の温度に予熱し、こ
の加熱供給原料を沸騰型触媒床を有する反応圏に導入
し; (b) 反応圏を426.7 〜460.0 ℃ (800 〜860 °F) の
温度および 126.55 〜210.92kg/cm2 (1800 〜3000psi
g) の水素分圧に維持して前記供給原料を水素化分解お
よび処理し、前記沈殿性金属化合物を触媒粒子上に堆積
させ; (c) 前記反応圏からの流出蒸気部分を410.0 〜440.6
℃ (780 〜825 °F)の温度および126.55〜210.92kg/c
m2 (1800 〜3000psig) の水素分圧に維持した固定床接
触反応器において更に水素化処理し; (d) 水素含有ガス流、炭化水素液体生成物流および重
質炭化水素液体流を回収し; (e) 前記水素含有ガス流を精製し、この水ガス流を45
4.5 〜537.8 ℃ (850〜1000°F) の温度に再加熱し、
この加熱水素流を沸騰型触媒床反応圏に導入してこの反
応圏の温度を維持し;および (f) 前記重質炭化水素液体流を426.7 〜454.5 ℃ (800
〜850 °F) の温度に再加熱し、この加熱液体流を沸
騰型触媒床反応圏に導入しこの反応圏における反応温度
を維持することを特徴とする沈殿性金属化合物含有炭化
水素供給原料を水素化処理する方法。 2. 前記炭化水素供給原料を粗オイルシェールにし、
この供給原料を約315.6℃ (約600 °F) を越えない温
度に予熱する特許請求の範囲第1項記載の方法。 3. (b) 工程において触媒上に沈殿しおよび堆積した汚
染物材料を使用済触媒と共に沸騰型触媒床反応圏から取
除き、新しい触媒と交換する特許請求の範囲第1項記載
の方法。 4. 沸騰型触媒床第1反応圏を440.6 〜460.0 ℃(825〜
860 °F) の温度、126.55〜196.86kg/cm2 (1800 〜28
00psig) の水素分圧および0.5 〜3Vf /hr /Vr
空間速度に維持する特許請求の範囲第1項記載の方法。 5. 前記固定床反応圏の水素化処理工程(e) において用
いる触媒をアルミナ担体に担持したニッケル−モリブデ
ン触媒とする特許請求の範囲第1項記載の方法。 6. 反応温度より低い温度で沈殿する汚染物を含有する
重質粗オイルシェールを水素化分解および水素化処理す
る方法において、 (a) 前記炭化水素供給原料流を204.4 〜315.6 ℃ (400
〜600 °F) の温度に予熱し、この加熱供給流を加熱
水素と共に沸騰型触媒床を有する第1反応圏に導入し; (b) 前記供給流を前記沸騰型触媒床第1反応圏におい
て426.7〜460.0 ℃ (800 〜860 °F) の温度および12
6.55〜210.92 kg /cm2 (1800 〜3000psig) の水素分圧
条件で反応させ、前記沈殿性材料を触媒床の触媒上に堆
積させ; (c) 前記第1反応圏から沈殿砒素および鉄汚染物を含
有する使用済触媒を取除き、この使用済触媒を新しい触
媒と交換し; (d) 前記第1反応圏流出物を、更に水素処理するため
に415.6〜443.3 ℃ (780 〜830 °F) の温度に維持し
た固定接触床を有する第2反応圏に通し; (e) 水素含有ガス流、水素化処理したオイルシェール
液体生成物流および重質炭化水素液体流を回収し; (f) 水素含有ガス流を精製し、この水素ガス流を454.4
〜537.8 ℃ (850 〜1000°F) の温度に再加熱し、こ
の加熱水素ガス流を沸騰型触媒床反応圏に導入してこの
反応圏における温度を維持し;および (g) 前記重質炭化水素液体流を426.7 〜454.4 ℃ (800
〜850 °F) に再加熱し、この加熱液体流を沸騰型触
媒床反応圏に導入してこの反応圏における反応温度を維
持することを特徴とする汚染物含有重質粗オイルシェー
ルを水素化分解および水素化処理する方法。
Claims 1. (a) Preheat a hydrocarbon feedstock containing a precipitable metal compound to a temperature below the precipitation temperature of such metal compound, and heat this feedstock into a reaction zone having a boiling catalyst bed. (B) the reaction zone is at a temperature of 426.7 to 460.0 ° C (800 to 860 ° F) and 126.55 to 210.92 kg / cm 2 (1800 to 3000 psi).
g) hydrocracking and treating the feedstock while maintaining the hydrogen partial pressure to deposit the precipitable metal compounds on the catalyst particles; (c) the effluent vapor fraction from the reaction zone from 410.0 to 440.6.
℃ (780 ~ 825 ° F) and 126.55 ~ 210.92 kg / c
Further hydrotreating in a fixed bed catalytic reactor maintained at a hydrogen partial pressure of m 2 (1800-3000 psig); (d) recovering a hydrogen-containing gas stream, a hydrocarbon liquid product stream and a heavy hydrocarbon liquid stream; (e) purifying the hydrogen-containing gas stream,
Reheat to a temperature of 4.5 to 537.8 ° C (850 to 1000 ° F),
The heated hydrogen stream is introduced into the boiling catalyst bed reaction zone to maintain the temperature of the reaction zone; and (f) the heavy hydrocarbon liquid stream is fed at 426.7-454.5 ° C (800
A hydrocarbon feedstock containing a precipitable metal compound, characterized in that it is reheated to a temperature of ~ 850 ° F) and this heated liquid stream is introduced into the boiling catalyst bed reaction zone to maintain the reaction temperature in this reaction zone. Hydrotreating method. 2. Crude oil shale as the hydrocarbon feedstock,
The method of claim 1 wherein said feedstock is preheated to a temperature not exceeding about 315.6 ° C (about 600 ° F). 3. The method according to claim 1, wherein the pollutant material precipitated and deposited on the catalyst in the step (b) is removed from the boiling catalyst bed reaction zone together with the used catalyst and replaced with a new catalyst. 4. The first reaction zone of the boiling catalyst bed is 440.6-460.0 ℃ (825-
860 ° F) temperature, 126.55 ~ 196.86 kg / cm 2 (1800 ~ 28)
Hydrogen partial pressure and 0.5 ~3V f / h r / V r The method of Claims claim 1 wherein maintaining the space velocity of 00psig). 5. The method according to claim 1, wherein the catalyst used in the hydrotreating step (e) of the fixed bed reaction zone is a nickel-molybdenum catalyst supported on an alumina carrier. 6. In a method for hydrocracking and hydrotreating a heavy crude oil shale containing contaminants that precipitate at temperatures below the reaction temperature, (a) said hydrocarbon feed stream at 204.4 to 315.6 ° C (400
Preheated to a temperature of ~ 600 ° F) and introducing this heated feed stream with heated hydrogen into a first reaction zone having a boiling catalyst bed; (b) said feed stream in said boiling catalyst bed first reaction zone 426.7 to 460.0 ° C (800 to 860 ° F) and 12
Reacting at a hydrogen partial pressure of 6.55-210.92 kg / cm 2 (1800-3000 psig) to deposit the precipitable material on the catalyst in the catalyst bed; (c) arsenic and iron contaminants precipitated from the first reaction zone. (D) replacing the used catalyst with fresh catalyst by removing the used catalyst containing; and (d) further hydrotreating the first reaction zone effluent at 415.6-443.3 ° C (780-830 ° F). Through a second reaction zone having a fixed contact bed maintained at a temperature of (e) recovering a hydrogen-containing gas stream, a hydrotreated oil shale liquid product stream and a heavy hydrocarbon liquid stream; (f) containing hydrogen The gas stream is purified and this hydrogen gas stream is
Reheat to a temperature of 850 to 1000 ° F. to 537.8 ° C. and introduce the heated hydrogen gas stream into the boiling catalyst bed reaction zone to maintain the temperature in the reaction zone; and (g) the heavy carbonization Hydrogen liquid stream at 426.7-454.4 ° C (800
Reheat to ~ 850 ° F) and introduce this heated liquid stream into the boiling catalyst bed reaction zone to maintain the reaction temperature in this reaction zone and hydrogenate heavy crude oil shale containing pollutants. Method for cracking and hydrotreating.
JP23692491A 1981-02-06 1991-08-26 Method for hydrotreating heavy hydrocarbon feedstock containing precipitable metal compound Expired - Lifetime JPH0730341B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US232788 1981-02-06
US23278881A 1981-02-09 1981-02-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57016504A Division JPS57149387A (en) 1981-02-09 1982-02-05 Preheating treatment and hydrogenation for precipitate metal compound-containing heavy hydrocarbon-supplying raw material

Publications (2)

Publication Number Publication Date
JPH0525481A true JPH0525481A (en) 1993-02-02
JPH0730341B2 JPH0730341B2 (en) 1995-04-05

Family

ID=22874587

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57016504A Granted JPS57149387A (en) 1981-02-09 1982-02-05 Preheating treatment and hydrogenation for precipitate metal compound-containing heavy hydrocarbon-supplying raw material
JP23692491A Expired - Lifetime JPH0730341B2 (en) 1981-02-06 1991-08-26 Method for hydrotreating heavy hydrocarbon feedstock containing precipitable metal compound

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP57016504A Granted JPS57149387A (en) 1981-02-09 1982-02-05 Preheating treatment and hydrogenation for precipitate metal compound-containing heavy hydrocarbon-supplying raw material

Country Status (4)

Country Link
JP (2) JPS57149387A (en)
AU (1) AU552164B2 (en)
CA (1) CA1161775A (en)
DE (1) DE3141646C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511682A (en) * 2002-12-20 2006-04-06 エニ、ソシエタ、ペル、アチオニ Method for converting heavy feedstocks such as heavy crude oil and distillation residue
JP2010507738A (en) * 2006-10-20 2010-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Heating the tar sand formation to a viscosity-reducing temperature

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317644B2 (en) * 2008-11-20 2013-10-16 Jx日鉱日石エネルギー株式会社 Method for producing aviation fuel base material
JP5339863B2 (en) 2008-11-20 2013-11-13 Jx日鉱日石エネルギー株式会社 Method for producing aviation fuel oil composition
FI128237B (en) * 2018-12-21 2020-01-15 Neste Oyj Method for upgrading waste oil
EP4169895A1 (en) * 2021-10-21 2023-04-26 TotalEnergies OneTech Process and catalyst for conversion of carbon disulphide into c2-c3 olefins

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717855A (en) * 1951-07-28 1955-09-13 Exxon Research Engineering Co Hydrodesulfurization of heavy oils
US3169918A (en) * 1962-07-02 1965-02-16 Universal Oil Prod Co Hydrorefining heavy oils using a pseudo-dry catalyst
US3663429A (en) * 1970-04-09 1972-05-16 Atlantic Richfield Co Process for hydroconversion of raw shale oil
JPS5347122B2 (en) * 1974-03-01 1978-12-19
US4158622A (en) * 1978-02-08 1979-06-19 Cogas Development Company Treatment of hydrocarbons by hydrogenation and fines removal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511682A (en) * 2002-12-20 2006-04-06 エニ、ソシエタ、ペル、アチオニ Method for converting heavy feedstocks such as heavy crude oil and distillation residue
JP2010507738A (en) * 2006-10-20 2010-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Heating the tar sand formation to a viscosity-reducing temperature

Also Published As

Publication number Publication date
JPS57149387A (en) 1982-09-14
DE3141646A1 (en) 1983-02-10
CA1161775A (en) 1984-02-07
DE3141646C2 (en) 1994-04-21
JPH0730341B2 (en) 1995-04-05
JPH0559951B2 (en) 1993-09-01
AU552164B2 (en) 1986-05-22
AU7990282A (en) 1982-08-19

Similar Documents

Publication Publication Date Title
US4344840A (en) Hydrocracking and hydrotreating shale oil in multiple catalytic reactors
US20230029587A1 (en) Optimized method for processing plastic pyrolysis oils for improving their use
CA2198623C (en) A process for removing essentially naphthenic acids from a hydrocarbon oil
KR100831590B1 (en) Crude oil desulfurization
RU2352615C2 (en) Method for processing of heavy charge, such as heavy base oil and stillage bottoms
JP2804369B2 (en) Hydrotreatment of residual oil with resin
CN114729264A (en) Method for treating plastic pyrolysis oil for use in steam cracking unit
EP0793701B1 (en) Multi-step hydrodesulfurization process
KR20100107457A (en) Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US3475323A (en) Process for the preparation of low sulfur fuel oil
JP2002503750A (en) Hydrotreating reactor and method using liquid quenching
KR20030062331A (en) Improved Hydroprocesssing Process and Method of Retrofitting Existing Hydroprocessing Reactors
JP2020506270A (en) Integrated hydroprocessing and steam cracking process for the direct processing of crude oil to produce olefinic and aromatic petrochemicals
US20220204869A1 (en) Process for pre-heating reactor feed stream
US2998381A (en) Hydrofining of middle distillate feed stock
US3291721A (en) Combined hydrocracking and hydrofining process
US4401561A (en) Hydrotreating process with ammonia injection to reaction zone effluent
US4405442A (en) Process for converting heavy oils or petroleum residues to gaseous and distillable hydrocarbons
JPH0525481A (en) Method for hydrogenation treatment of heavy hydrocarbon feeding raw material containing precipitable metal compound
CN115537231A (en) Device and method for changing material flow direction to realize oil reduction and increase
JP4564176B2 (en) Crude oil processing method
JP4546160B2 (en) Hydrotreating method
JPH02153992A (en) Method for hydrocracking of hydrocarbon stock
RU2820852C2 (en) Method for preheating stream of raw material of hydrotreating reactor
RU2822731C2 (en) Method of treating raw material containing halides