JPH0525478B2 - - Google Patents

Info

Publication number
JPH0525478B2
JPH0525478B2 JP59044763A JP4476384A JPH0525478B2 JP H0525478 B2 JPH0525478 B2 JP H0525478B2 JP 59044763 A JP59044763 A JP 59044763A JP 4476384 A JP4476384 A JP 4476384A JP H0525478 B2 JPH0525478 B2 JP H0525478B2
Authority
JP
Japan
Prior art keywords
glucosidase
solution
sugar
hydrol
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59044763A
Other languages
Japanese (ja)
Other versions
JPS60188089A (en
Inventor
Ryuichi Ooya
Nobumasa Yokoi
Kenichi Hirano
Koichi Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP4476384A priority Critical patent/JPS60188089A/en
Publication of JPS60188089A publication Critical patent/JPS60188089A/en
Publication of JPH0525478B2 publication Critical patent/JPH0525478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、ハむドロヌル又はラフむネヌトより
オリゎ糖の少ない糖液を補造する方法に関する。 結晶グリコヌス補造時に副産物ずしお生産され
るハむドロヌルはマルトヌス、マルトトリオヌ
ス、む゜マルトヌス、ニゲロヌス、パノヌス等の
オリゎ糖以䞋本発明においお単にオリゎ糖ず称
するを倚く含むために、䞻成分であるグルコヌ
スを倚量含有するものの、このハむドロヌルを柱
粉糖化液に再混入しお、異性化工皋を経お埌の異
性化糖を補造するための原料ずしお再利甚するこ
ずはこれたでなされおおらず、単に氎风甚又は特
殊な甘味料米囜特蚱 第3935070号に蚘茉され
おいる。ずしお利甚されおいるにすぎなか぀た。 䞀方、最近異性化糖䞭のグルコヌスず果糖を分
離する技術が発達し、果糖含量を埓来の42察
固型分、以䞋同じから80ぞず向䞊させるこ
ずが可胜ずなり、䞡を䞀定比率で混合しお課糖含
量55のものが盛んに補造されるようにな぀た
が、その分離の際、副生するグルコヌス画分ラ
フむネヌトず称しおいるの再利甚が問題ずな぀
おきた。即ちラフむネヌト䞭にもオリゎ糖が倚く
含たれおおり、このラフむネヌトを柱粉糖化液に
再混合しお再び異性化を行おうずしおも、生成さ
れる異性化糖液䞭のオリゎ糖含量が倚くな぀おし
たい、再利甚できないのであ぀た。 も぀ずも、これたでに柱粉糖化液䞭のグルコヌ
ス含量を高め、オリゎ糖を枛少せしめる方法ずし
お、柱粉糖化の際にグルコアミラヌれにプルラナ
ヌれ又はむ゜アミラヌれ等のα−グルコシ
ダヌれを䜵甚しお糖化を行う皮々の詊みがなされ
おいた。䟋えば特公昭54−29570、特開昭56−
23894、特開昭57−170195等がある。しかしなが
ら、これら皮々の方法によ぀おも、実際䞊DEを
若干増加させる効果はみられるものの、䟝然ずし
お糖化液䞭にオリゎ糖がかなり含たれ、そのため
に結晶グルコヌス補造時に副生されるハむドロヌ
ル又は異性化糖液より高果糖異性化糖液補造時に
副生されるラフむネヌトにオリゎ糖がそのたた移
行し結局のずころ、これら皮々の詊みにもかかわ
らず䞊蚘の問題は解決できないたたであ぀た。そ
こで本発明者らは、ハむドロヌル又はラフむネヌ
トを柱粉糖化液に再混入し、異性化等工皋を経た
埌に埗られる異性化糖液の補造に利甚すべく鋭意
怜蚎した結果、ハむドロヌルを垌釈した液又はラ
フむネヌト䞭のオリゎ糖をよく分解する胜力を有
するα−グルコシダヌれを添加し、適圓な枩床、
適圓な時間䜜甚せしめるこずによ぀お該ハむドロ
ヌル垌釈液又はラフむネヌトをオリゎ糖の少ない
糖液ずするこずに成功し、か぀又本発明によ぀お
埗られるオリゎ糖の少ない糖液はそのたた或いは
濃瞮しお柱粉糖化液に再混入でき、次いで異性化
工皋を経た埌の異性化糖液補造に再利甚できるこ
ずを知り本発明を完成したものである。 ハむドロヌルずラフむネヌトはグルコヌス、オ
リゎ糖に関しおほが同様の糖組成を有するが、ハ
むドロヌルの方は固型分含有率が玄50〜70ず倚
く、ラフむネヌトは10〜30含量である。α−
グルコシダヌれがそのたたでは䜜甚しにくいので
ハむドロヌルを適圓に垌釈しお甚いる必芁があ
る。ハむドロヌルの垌釈割合ずオリゎ糖氎解率ず
の関係を詊隓䟋にお説明する。 詊隓䟋  ハむドロヌル原液固型分含量50、固型分䞭
のオリゎ糖含有率17.1を氎で垌釈しお固型分
含量10、20及び30ずし、
それぞれのハむドロヌル垌釈液、、を基質
ずしお、これらにペシロミセス・バリオテむのα
−グルコシダヌれを各基質ml圓り単䜍添加
し、60℃で反応せしめ、各時間経過埌における各
ハむドロヌル垌釈液䞭のオリゎ糖残存率を
調べた。なお察照ずしおハむドロヌル原液に぀い
おもオリゎ糖残存率を調べた。その結果を衚−
に瀺す。
The present invention relates to a method for producing a sugar solution containing less oligosaccharide than hydrol or raffinate. Hydrol, which is produced as a by-product during the production of crystalline glycose, contains a large amount of oligosaccharides (hereinafter simply referred to as oligosaccharides in the present invention) such as maltose, maltotriose, isomaltose, nigerose, and panose, so it cannot contain the main component glucose. Although this hydrol contains a large amount of It has only been used as a sweetener or as a specialty sweetener (described in US Pat. No. 3,935,070). On the other hand, technology has recently developed to separate glucose and fructose in isomerized sugar, making it possible to increase the fructose content from the conventional 42% (based on solid content, hereinafter the same) to 80%. A product with a sugar content of 55% that is mixed at a certain ratio has become popularly manufactured, but during separation, reuse of the by-product glucose fraction (referred to as raffinate) has become a problem. It's here. In other words, raffinate also contains a large amount of oligosaccharides, and even if this raffinate is remixed with the starch saccharification solution and the isomerization is performed again, the oligosaccharide content in the isomerized sugar solution produced will increase. It was damaged and could not be reused. However, as a method to increase the glucose content and reduce the oligosaccharides in the starch saccharification solution, the method of starch saccharification is to use α-1,6 glucosidase such as pullulanase or isoamylase in combination with glucoamylase during starch saccharification. Various attempts were made. For example, JP 54-29570, JP 56-
23894, JP-A-57-170195, etc. However, even though these various methods actually have the effect of slightly increasing DE, the saccharification solution still contains a considerable amount of oligosaccharides, and as a result, hydrols or isomers that are by-produced during the production of crystalline glucose. The oligosaccharide is directly transferred from the high fructose sugar solution to the ruffinate by-produced during the production of the high fructose isomerized sugar solution, and in the end, despite these various attempts, the above problem remained unsolved. Therefore, the present inventors conducted intensive studies to re-mix hydrol or raffinate into the starch saccharification solution and used it in the production of isomerized sugar solution obtained after undergoing processes such as isomerization. Alternatively, α-glucosidase that has the ability to effectively decompose oligosaccharides in raffinate is added, and the mixture is heated at an appropriate temperature.
By allowing the diluted hydrol solution or raffinate to react for an appropriate period of time, the diluted hydrol solution or raffinate can be successfully made into a sugar solution containing less oligosaccharides, and the sugar solution containing less oligosaccharides obtained by the present invention can be used as it is or after being concentrated. The present invention was completed based on the knowledge that the starch can be remixed into the starch saccharified solution and then reused in the production of isomerized sugar solution after the isomerization step. Hydrol and raffinate have almost similar sugar compositions in terms of glucose and oligosaccharides, but hydrol has a higher solids content of about 50-70% (ruffinate has a content of 10-30%). α−
Since glucosidase is difficult to act as it is, it is necessary to dilute Hydrol appropriately. The relationship between the dilution ratio of hydrol and the oligosaccharide hydrolysis rate will be explained in Test Example 1. Test example 1 Hydrol stock solution (solid content 50%, oligosaccharide content in solid content 17.1%) was diluted with water to obtain solid content of 10% (), 20% () and 30% () year,
Each diluted hydrol solution, , was used as a substrate, and P. variotei α
- 4 units of glucosidase was added per ml of each substrate and reacted at 60°C, and the residual rate (%) of oligosaccharides in each diluted hydrol solution after each time period was examined. As a control, the oligosaccharide residual rate was also investigated for Hydrol stock solution. Table 1 shows the results.
Shown below.

【衚】 衚−より明らかのようにハむドロヌル䞭の固
型分含量が倚いほどオリゎ糖残存率が増加しおお
り、少なくずもハむドロヌル䞭に固型分含量ずし
お30以䞋になるようハむドロヌルを垌釈するこ
ずが奜たしいこずがわか぀た。本発明においおハ
むドロヌル垌釈液ず称するものはハむドロヌルを
垌釈しおその固型分含量を10〜30にしたものを
意味するこずずする。本発明の特城はハむドロヌ
ル垌釈液又はラフむネヌトにα−グルコシダヌれ
を䜜甚させ、該ハむドロヌル垌釈液又はラフむネ
ヌトをオリゎ糖含量の少ない糖液ずするこずにあ
る。そのためにはハむドロヌル垌釈液又はラフむ
ネヌトが酞性であり、グルコヌス含量も倚くか぀
皮々のオリゎ糖を含有しおいるので、本発明にお
いお䜿甚できる奜適なα−グルコシダヌれずしお
は至適PHが酞性偎にあり、皮々のオリゎ糖に幅広
い基質特異性を有するずずもに、高グルコヌス濃
床䞭でもよく䜜甚するα−グルコシダヌれが奜た
しい。α−グルコシダヌれEC3.2.1.20は倚皮
類存圚するがそのようなα−グルコシダヌれずし
お埮生物起源の䟋えばペシロミセス・バリオテむ
又はアスペルギルス・ニガヌの産生するα−グル
コシダヌれ或いは怍物起源の甜菜皮子よりのα−
グルコシダヌれ等があげられる。 以䞋にこれらα−グルコシダヌれの調補法なら
びに酵玠化孊的性質に぀いお述べる。 ペシロミセス・バリオテむのα−グルコシダヌれ
の調補法 ペシロミセス・バリオテむIFO 4855の菌株を
グルコヌス、酵母゚キス0.3、麊芜゚キス
0.3及びポリペプトン0.3からなる培地に接皮
し、28℃で日間前培逊を行぀た埌に銬鈎薯柱粉
、NH4NO30.05、KH2PO40.02、
MgSO4・7H2O0.05及びCaCo32からなる本培
地に前培逊埌の菌䜓を接皮し、32℃で40時間振盪
培逊を行い菌䜓を陀去し粗酵玠液を埗、次いで99
の゚タノヌルを培容加え、生じた沈柱を集
め、0.01Mリン酞緩衝液PH6.4に懞濁し、沈
柱を陀去し、透析し、DEAE−セフアロヌスCL
−6Bフアルマシア補品、バむオ−ゲル−150
バむオ・ラツド瀟補品及び回目のDEAE−
セフアロヌスCL−6Bの各カラムクロマトグラフ
むヌを行い、粟補酵玠液を埗た。このものを曎に
調補甚デむスク電気泳動凊理及び回目のバむオ
−ゲル−150によるゲルろ過を行うこずによ぀
おデむスク電気泳動的に単䞀な暙品を埗た。 アスペルギルス・ニガヌのα−グルコシダヌれの
調補法 垂販の酵玠剀であるトランスグルコシダヌれ
「アマノ」倩野補薬株匏䌚瀟補品を酵玠原末ず
し、このものを20mMリン酞緩衝液に溶解し、透
析し、遠心分離しお埗られる䞊枅を粗酵玠液ず
し、次いで粗酵玠液をDEAE−セフアロヌス及び
トペパヌルHW−55東掋曹達工業株匏䌚瀟補品
カラムクロマトグラフむヌで凊理し、デむスク電
気泳動的に単䞀に粟補した。 甜菜皮子α−グルコシダヌれの調補法 甜菜皮子粉末よりAgric.Biol.Chem.第42å·»241
〜245頁1978幎の方法により調補し、ポリア
クリルアミドゲル電気泳動的に単䞀の粟補α−グ
ルコシダヌれを埗た。 本発明においお䞊蚘の調補法によ぀お埗られた
ペシロミセス・バリオテむ、アスペルギルス・ニ
ガヌ及び甜菜皮子よりの各皮α−グルコシダヌれ
は粟補酵玠のみならず郚分粟補したもの及び粗酵
玠であ぀おもそのたた䜿甚され埗る。曎に又これ
らα−グルコシダヌれは固定化しお䜿甚するこず
もできる。固定化する堎合は通垞の固型化方法の
いずれの方法でもよいが、本発明においお、具䜓
的には次の方法によ぀お調補される。 固定化α−グルコシダヌれの調補法 粟補氎で掗浄したセフアロヌス4Bフアルマシ
ア瀟補品300湿重量を゚ピクロヌル
ヒドリンを含有する0.6Nカセむ゜ヌダ溶液700ml
に懞濁し、40℃で時間反応させたのち、粟補氎
で掗浄し、掻性化セフアロヌスを埗た。次に該掻
性化セフアロヌス300を0.5Mヘキサメチレンゞ
アミン溶液700mlに懞濁し25℃で16時間反応させ
た埌、1M食塩氎及び粟補氎で順次掗浄しアミノ
ヘキシルセフアロヌスを合成した。 該アミノヘキシルセフアロヌス100をグ
ルタルアルデヒドを含む0.1Mリン酞緩衝液250ml
に懞濁し、宀枩にお撹拌し぀぀30分反応させたの
ち粟補氎にお掗浄し、各皮起源のα−グルコシダ
ヌれ5000単䜍を溶解した0.1Mリン酞緩衝液250ml
に懞濁させた。宀枩にお撹拌し぀぀時間反応さ
せたのち、各皮α−グルコシダヌれ固定化物をろ
過回収し、粟補氎及び1Mリン酞緩衝液で順次掗
浄した。埗られた固定化物の掻性はペシロミセ
ス・バリオテむのα−グルコシダヌれの堎合
湿最ゲル圓り7.3単䜍で掻性収率は14.6であ぀
た。甜菜皮子のα−グルコシダヌれの堎合湿
最ゲル圓り9.3単䜍で掻性収率は18.5であ぀た。 次に各皮α−グルコシダヌれの酵玠化孊的性質
を比范し぀぀述べる。 (1) 䜜甚 いずれのα−グルコシダヌれずもα−グルコ
シド結合を有する少糖類、配糖䜓又は倚糖類に
䜜甚し、その非還元末端からグルコヌス単䜍に
切断する。 (2) 基質特異性 各皮α−グルコシダヌれの皮々の基質に察す
るVmaxから求めた氎解速床をマルトヌスを
100ずした盞察倀ずしお衚−に瀺す。
[Table] As is clear from Table 1, the higher the solid content in Hydrol, the higher the oligosaccharide residual rate. It was found that it is preferable to dilute the In the present invention, what is referred to as a diluted hydrol solution means a diluted hydrol solution with a solids content of 10 to 30%. The feature of the present invention is that alpha-glucosidase is allowed to act on a diluted hydrol solution or raffinate to convert the diluted hydrol solution or raffinate into a sugar solution with a low oligosaccharide content. For this purpose, the hydrol diluted solution or raffinate is acidic, has a high glucose content, and contains various oligosaccharides, so the optimal pH for α-glucosidase that can be used in the present invention is on the acidic side. α-glucosidase is preferred, which has broad substrate specificity for various oligosaccharides and acts well even at high glucose concentrations. There are many types of α-glucosidase (EC3.2.1.20), and α-glucosidase of microbial origin, for example, α-glucosidase produced by Pecilomyces variotei or Aspergillus niger, or α-glucosidase of plant origin, produced from sugar beet seeds, is used.
Examples include glucosidase. The preparation method and enzymatic chemical properties of these α-glucosidases will be described below. Preparation method of α-glucosidase from Pecilomyces variotei: P. variotei IFO 4855 strain was mixed with 1% glucose, 0.3% yeast extract, and malt extract.
After inoculating into a medium consisting of 0.3% and polypeptone 0.3% and pre-cultivating at 28°C for 2 days, potato starch 3%, NH 4 NO 3 0.05%, KH 2 PO 4 0.02%,
The pre-cultured cells were inoculated into this medium consisting of 0.05% MgSO 4 7H 2 O and 2% CaCo 3 , and cultured with shaking at 32°C for 40 hours to remove the cells and obtain a crude enzyme solution. 99
% ethanol was added, the resulting precipitate was collected, suspended in 0.01M phosphate buffer (PH6.4), the precipitate was removed, dialyzed, and DEAE-Sepharose CL
-6B (Pharmacia product), Bio-Gel P-150
(Bio-Rad product) and second DEAE-
Sepharose CL-6B was subjected to column chromatography to obtain a purified enzyme solution. This product was further subjected to a preparative disc electrophoresis treatment and a second gel filtration using Bio-Gel P-150 to obtain a single disc electrophoretic sample. Preparation method of Aspergillus niger α-glucosidase: Use the commercially available enzyme agent transglucosidase "Amano" (manufactured by Amano Pharmaceutical Co., Ltd.) as enzyme powder, dissolve this in 20mM phosphate buffer, dialyze, The supernatant obtained by centrifugation is used as a crude enzyme solution, and then the crude enzyme solution is mixed with DEAE-Sepharose and Toyopearl HW-55 (Toyo Soda Kogyo Co., Ltd. product).
It was processed by column chromatography and purified single by disk electrophoresis. Preparation method of sugar beet seed α-glucosidase: From sugar beet seed powder Agric.Biol.Chem.Volume 42, 241
~245 (1978) and a single purified α-glucosidase was obtained by polyacrylamide gel electrophoresis. In the present invention, various α-glucosidases from Pecilomyces variotei, Aspergillus niger, and sugar beet seeds obtained by the above-mentioned preparation method can be used as they are, including not only purified enzymes but also partially purified enzymes and crude enzymes. . Furthermore, these α-glucosidases can also be used in an immobilized state. In the case of immobilization, any conventional solidification method may be used, but in the present invention, specifically, it is prepared by the following method. Preparation method of immobilized α-glucosidase: 300 g (wet weight) of Sepharose 4B (product of Pharmacia) washed with purified water and 700 ml of 0.6N caustic soda solution containing 8% epichlorohydrin.
The suspension was suspended in water, reacted at 40°C for 2 hours, and washed with purified water to obtain activated sepharose. Next, 300 g of the activated cephalose was suspended in 700 ml of 0.5M hexamethylene diamine solution, reacted at 25°C for 16 hours, and washed sequentially with 1M saline and purified water to synthesize aminohexyl cephalose. 100g of the aminohexylcephalose was added to 250ml of 0.1M phosphate buffer containing 1% glutaraldehyde.
After reacting for 30 minutes with stirring at room temperature, wash with purified water and add 250 ml of 0.1 M phosphate buffer in which 5000 units of α-glucosidase from various sources have been dissolved.
suspended in. After reacting for 4 hours with stirring at room temperature, various α-glucosidase immobilized products were collected by filtration and washed successively with purified water and 1M phosphate buffer. The activity of the obtained immobilized product was 1 g for α-glucosidase of Pecilomyces variotei.
The activity yield was 14.6% at 7.3 units per wet gel. In the case of α-glucosidase from sugar beet seeds, the activity yield was 9.3 units per gram of wet gel, which was 18.5%. Next, the enzymatic chemical properties of various α-glucosidases will be compared and described. (1) Action: All α-glucosidases act on oligosaccharides, glycosides, or polysaccharides that have α-glucosidic bonds, and cleave them into glucose units from their non-reducing ends. (2) Substrate specificity: The water decomposition rate calculated from Vmax for various substrates of various α-glucosidases is
Table 2 shows the relative values set to 100.

【衚】【table】

【衚】 (3) 至適PH ペシロミセス・バリオテむ及び甜菜皮子のα
−グルコシダヌれは、4.5付近であり、アスペ
ルギルス・ニガヌのα−グルコシダヌれは4.0
〜4.5付近にある。 (4) 安定PH ペシロミセス・バリオテむのα−グルコシダ
ヌれはPH4.5〜9.0の範囲で、アスペルギルス・
ニガヌのα−グルコシダヌれはPH3.5〜8.0の範
囲で、甜菜皮子のα−グルコシダヌれはPH3.0
〜8.0の範囲でそれぞれ安定である。 (5) 枩床安定性 ペシロミセス・バリオテむのα−グルコシダ
ヌれは55℃、15分凊理で、アスペルギルス・ニ
ガヌのα−グルコシダヌれは50℃、15分凊理
で、甜菜皮子α−グルコシダヌれは60℃、15分
凊理でもそれぞれ安定である。 (6) 分子量 SDSポリアクリルアミドデむスク電気泳動法
によ぀お求めた各皮α−グルコシダヌれの分子
量。ペシロミセス・バリオテむのα−グルコシ
ダヌれは100000、アスペルギルス・ニガヌのα
−グルコシダヌれは58000、甜菜皮子のα−グ
ルコシダヌれは91000である。 (7) 掻性枬定法 基質ずしお0.5マルトヌス溶液PH4.0の
0.2M酢酞緩衝液に溶解しお調補する。0.8ml
を甚い、酵玠液0.2mlを加え、37℃においおα
−グルコシダヌれを分間反応し、グルコヌス
を生成させ、グルコヌスオキシダヌれ法
Glucose β−Test Wako和光玔薬工業株
匏䌚瀟補品でグルコヌスを枬定した。分間
に1Όモルのマルトヌスを分解しお2Όモルのグ
ルコヌスを生成する酵玠掻性を単䜍(U)ずす
る。 次にこれら各皮α−グルコシダヌれを甚いおハ
むドロヌル垌釈液又はラフむネヌト䞭のオリゎ糖
を分解する条件即ち添加酵玠量、䜜甚枩床及び䜜
甚時間等に぀いお怜蚎した。その結果を詊隓䟋
〜にお説明する。 詊隓䟋  各皮α−グルコシダヌれの添加量を求めるため
にハむドロヌル垌釈液固型分20、固型分䞭の
オリゎ糖含量率17.1を基質ずし、基質ml圓
り各皮α−グルコシダヌれを、、及び各
単䜍量添加し60℃で〜時間䜜甚させ、それぞ
れのハむドロヌル垌釈液䞭のオリゎ糖残存率を調
べた。その結果を衚−に瀺す。
[Table] (3) Optimal pH: α of Pecilomyces variotei and sugar beet seeds
-Glucosidase is around 4.5, and Aspergillus niger α-glucosidase is 4.0.
It is around ~4.5. (4) Stable pH: α-glucosidase of Pecilomyces variotei has a pH range of 4.5 to 9.0, and
α-glucosidase from niger has a pH range of 3.5 to 8.0, and α-glucosidase from sugar beet has a pH of 3.0.
Each is stable in the range of ~8.0. (5) Temperature stability: α-glucosidase from Pecilomyces variotei was treated at 55℃ for 15 minutes, α-glucosidase from Aspergillus niger was treated at 50℃ for 15 minutes, and α-glucosidase from sugar beet seeds was treated at 60℃ for 15 minutes. Each is stable even after treatment. (6) Molecular weight: Molecular weight of various α-glucosidases determined by SDS polyacrylamide disc electrophoresis. α-glucosidase of Pecilomyces variotei is 100,000, α-glucosidase of Aspergillus niger is
-Glucosidase is 58,000, α-glucosidase of sugar beet seeds is 91,000. (7) Activity measurement method: 0.5% maltose solution (PH4.0) as a substrate.
Prepare by dissolving in 0.2M acetate buffer. )0.8ml
Add 0.2 ml of enzyme solution and incubate α at 37℃.
- Glucosidase was reacted for 5 minutes to generate glucose, and glucose was measured by the glucose oxidase method (Glucose β-Test Wako: product of Wako Pure Chemical Industries, Ltd.). One unit (U) is the enzyme activity that breaks down 1 Όmol of maltose to produce 2 Όmol of glucose in 1 minute. Next, the conditions for decomposing oligosaccharides in the diluted hydrol solution or raffinate using these various α-glucosidases, such as the amount of enzyme added, the action temperature, and the action time, were investigated. Test example 2
This will be explained in 3. Test Example 2 In order to determine the amount of various α-glucosidases added, Hydrol diluted solution (solid content 20%, oligosaccharide content in solid content 17.1%) was used as a substrate, and 1 amount of each α-glucosidase was added per 1 ml of substrate. . The results are shown in Table-3.

【衚】【table】

【衚】 衚−より明らかのように各α−グルコシダヌ
れのいずれも単䜍以䞊添加した堎合にハむドロ
ヌル垌釈液䞭のオリゎ糖の氎解が進むこずがわか
る。そしおより残存率を枛らすための添加量ずし
おは各α−グルコシダヌれずも単䜍以䞊必芁で
あるこずがわか぀た。 詊隓䟋  ハむドロヌル垌釈液固型分含量20、固型分
䞭のオリゎ糖含有率17.1及びラフむネヌト
固型分含量20、固型分䞭のオリゎ糖含有率
13.8を基質ずしペシロミセス・バリオテむの
α−グルコシダヌれを基質ml圓り単䜍ず぀添
加し、各枩床で各時間䜜甚させたのち、各基質に
぀いお経時的にオリゎ糖残存率を調べ、䜜甚枩床
ならびに䜜甚時間を怜蚎した。その結果を衚−
に瀺す。
[Table] As is clear from Table 3, when 2 units or more of each α-glucosidase is added, the hydrolysis of oligosaccharides in the diluted hydrol solution progresses. It was also found that 4 units or more of each α-glucosidase was required to further reduce the residual rate. Test Example 3 Hydrol diluted solution (solid content 20%, oligosaccharide content in solid content 17.1%) and ruffinate (solid content 20%, oligosaccharide content in solid content
Using 13.8%) as a substrate, 4 units of α-glucosidase from Pecilomyces variotei were added per 1 ml of substrate, and after allowing it to act at each temperature for each time, the oligosaccharide residual rate was examined for each substrate over time, and the effect temperature and effect were determined. I considered the time. Table 4 shows the results.
Shown below.

【衚】 衚−より明らかのように䜜甚枩床は高いほど
オリゎ糖残存率が枛少するこずがわかるが、しか
し60℃以䞊になるず酵玠の倱掻がみられるので奜
たしい䜜甚枩床ずしおは50〜60℃である。又䜜甚
時間ずしおは時間以䞊であれば、オリゎ糖の残
存率が枛少するが長時間経過するずい぀たん生成
したグルコヌスから逆合成によ぀おたたオリゎ糖
が再生成されはじめるのでかえ぀おオリゎ糖残存
率が増加し、したが぀お24時間以内にずどめるの
が奜たしい。 詊隓䟋〜で瀺されるようにハむドロヌル垌
釈液又はラフむネヌトにペシロミセス・バリオテ
む、アスペルギルス・ニガヌ又は甜菜皮子由来の
α−グルコシダヌれを適圓な枩床で適圓な時間、
即ち50〜60℃、〜24時間䜜甚させるこずによ぀
お、ハむドロヌル垌釈液又はラフむネヌト䞭のオ
リゎ糖を分解しおグルコヌスずなさしめ、かくし
おハむドロヌル垌釈液又はラフむネヌトよりオリ
ゎ糖の少ない糖液を補造するこずができた。本発
明の方法によ぀お埗られたオリゎ糖の少ない糖液
は、そのたたもしくは濃瞮埌柱粉糖化液に再混入
しお異性化糖液補造甚ずしお倧いに利甚され埗
る。 以䞋に本発明を実斜䟋におより具䜓的に説明す
る。 実斜䟋  固型分濃床15、糖組成固型分を100ずし
お各糖成分の比率をで瀺す。フラクトヌス
10.4、グルコヌス72.7、オリゎ糖16.9であ
るラフむネヌト1000mlにペシロミセス・バリオテ
むのα−グルコシダヌれを3000単䜍加え、60℃で
時間反応したずころ、フラクトヌス10.3、グ
ルコヌス82.9、オリゎ糖6.8の糖液が埗られ
た。このものを公知の方法で枛圧濃瞮しお固型分
濃床45ずし、グルコヌスむ゜メラヌれにより異
性化反応工皋を行぀たずころ、フラクトヌス42.5
、グルコヌス50.6、オリゎ糖6.9ずいう糖
組成の異性化糖液を埗た。このものは通垞の異性
化糖液ずしお䜿甚可胜であ぀た。 実斜䟋  固型分濃床20、PH4.3、糖組成がグルコヌス
81.3、オリゎ糖18.7であるグルコヌスハむド
ロヌル垌釈液1000mlにアスペルギルス・ニガヌの
α−グルコシダヌれをml圓り単䜍加え、60℃
で時間反応したずころグルコヌス92.6、オリ
ã‚Žç³–7.4の糖液が埗られた。このものを濃瞮し
お固型分濃床35ずし、同濃床の液化コヌンスタ
ヌチ分解率15に10加え、グルコアミラヌ
れグルクザむムAF−倩野補薬補を固型
分圓り単䜍加え、60℃で40時間糖化したず
ころ、グルコヌス94.5、オリゎ糖5.5の糖組
成を持぀糖液を埗た。このものはグルコヌスむ゜
メラヌれによる異性化糖の補造に䜿甚するこずが
できた。又このものは勿論、粟補ブドり糖や結晶
ブドり糖の補造にも有効に䜿甚するこずができ
た。 実斜䟋  固型分濃床15、糖組成フラクトヌス10.4、
グルコヌス72.7、オリゎ糖16.9であるラフむ
ネヌト300mlを甜菜皮子α−グルコシダヌれをア
ミノヘキシルセフアロヌスに固定化し、カラムに
充填したもの0.3単䜍湿最ゲル、カラム容
積100mlに60℃、500mlHrで通液し時間埪
環反応させたずころフラクトヌス10.4、グルコ
ヌス83.0、オリゎ糖6.6の糖液が埗られた。
このものを公知の方法で枛圧濃瞮しお固型分濃床
45ずし、グルコヌスむ゜メラヌれにより異性化
反応工皋を行぀たずころ、フラクトヌス42.5、
グルコヌス50.8、オリゎ糖6.7ずいう糖組成
の異性化糖液を埗た。このものは通垞の異性化糖
液ずしお䜿甚可胜であ぀た。なお、この甜菜皮子
α−グルコシダヌれを固定化したアミノヘキシル
セフアロヌスは、䞊蚘条件で回繰り返し反応さ
せた埌も初期の掻性の100を保持しおいた。
[Table] As is clear from Table 4, the higher the action temperature is, the lower the oligosaccharide residual rate is. However, at temperatures above 60°C, enzyme deactivation is observed, so the preferred action temperature is 50-60°C. It is ℃. If the action time is more than 1 hour, the residual rate of oligosaccharides will decrease, but if a long period of time passes, oligosaccharides will start to be regenerated by retrosynthesis from the glucose produced, so the residual rate of oligosaccharides will decrease. rate increases and therefore it is preferable to stay within 24 hours. As shown in Test Examples 1 to 3, alpha-glucosidase derived from Pecilomyces variotei, Aspergillus niger, or sugar beet seeds is added to a diluted hydrol solution or raffinate at an appropriate temperature for an appropriate time.
That is, by reacting at 50 to 60°C for 1 to 24 hours, the oligosaccharides in the diluted hydrol solution or raffinate are decomposed into glucose, thus creating a sugar solution with less oligosaccharides than the diluted hydrol solution or raffinate. was able to manufacture. The sugar solution containing few oligosaccharides obtained by the method of the present invention can be widely used as it is or by being remixed into the starch saccharification solution after concentration for producing an isomerized high-fructose sugar solution. The present invention will be explained in more detail below with reference to Examples. Example 1 Solid content concentration 15%, sugar composition (solid content is 100% and the ratio of each sugar component is shown in %) fructose
When 3000 units of α-glucosidase from Pecilomyces variotei was added to 1000 ml of ruffinate containing 10.4% fructose, 72.7% glucose, and 16.9% oligosaccharides and the mixture was reacted at 60°C for 4 hours, 10.3% fructose, 82.9% glucose, and 6.8% oligosaccharides were added. A sugar solution was obtained. This product was concentrated under reduced pressure using a known method to achieve a solid content concentration of 45%, and when an isomerization reaction step was performed using glucose isomerase, fructose was 42.5%.
%, glucose 50.6%, and oligosaccharides 6.9%. This product could be used as a normal high-fructose sugar solution. Example 2 Solid content concentration 20%, PH4.3, sugar composition is glucose
Add 4 units of Aspergillus niger α-glucosidase per ml to 1000 ml of a diluted glucose hydrol solution containing 81.3% and 18.7% oligosaccharides, and heat at 60°C.
After 4 hours of reaction, a sugar solution containing 92.6% glucose and 7.4% oligosaccharide was obtained. Concentrate this to a solid concentration of 35%, add 10% to the same concentration of liquefied cornstarch (decomposition rate 15%), and add 4 units of glucoamylase (Gluczyme AF-6: manufactured by Amano Pharmaceutical) per 1g of solid content. In addition, when the mixture was saccharified at 60°C for 40 hours, a sugar solution with a sugar composition of 94.5% glucose and 5.5% oligosaccharide was obtained. This product could be used for producing isomerized sugar using glucose isomerase. Moreover, this product could of course be effectively used in the production of purified glucose and crystalline glucose. Example 3 Solid content concentration 15%, sugar composition fructose 10.4%,
300 ml of raffinate containing 72.7% glucose and 16.9% oligosaccharide, with sugar beet seed α-glucosidase immobilized on aminohexyl sepharose, was packed in a column (0.3 units/g wet gel, column volume 100 ml) at 60°C, 500 ml/ When the solution was passed with Hr and allowed to circulate for 4 hours, a sugar solution containing 10.4% fructose, 83.0% glucose, and 6.6% oligosaccharides was obtained.
Concentrate this material under reduced pressure using a known method to obtain a solid content concentration.
When the isomerization reaction step was carried out using glucose isomerase, fructose was 42.5%,
An isomerized sugar solution with a sugar composition of 50.8% glucose and 6.7% oligosaccharide was obtained. This product could be used as a normal high-fructose sugar solution. In addition, this aminohexylcepharose on which sugar beet seed α-glucosidase was immobilized retained 100% of its initial activity even after the reaction was repeated five times under the above conditions.

Claims (1)

【特蚱請求の範囲】  柱粉糖化液からグルコヌスを結晶分離した埌
に埗られるハむドロヌルを垌釈した液又は異性化
糖液をむオン亀換暹脂凊理しお高果糖区分を分離
した埌に埗られるラフむネヌトにα−グルコシダ
ヌれを50〜60℃で〜24時間䜜甚させるこずによ
぀お該ハむドロヌル垌釈液又はラフむネヌトをオ
リゎ糖含量の少ない糖液ずするこずを特城ずする
オリゎ糖の少ない糖液の補造法。  α−グルコシダヌれがペシロミセス・バリオ
テむ、又はアスペルギルス・ニガヌに属する菌株
の産生するα−グルコシダヌれもしくは甜菜皮子
由来のα−グルコシダヌれである特蚱請求の範囲
第項蚘茉のオリゎ糖の少ない糖液の補造法。  α−グルコシダヌれが固定化α−グルコシダ
ヌれである特蚱請求の範囲第項蚘茉のオリゎ糖
の少ない糖液の補造法。
[Scope of Claims] 1. Ruffinate obtained after separating a high fructose fraction by treating a diluted solution of hydrol obtained after crystallizing glucose from a starch saccharified solution or an isomerized sugar solution with an ion exchange resin to separate α- A method for producing a sugar solution with a low oligosaccharide content, which comprises converting the diluted hydrol solution or raffinate into a sugar solution with a low oligosaccharide content by allowing glucosidase to act at 50 to 60°C for 1 to 24 hours. 2. The method for producing a sugar solution with low oligosaccharides according to claim 1, wherein the α-glucosidase is α-glucosidase produced by a strain belonging to Pecilomyces variotei or Aspergillus niger or α-glucosidase derived from sugar beet seeds. . 3. The method for producing a sugar solution containing few oligosaccharides according to claim 1, wherein the α-glucosidase is immobilized α-glucosidase.
JP4476384A 1984-03-07 1984-03-07 Preparation of sugar solution containing little oligosaccharide Granted JPS60188089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4476384A JPS60188089A (en) 1984-03-07 1984-03-07 Preparation of sugar solution containing little oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4476384A JPS60188089A (en) 1984-03-07 1984-03-07 Preparation of sugar solution containing little oligosaccharide

Publications (2)

Publication Number Publication Date
JPS60188089A JPS60188089A (en) 1985-09-25
JPH0525478B2 true JPH0525478B2 (en) 1993-04-13

Family

ID=12700453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4476384A Granted JPS60188089A (en) 1984-03-07 1984-03-07 Preparation of sugar solution containing little oligosaccharide

Country Status (1)

Country Link
JP (1) JPS60188089A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754597A (en) * 1980-09-17 1982-04-01 Denki Kagaku Kogyo Kk Improvement of concentration of glucose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754597A (en) * 1980-09-17 1982-04-01 Denki Kagaku Kogyo Kk Improvement of concentration of glucose

Also Published As

Publication number Publication date
JPS60188089A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
EP0140410B1 (en) Novel enzyme product and its use in the saccharification of starch
JPS6185198A (en) Saccharification of raw starch
JPH0740939B2 (en) Method for producing glucose directly from granular starch, enzyme preparation used in the method
US3795584A (en) Process for producing high purity maltose
US4132595A (en) Dextrose production with immobilized glucoamylase
US4596776A (en) Process for making starch hydrolyzates and high fructose syrups
JP2815023B2 (en) Cellobiose production method
US4318927A (en) Method of producing low calorie alcoholic beverage with starch-degrading enzymes derived from Cladosporium resinae
US4318989A (en) Starch-degrading enzymes from Cladosporium resinae
JPH0118717B2 (en)
US4855232A (en) Method for production of glucose by use of transglucosidase
US4234686A (en) Starch-degrading enzymes derived from cladosporium resinae
CA1110989A (en) Process for preparing maltose-containing starch hydrolyzate and crystallization of maltose therefrom
JPH0525478B2 (en)
CA1105858A (en) Glucoamylase immobilized on cationic colloidal silica
JPS61212296A (en) Production of branched oligosaccharide syrup
JPH10271992A (en) Purified alpha-amylase stable to acid and obtained from fungi
JP2001112496A (en) Production of cellooligosaccharide
US3935070A (en) Production of sweet syrup from dextrose mother liquor
JPH07327691A (en) Production of trehalose
JP3537464B2 (en) Novel isomaltoligosaccharides and enzymes for producing them
JPH0427818B2 (en)
JPS589695A (en) Hydrolysis process of inulin
US3332851A (en) Process of purifying glucoamylase
JPH0567279B2 (en)